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Abstract

In a computer system, the integrity of lo~ler layers is typ-
ically treated as axiomatic by higher layers. Under the pre-
sumption that the hardware comprising the machine (the

lowest layer) is valid, integrih of a layer can be guaran-

teed if and only ~: (1) the integrity crf the lower layers is

checked, and (2) transitions to highm layers occur only uf-
ler integrity checks on them are complete. The resulting

ii~tegrity “chain” inductively guarantees system integrity.
When these conditions are not met, a~ they typically are

not in the bootstrapping (initialization) of a computer sys-
tem, no integri~ guarantees can be nude. Yet, these guar-
antees are increasingly important to di~’erseapplications
such as Internet commerce, security systems, and “active
networks.” In this papec we describe [he AEGIS architec-
turefor initializing a computer svstern. It Iwlidates integrity
at each layer transition in the bootstrap process. AEGIS
also includes a recoveryproces,~,forintegrity check.failures,
and we show how this results in robust systems.

11 Introduction

Systems are organized as layers to limit complexity. A
common layering principle is the use of levels of abstraction
to mark layer boundmies. A compuier system is organized
in a series of levels of abstraction, each of which defines a
“’virtualmachine” upon which higher levels of abstraction
are constructed. Each of the virtual machines presupposes
that it is operating in an environment where the abstractions
of underlying layers can be treated as axiomatic. When
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these suppositions are true, the system is said to possess
integrity. Wkhout integrity, no system can be made secure.

Thus, any system is only as secure as the foundation
upon which it is built. For example, a number of attempts’
were made in the 1960s and 1970s to produce secure com-
puting systems, using a secure operating system environ-
ment as a basis [24]. An essential presumption of the se-
curity arguments for these designs was that system lay-
ers underpinning the operating system, whether h,ardware,
firtnw,are,or both, are trusied. We find it surprising, given
the great attention paid to operating system security [161[9]
that so little attention has been paid to the underpinnings
required for secure operation, e.g., a secure bootstrapping
phase for these operating systems.

Without such a secure bootstrap the operating system
kernel cannot be trusted since it is invoked by an untrusted
process. Designers of trusted systems often avoid this prob-
lem by including he boot components in the trusted com-
puting base (TCB) [7]. That is, the bootstrap steps are ex-
plicitly trusted. We believe that this provides a false sense
of security to the users of the operating system, and more
important, is unnecessary.

1.1 AEGIS

We have designed AEGIS, a secure bootstrap process.
AEGIS increases the security of the boot process by en-
suring the integrity of bootstrap code. It does this by con-
structing a chain of integrity checks, beginning at power-on
and continuing until the final transfer of control from the
bootstrap components to the operating system itself. The
integrity checks comp,we a computed cryptographic hash
value with a stored digitiaJsignature associated with each
component.

The AEGIS ,at-chitecture includes a recovery mechanism
for repairing integrity failures which protects against some

classes of denial of service attacks. From the smrt, AEGIS
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has been targeted for commercial operating systems on
commodity hardware, making it a practical “real-world”
system.

In AEGIS, the boot process is gwamnteed to end up in a
secure state, even in the event of integrit y failures outside of
a minimal section of trusted code. We define a guaranteed
secure boot process in two parts. The first is that no code is
executed unless it is either explicitly frusted or its integrity
is verified prior to its use. The second is that when ,anin-
tegrity failure is detected a process can recover a suitable
veritied replacement module.

1.2 Responses to integrity failure

When a system detects an integrity failure, one of three
possible courses of action can be taken.

The first is to continue normal]y, but issue a warning.
Unfortunately, this may result in the execution or use of ei-
ther a corruptor malicious component.

The second is to not use or execute the component. This
approach is typically called~tdl secnre, and creates a poten-
tial denial of service attack.

The final approach is to recover and correct the inconsis-
tency from a trusted source before the use or execution of
the component.

The first two approaches are unacceptable when the sys-
tems are important network elements such as switches, in-
trusion detection monitors, or associated with electronic
commerce, since they either make the component unavail-
able for service, or its results untrustworthy.

1.3 Outline of the paper

In Section 2, we make the assumptions of the AEGIS
design explicit. Section 3 is the core of the paper, giv-
ing an overview of the AEGIS design, and then plunging
into details of the IBM PC boot process and its modifica-
tions to support AEGIS. A model and logical dependencies
for integrity chaining are given in Section 4, and a calcu-
lation of the complete bootstrap perfornumce is given; the
estimated performance is surprisingly good. Section 5 dis-
cusses related work and critically examines some alterna-
tive approaches to those taken in AEGIS. We dkcuss the
system status and our next steps in Section 6, and conclude
the paper with Section 7.

2 Assumptions

The first assumption upon which the AEGIS model is
based is that the motherbo.wd, processor, and a portion of
the system ROM (BIOS) are not compromised, i.e., the ad-
versary is unable or unwilling to replace the motherboard or
BIOS. We also depend on the integrity of an expansion card

which contains copies of the essential components of the
boot process for recovery purposes, and optionally a small
operating system for recovering components from a trusted
network host. We are investigating a more pragmatic ap-
proach using the PROM available on most network c,ardsin
lieu of the AEGIS PROM card.

The second assumption is the existence of a crypto-
graphic certificate authority infrastructure to bind an iden-
tity with a public key. We are currently planning on us-
ing the infrastructure being established by Microsoft and
Verisign [27] for use with Authenticode [20],

The final assumption is that some trusted source exists
for recovery purposes. This source may be a host on a
network that is reachable through a secure communications
protocol, or it may be the trusted ROM card located on the
protected host.

3 AEGIS Architecture

3.1 Overview

To have a practical impact, AEGIS must be able to work
with commodity hardware with minimal changes (ideally
none) to the existing architecture. The IBM PC architecture
was selected as our prototype platform because of its large
user community and the availability of the source code for
several operating systetns. We also use the FreeBSD op-
erating system, but the AEGIS architecture is not limited
to any specific operating system. Porting to a new operat-
ing system only requires a few minor changes to the boot
block code so that the kernel can be verified prior to pass-
ing con~ol to it. Since We verification code is con~ined

in the BIOS, the changes will not substantially increase the
size of the boot loader, or boot block.

AEGIS modifies the boot process shown in figure 2 so
that all executable code, except for a very small section
of trusted code, is verified prior to execution by using a
digital signature. This is accomplished through the ad-
dition of an inexpensive PROM board, and modifications
to the BIOS. The BIOS and the PROM board contain the
verification code, and public key certificates. The PROM
board also contains code that allows the secure recovery of
any integrity failures found during the initial bootstrap. In
essence, the trusted softw,are serves as the root of an au-
thentication chain that extends to the operating system and
potentially beyond to application software [22] [10] [18].
A high level depiction of the bootstrap process is shown in
figure 1. In the AEGIS boot process, either the operating
system kernel is started, or a recovery process is entered
to re@r any integrity failure detected. Once the repair is
completed, the system is restarted to ensure that the system
boots. This entire process occurs without user intervention.
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first finds a bootable disk by searching the disk search order

OS kernel

I Trusted Software

Figure 1. AEGIS boot overview

In addition to ensuring that the system boot.. in a secure
manner, AEGIS can also be used to maintain the hardware
and software configuration of a machine. Since AEGIS
maintains a copy of the signature for each expansion card,
any additional expansion cards will fail the integrity test.
Similarly, a new operating system cannot be started since
the boot block would change, and the new boot block would
fail the integrity test.

3.2 AEGIS Boot Process

Every computer with the IBM PC architecture follows
approximately the same boot process. We have divided this
process into four levels of abstraction (see figure 2), which
correspond to phases of the bootstrap operation. The first
phase is the Power on Self Test or POST [21]. POST is
invoked in one of four ways:

1.

2.

3.

4.

Applying power to the computer automatically invokes
POST causing the processor to jump to the entry point
indicated by the processor reset vector.

Hardware reset also causes the processor to jump to
the entry point indkated by the processor reset vector.

Warm boot (ctrl-alt-del under DOS) invokes POST
without testing or initializing the upper 64K of system
memory.

Software programs, if permitted by the operating sys-
tem, can jump to the processor reset vector.

In each of the cases above, a sequence of tests are con-
ducted. All of these tests, except for the initial processor
self test, are under the control of the system BIOS.

The finat step of the POST process calls the BIOS operat-
ing system bootstrap interrupt (Int 19h). The bootstrap code

defined in the CMOS. Once it finds a bootable disk, it loads
the primary boot block into memory and passes control to
it. The code contained in the boot block proceeds to load
the operating system, or a secondary boot block depending
on the operating system [11] [8] or boot loader [1].

Once the BIOS has performed all of its power on tests,
it begins searching for expansion card ROMs which are
identified in memory by a specific signature. Once a valid
ROM signature is found by the BIOS, control is immedi-
ately passed to it. When the ROM completes its execution,
control is returned to the BIOS.

Ideally, the boot process would proceed in a series of
levels with each level passing control to the next until the
operating system kernel is running. Unfortunately, the IBM
architecture uses a “star like” model which is shown in fig-
ure 2.

2Operating System

Level 4,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,, ,,

T
Level 3,, !,.,!!,!, ,,, ,,7, ,,, ,!, ,,, ,$

=-

-,,1,9!1,,,::””2

I SystemBIOS I

T Level 1
,4, ,! !,,,, ,, !,,,,,,, ,,, .,,,,,, ,,,

Inki& POST

Figure 2. IBM PC boot process

3.2.1 A Multilevel Boot Process

We have divided the boot process into several levels to
simplify and organize the AEGIS BIOS modifications, as
shown in figure 3. Each increasing level adds functional-
ity to the system, providing correspondingly higher levels
of abstraction. The lowest level is Level 0. Level O con-
tains the small section of trusted software, digital signa-
tures, public key certificates, and recovery code. The in-
tegrity of this level is assumed to be valid. We do, how-
ever, perform an initial checksum test to identify PROM
failures. The first level contains the remainder of the usual
BIOS code, and the CMOS. The second level contains all
of the expansion c,ards and their associated ROMs, if any.
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The third level contains the operating system boot block(s).
These are resident on the bootable device and ,are respon-
sible for loading the operating system kernel. The fourth
level contains the operating system, and the fifth and final
level contains user level programs and any network hosts.

The transition between levels in a traditional boot pro-
cess is accomplished with a jump or a call instruction with-
out any attempt at verifying the integrity of the next level.
AEGIS, on the other hand, uses public key cryptography
and cryptographic hashes to protect the transition from each
lower level to the next higher one, and its recovery process
ensures the integrity of the next level in the event of failures.

3.2.2 AEGIS BIOS Modifications

AEGIS modifies the boot process shown in figure 2 by di-
viding the BIOS into two logical sections. The first section
contains the bare essentials needed for integrity verification
and recovery. Coupled with the AEGIS ROM, it comprises
the “trusted software”. The second section contains the re-
mainder of the BIOS and the CMOS.

The first section executes and performs the standard
checksum calculation over its address space to protect
against ROM failures. Following successful completion of
the checksum, the cryptographic hash of the second section
is computed and verified ag,ainst a stored signature. If the
signature is valid, control is passed to the second section,
i.e., Level 1.

The second section proceeds normally with one change,
Prior to executing an expansion ROM, a cryptographic hash
is computed and verified against a stored digital signature
for the expansion code. If the signature is valid, then con-
trol is passed to the expansion ROM. Once the verification
of each expansion ROM is complete (Level 2), the BIOS
passes control to the operating system bootstrap code. The
bootstrap code was previously verified as part of the BIOS,
and thus no further verification is required. The bootstrap
code finds the bootable device and verifies the boot block.

Assuming that the boot block is verified successfully,
control is passed to it (Level 3). If a second,wy boot block
is required, then it is verified by the primary block before
passing control to it. Finally, the kernel is verified by the last
boot block in the chain before passing control to it (Level 4).

Any integrity failures identified in the above process are
recovered either through storage on the expansion ROM
card, or through a network host. If the component that fails
its integrity check is a portion of the BIOS, then it must be
recovered from the ROM card. The recovery process is a
simple memory copy from the address space of the ROM
card to the memory address of the failed componenq in ef-
fect shadowing the failed component.

A failure beyond the BIOS causes the system to boot
into a recovery kernel contained on the ROM card. The

recovery keruel contacts a “trusted” host through a secure
protocol, e.g., IPv6 [2], to recover a verified copy of the
failed component. The failed component is then shadowed
or repaired, if possible, and the system is restarted.

The resultant AEGIS boot process is shown in figure 3.
Note that when the boot process enters the recovery proce-
dure it becomes isomorphic to a secure network boot.

.=
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~;

,,, , !,,;,.,,,...,,,,.,

U*. Pro*raln8

G

Level 5... ...,, ... ,,, ,,

OF-lXW Sw.-

k“d 4,, .,...,, ,,, ,,, ,, ,,,

;“T -do
:
\

‘.
----- - -7’0” -
Figure 3. AEGIS boot control flow

3.3 Key and Configuration Management

The initial prototype stores the signed cryptographic

hashes in a raw format ,and the public keys in PKCS #1 [13]
format. Eventually, we expect to move to X.509V3 certifi-
cates [6] and PKCS #7 [14] to bind the public key with an
identity as well as use the Verisign certificate authority in-
frastructure. Ideally, we hope in the future that expansion
board vendors will include signatures in their ROM in a
manner similar to Authenticode [18],

The tast two kilobytes of the 128kb AEGIS BIOS flash
ROM contain the component signatures and public key(s).
We are in the process of developing an installation and con-
figuration program to allow system administrators to in-
statl and remove components and their associated signatures
stored in the flash ROM. This will provide a level of flex-
ibility to the system and still maintain the security of the
system.
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4 Integrity Chaining and System Perfor-

E

Algori~m

mance MD5
RSA Verify(512b

In AEGIS, system integrity is preserved through the RSA Verify (1024

chain of integrity checks in the bootstrap process. The ideal RSA Verify ‘--‘“

authentication chain produced by each level verifying the
next can be represented by the recurrence

10 = True,
(1)

Ii+l = {Ii Av(L,+l) for O < i <4.

Ii is a boolean value representing the integrity of level

i, and A is the boolean and operation. 1; is the verification
function associated with the it h lCVCI.l’; takes as its only ar-

gument the level to verify, and it returns a boolean value as

a result. The verification function performs a cryptographic
hash of the level, and comp,ares the result to the value ob-
tained from a stored signature for the level. As smted ear-

lier, the IBM PC does not lend itself to such a boot process.
[nstead. we alter the recurrence to:

10 = True,

{

Ii A Vi(Li+l) for i = 0,3,4,
(2)

~i+l = L A E?=l vi(~~+.l) for i = I,

IiAU_l(L,+l)) for i = 2.

Here, n represents the number of expansion boards in the

system, and our level of assurance is preserved.

4.1 Performance impact on bootstrap completion
time

Using the recurrence relation shown in equation 2, we
can COIIIpttti3 the estimated itICIWSt3 ill boot tiIne (~A), With-

out integrity failures, between AEGIS and a standard IBM
PC using the following equation:

n

TA = ~(Vo(L)) + ~(~vl(~~)) + ~(~1(J53))

1=1 (3)

+t(v3(L4)),

where t(op) returns the execution time of op. In estimat-

ing the time of the verification function, W, we use the

BSAFE benchmarks [23] for an Intel 90Mhz Pentium com-
puter, shown in table 1. The cost of verification includes

time required for computing a MD5 message digest, and
the time required to verify the digest against a stored signa-

ture. Any signatures embedded in the public key certificate
are ignored at the moment.

The BIOS is typically one megabit ( 128 Kilobytes), and

the expansion ROMs are usually 16 kilobytes with some,

3===1
Time
13,156,000 bytes/see

it) 0.0027 sec
bit) 0.0086 sec

~Lmmhit) 0.031 sec

Table 1. BSAFE 3.0 Benchmarks

such as video cards, as large ,as 64 kilobytes. For analysis
purposes, we will resume that one@ kilobyte c,ard and two
16 kilobyte cards ,are present. The size of the boot blocks
for FreeBSD 2.2 (August 1996 Snapshot) are 512 bytes for

the primary boot block, 6912 bytes for the secondary boot
block, and 1,352 kilobytes for the size of the GENERIC

kernel. Using the perfonmmce of MD5 from table 1, the

time required to verify each layer using a 1024 bit modulus
is:

t(Vo(L1)) = 0.0185 seconds

t(Vl (L2)) = 0.0160 seconds

t(V1 (L3)) = 0.018 secorzd

t(V3(L4)) = 0.l14secomk.

Summing these times gives TA = 0.1665 seconds which
is insignificant comp,ared to the length of time currently

needed to bootstrap an IBM PC.

5 Related work

The first presentation of a secure boot process wassdone

by Yee [26]. In Yee’s model, a cryptographic coprocessor
is the first to gain control of the system. Unfortunately, this
is not possible without a complete architectural revision of
most computer systems— even if the coprocessor is tightly

coupled. Yee exp,ands his discussion of a secure boot in his
thesis [28], but he continues to state that the secure copro-
cessor should control the boot process verifying each com-

ponent prior to its use. Yee states that boot ROM modifi-

cations may be required, but since a prototype secure boot
process w= never implemented more implemcutation ques-

tions are raised than ,answered by his discussion.

Clark [5] presents a secure boot process for DOS that
stores all of the operating system bootstrap code on a PCM-

CIA card. He does not uddress the verification of any

firmware (system BIOS or expansion cards). Clark’s model,
however, does permit mutual cryptographic authentication
between the user and the host which is an important capa-

bility. However, the use of a PCMCIA card containing all
of the system boot tiles creates severat configuration man-
agement problems, e.g., a system upgrade requires tie re-
programming of atl the cards in circulation, and since today
m,any users have multiple operating systems on their per-
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sotml computers a user needs a scp,amtc PCMCIA card for

each operating system they wish to use.
Lampson [15] describes a secure boot model as ,an ex-

ample for his authentication catcul us. In Lmnpsou’s model,
the entire boot ROM is trusted, and he does not address the
verification of expansion cards/ROMs. The Birlix [12] Se-
curity Architecture proposes a model designed by Michael
Gross that is similar to Lampsou”s. The Birlix model also
suffers from the same problems. In both cases, the boot
ROM is responsible for generating a public and private key
pair for use in host based authentication once the operating

system is running. In AEGIS we leave (any security related
functions, beyond the boot process, to the operating system

without loss of security. To do otherwise limits security
choices for the operating system.

None of the approaches address a recovery process in the

event of an integrity failure.

5.1 Discussion and alternative approaches

A possible criticism of this work is that booting from a
floppy disk provides the same level of protection. There are

several reasons why this is not so. The first is that providing

physical security for the floppy disk is extremely difficult.
Users can take the disks wherever they like, and do what-
ever they like to them. One can envision a user building
their own boot floppy that gives them systcm level privi-
leges. The user is now free to read and write anywhere

on the local disk circumventing any security systems put
in place by the “real” boot floppy or \he on disk operat-

ing system. This problem is described by Microsoft [19]

as a method of circumventing the Windows NT file system

(NITS). The major shortcoming, however, in using a boot
disk is that none of the firmw,are is verified prior to use.
Thus, a user can add or replace expansion boards into the

system without any security controls, potentially introduc-
ing unauthorized expansion cards.

6 Status and Future Work

The AEGIS prototype is nearing completion, and we are

confident that a description of its current performance and
implementation will be provided at the conference. Initial

difficulty in obtaining BIOS source code has delayed mod-
ifying it to support AEGIS as described in the body of the
paper. However, we are currently adding the required cryp-
tographic routines and optimizing them for space to store as
much key and recovery material in the flash ROM as possi-

ble.
The current recovery kernel prototype uses IPv6 as

a means of recovering replacement files. We intend to
switch to the Internet Engineering Task Force’s (IETF) In-
ternet Security Association and Key Management Protocol

(ISAKMP) [17] to allow user choice of a secure protocol.
Additionally, the method with which the recovery kernel

contacts a host is currently via a fixed address. We hope
to develop or use a protocol in which the recovery host’s
address c,an be dctertnined dynamically when needed.

The process by which components are vetted, signed,

and the resultant signature and public key certificate in-
stalled needs to be addressed carefully since signing a
“buggy” or malicious component can result in a security
breech. We plan to address this once a full prototype is
completed, and will report on the results. As a minimum,
we expect to use flaw detection techniques such as those

from Bishop [3], Kannan [4], and others to assist in a tech-
nical vetting before the actual signing of the cotnponent.

In addition, we ,are investigating the use of this tech-
nology as part of a secure bootstrap for an active network
node[25].

7 Conclusions

Current operating systems cannot provide security assur-

ances since they are started via an untrusted process. With
the explosive growth in Intemet commerce, the need fOr se-

curity assumnces from computer systems has grown con-
siderably. AEGIS is a guaranteed secure boot process that
ensures that the computer system is started via a trusted pro-
cess, and ensures that the system starts in spite of integrity
failures.
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