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Optimization
» is ubiquitous and important, e.g., machine learning,
operation research, ...

» a major target of quantum algorithms from early time:
adiabatic quantum computing, linear-equation-system
solver, ...

Quantum Advantage?

» Heuristic: adiabatic, QAOA for near-term devices,

» Provable: our focus, by quantizing classical algorithms.
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Yes, we do have accompanying lower bounds. Will show!
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A typical classical iterative algorithm:

» Assume a feasible set P. Want to optimize f(z) s.t. x € P.
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A generic iterative optimization algorithm

A typical classical iterative algorithm:

» Assume a feasible set P. Want to optimize f(z) s.t. x € P.
> A generic iterative algorithm with T iterations:

» 1 — x9 — - — xp. Cost for each step: (1) store x;; (2)
determine x; based on z;_1,--- ,x1, P, f(x).

How quantum potentially speeds up this procedure?

» Reduce the cost for each step. Make it quantum and/or
store x;s quantumly. However, this could complicate the
determination of next x;s.

» Not clear how to reduce the number of iterations 7.



Outline

Convex Optimization



Convex optimization

Convex optimization is a central topic in computer science with
applications in:
» Machine learning: training a model is equivalent to
optimizing a loss function.

» Algorithm design: LP/SDP-relaxation, such as various
graph algorithms (vertex cover, max cut,...)

Classically, it is a major class of optimization problems that has
polynomial time algorithms.
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Convex optimization

In general, convex optimization has the following form:
min f(xz) s.t. x€C,

where C C R" is promised to be a convex body and f: R" - R
is promised to be a convex function.

It is common to be provided with two oracles:
» membership oracle: input an z € R™, tell whether x € C;

» evaluation oracle: input an x € C, output f(z).

Given a parameter ¢ > 0 for accuracy, the goal is to output an
Z € C such that

f(Z) < min f(z) +e.
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Convex optimization

Classically, it is well-known that such an & can be found in
polynomial time using the ellipsoid method, cutting plane
methods or interior point methods.

Currently, the state-of-the-art result by Lee, Sidford, and
Vempala uses O(n?) queries and additional O(n?) time.

Quantumly, we are promised to have unitaries O¢ and Oy s.t.

» for any x € R", O¢|z)|0) = |z)|Ic(x)), where I¢(xz) =1 if
x€Cand Ig(x)=0if x ¢ C;
» for any x € C, O¢|2)|0) = |z)|f(x)).



Convex optimization

Main result. Convex optimization takes
» O(n) and Q(\/n) quantum queries to Oc;
» O(n) and Q(/n) quantum queries to Oy.

Furthermore, the quantum algorithm also uses O(nS) additional
time.



Convex optimization

Main result. Convex optimization takes
» O(n) and Q(\/n) quantum queries to Oc;
» O(n) and Q(/n) quantum queries to Oy.

Furthermore, the quantum algorithm also uses O(nS) additional
time.

As a result, we obtain:

» The first nontrivial quantum upper bound on general
convex optimization.

» Impossibility of generic exponential quantum speedup of
convex optimization! The speedup is at most polynomial.
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Given m real numbers ay,...,a, € R, s-sparse n x n Hermitian
matrices Aq,..., An,C, the SDP is defined as

max tr[CX]
st. tr[4;X] <a; Vi€ [m];
X = 0.
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Given m real numbers ay,...,a, € R, s-sparse n x n Hermitian
matrices Aq,..., An,C, the SDP is defined as

max tr[CX]
st. tr[4;X] <a; Vi€ [m];
X = 0.

SDPs can be solved in polynomial time. Classical
state-of-the-art algorithms include:

» Cutting-plane method:
O(m(m? 4+ n?3™ + mns) poly log(Rr/e)).
» Matrix multiplicative weight: O(mns(Rr/€)7).
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Quantum algorithms for SDPs

Brandao and Svore gave a quantum algorithm with complexity
O(y/mns*(Rr/€)*?), a quadratic speed-up in m,n, (later
improved to O(y/mns?(Rr/e)®), based on the Matrix
Multiplicative Weight Update method.

No exponential speed-up: also proved Q(y/m + y/n) as a lower
bound.

Input model

An oracle that takes input j € [m+ 1], k € [n], | € [s], and
performs the map

5.k, 1,0) = 1, ks L (A k)

where (4))k,, () s the I*" nonzero element in the k™ row of
matrix A;.
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Optimal quantum algorithms for SDPs

Can we close the gap between O(y/mn) and Q(y/m + /n)?Yes!

Theorem
For any € > 0, there is a quantum algorithm that solves the
SDP using at most

O((Vm + vn)s*(Rr/e)®)

quantum gates and queries to oracles.

’ paper ‘ result ‘
BS17 O(y/mns?(Rr/e)3?)

vAGGdW17 O(y/mns®(Rr/€)®)
this talk O((v/m + /n)s*(Rr/e)®)
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The behavior of the algorithm:
» The good: optimal in m,n
» The bad: dependence on R,7, e ! is too high: (Rr/e)

Applications:

» The good: Some machine learning, especially compressed
sensing problems have Rr/e = O(1) (Ex. quantum
compressed sensing by Gross et al. 09).

» The bad: The SDP in the Goeman-Williams algorithm for
MAX-CUT has Rr/e = ©(n) (and many other algorithmic
SDP applications).
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Take-away messages for the upper bound

Convex Optimization

O(1) O(n)
MEM SEP OPT

Poly-log quantum queries suffice to approximate sub-gradients.

Semidefinite Programs

Intermediate States in Matrix Multiplicative Weight Update
method:

p® = exp[ Y- 1M ] (Gibbs state).
Trfexp | § 3207, M)

Faster quantum algorithms to sample Gibbs states.



The lower bound

» Convex Optimization: Convex optimization takes
> Q(n) and Q(y/n) quantum queries to Oc;
» O(n) and Q(yv/n) quantum queries to Oy.

» Semidefinite Programs:

» Upper bound: O((v/m + v/n)s*(Rr/e)®).
» Lower bound: Q(y/m + v/n).

High-level difficulty:
» (1) continuous domain (vs Boolean oracle query);

> (2) classical lower bounds are not studied comprehensively.
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Open questions!

» Can we close the gap for both membership and evaluation
queries? Our upper bounds on both oracles use O(n)
queries, whereas the lower bounds are only Q(y/n).

» Can we improve the time complexity of our quantum
algorithm? The time complexity O(n?) of our current
quantum algorithm matches that of the classical
state-of-the-art algorithm.

» What is the quantum complexity of convex optimization
with a first-order oracle (i.e., with direct access to the
gradient of the objective function)?

» Concrete applications where quantum algorithms (both for
convex optimization and SDPs) can have provable
speed-ups?



Thank youl
Q& A
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