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Landscape of Quantum Advantage in Optimization

Optimization

I is ubiquitous and important, e.g., machine learning,
operation research, ...

I a major target of quantum algorithms from early time:
adiabatic quantum computing, linear-equation-system
solver, ...

Quantum Advantage?

I Heuristic: adiabatic, QAOA for near-term devices,

I Provable: our focus, by quantizing classical algorithms.
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Summary of Results

I Convex Optimization (arXiv: 1809.01731): a quantum
algorithm using Õ(n) queries to the evaluation and the
membership oracles, whereas the best known classical
algorithms makes O(n2) such queries. (independent work:
arXiv:1809.00643)

I Quantum SDP solvers (arXiv: 1710.02581v2): a
quantum algorithm solves n-dimensional semidefinite
programs with m constraints, sparsity s and error ε in time
Õ((
√
m+

√
n)s2(Rr/ε)8) where R, r are bounds on the

primal/dual solutions.

Yes, we do have accompanying lower bounds. Will show!
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A generic iterative optimization algorithm

A typical classical iterative algorithm:

I Assume a feasible set P . Want to optimize f(x) s.t. x ∈ P .

I A generic iterative algorithm with T iterations:

I x1 → x2 → · · · → xT . Cost for each step: (1) store xi; (2)
determine xi based on xi−1, · · · , x1, P , f(x).

How quantum potentially speeds up this procedure?

I Reduce the cost for each step. Make it quantum and/or
store xis quantumly. However, this could complicate the
determination of next xis.

I Not clear how to reduce the number of iterations T .
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Convex optimization

Convex optimization is a central topic in computer science with
applications in:

I Machine learning: training a model is equivalent to
optimizing a loss function.

I Algorithm design: LP/SDP-relaxation, such as various
graph algorithms (vertex cover, max cut,. . .)

I ......

Classically, it is a major class of optimization problems that has
polynomial time algorithms.



Convex optimization

In general, convex optimization has the following form:

min f(x) s.t. x ∈ C,

where C ⊆ Rn is promised to be a convex body and f : Rn → R
is promised to be a convex function.

It is common to be provided with two oracles:

I membership oracle: input an x ∈ Rn, tell whether x ∈ C;
I evaluation oracle: input an x ∈ C, output f(x).

Given a parameter ε > 0 for accuracy, the goal is to output an
x̃ ∈ C such that

f(x̃) ≤ min
x∈C

f(x) + ε.
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Convex optimization

Classically, it is well-known that such an x̃ can be found in
polynomial time using the ellipsoid method, cutting plane
methods or interior point methods.

Currently, the state-of-the-art result by Lee, Sidford, and
Vempala uses Õ(n2) queries and additional Õ(n3) time.

Quantumly, we are promised to have unitaries OC and Of s.t.

I for any x ∈ Rn, OC |x〉|0〉 = |x〉|IC(x)〉, where IC(x) = 1 if
x ∈ C and IC(x) = 0 if x /∈ C;

I for any x ∈ C, Of |x〉|0〉 = |x〉|f(x)〉.
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Convex optimization

Main result. Convex optimization takes

I Õ(n) and Ω(
√
n) quantum queries to OC ;

I Õ(n) and Ω̃(
√
n) quantum queries to Of .

Furthermore, the quantum algorithm also uses Õ(n3) additional
time.

As a result, we obtain:

I The first nontrivial quantum upper bound on general
convex optimization.

I Impossibility of generic exponential quantum speedup of
convex optimization! The speedup is at most polynomial.
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Semidefinite programming (SDP)

Given m real numbers a1, . . . , am ∈ R, s-sparse n× n Hermitian
matrices A1, . . . , Am, C, the SDP is defined as

max tr[CX]

s.t. tr[AiX] ≤ ai ∀ i ∈ [m];

X � 0.

SDPs can be solved in polynomial time. Classical
state-of-the-art algorithms include:

I Cutting-plane method:
Õ(m(m2 + n2.374 +mns) poly log(Rr/ε)).

I Matrix multiplicative weight: Õ(mns(Rr/ε)7).
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Quantum algorithms for SDPs

Brandão and Svore gave a quantum algorithm with complexity
Õ(
√
mns2(Rr/ε)32), a quadratic speed-up in m,n, (later

improved to Õ(
√
mns2(Rr/ε)8), based on the Matrix

Multiplicative Weight Update method.

No exponential speed-up: also proved Ω(
√
m+

√
n) as a lower

bound.

Input model

An oracle that takes input j ∈ [m+ 1], k ∈ [n], l ∈ [s], and
performs the map

|j, k, l, 0〉 7→ |j, k, l, (Aj)k,sjk(l)〉,

where (Aj)k,sjk(l) is the lth nonzero element in the kth row of
matrix Aj .
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Optimal quantum algorithms for SDPs

Can we close the gap between Õ(
√
mn) and Ω(

√
m+

√
n)?

Yes!

Theorem
For any ε > 0, there is a quantum algorithm that solves the
SDP using at most

Õ
(
(
√
m+

√
n)s2(Rr/ε)8

)
quantum gates and queries to oracles.

paper result

BS17 Õ(
√
mns2(Rr/ε)32)

vAGGdW17 Õ(
√
mns2(Rr/ε)8)

this talk Õ((
√
m+

√
n)s2(Rr/ε)8)
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Optimal quantum algorithms for SDPs

The behavior of the algorithm:

I The good: optimal in m,n

I The bad: dependence on R, r, ε−1 is too high: (Rr/ε)8

Applications:

I The good: Some machine learning, especially compressed
sensing problems have Rr/ε = O(1) (Ex. quantum
compressed sensing by Gross et al. 09).

I The bad: The SDP in the Goeman-Williams algorithm for
MAX-CUT has Rr/ε = Θ(n) (and many other algorithmic
SDP applications).
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Take-away messages for the upper bound

Convex Optimization

MEM SEP OPT
Õ(1) Õ(n)

Poly-log quantum queries suffice to approximate sub-gradients.

Semidefinite Programs

Intermediate States in Matrix Multiplicative Weight Update
method:

ρ(t) =
exp
[
ε
4

∑t−1
τ=1M

(τ)
]

Tr[exp
[
ε
4

∑t−1
τ=1M

(τ)
]
]
(Gibbs state).

Faster quantum algorithms to sample Gibbs states.
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The lower bound

I Convex Optimization: Convex optimization takes
I Õ(n) and Ω(

√
n) quantum queries to OC ;

I Õ(n) and Ω̃(
√
n) quantum queries to Of .

I Semidefinite Programs:
I Upper bound: Õ((

√
m+

√
n)s2(Rr/ε)8).

I Lower bound: Ω(
√
m+

√
n).

High-level difficulty:

I (1) continuous domain (vs Boolean oracle query);

I (2) classical lower bounds are not studied comprehensively.
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Open questions!

I Can we close the gap for both membership and evaluation
queries? Our upper bounds on both oracles use Õ(n)
queries, whereas the lower bounds are only Ω̃(

√
n).

I Can we improve the time complexity of our quantum
algorithm? The time complexity Õ(n3) of our current
quantum algorithm matches that of the classical
state-of-the-art algorithm.

I What is the quantum complexity of convex optimization
with a first-order oracle (i.e., with direct access to the
gradient of the objective function)?

I Concrete applications where quantum algorithms (both for
convex optimization and SDPs) can have provable
speed-ups?



Thank you!

Q & A
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