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to quantum machine instructions?
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How to automate the design of quantum ...
devices and its verification?
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- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

- (Mind-set) Languages affect the way we think.
— many constructs or so might be hard to imagine with quantum circuit abstraction
— famous classical example: merge-sort and recursion. How about quantum recursion?

- (automation) PL or formal methods (FM) can help us automate many tedious tasks and
provide instance-specific solutions
— many detailed optimization and verification can be conducted with better correctness
guarantees
— the only way to scale up these tasks

- (computational thinking) developing abstractions is at the heart of developing PL/FM
techniques
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The Role of Programming Languages

Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!

But of course, quantum computing model demonstrates some
fundamental differences and unique needs, which requires new
techniques to deal with.

Disciaimer: perspectives and ciaims are potentially limited or biased by personal knowledge.
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How to Handie Quantum Security Issues in Designgimplementation?
How to Scale and Automate the Design of Quantum Hardware 2
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(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers
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a 1950s computing b Classical computing today € Quantum computing

Algorithms Algorithms
High-level languages High-level languages

Compiler Classical compiler Quantum compiler
\
Classical architecture

(memory, arithemetic Classical v
operations, control architecture

: S ' hitecture
operations, communication (control operations) ' '
perati ication) (QC gates, qubits,

Hardware building Hardware building communication)
blocks: gates, bits blocks (gates, bits)

Error-correction

Assembly language
and control pulses

(low-level) programs

VLSI circuits VLSI circuits

Semiconductor Semiconductor Underlying technology

transistors : (semiconductors,
e trapped ions)

Relay circuits and
discrete wires

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- guantum mechanics prohibits certain testing, e.g., assertions

A possible solution : fully certified software, e.g., VOQC (POPL 2021)
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A lot of controlling
operations need to be
located close to
quantum chips for
small responsive time.

ISA + Fast Compilation

Mapping, Error Mitigation, ...
approximate computing
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How to Handie Quantum Security Issues in Design and Implementations

Verification of Quantum Cryptography: * _Quantuni’Kep
Relational Quantum Hoare Logic (Unruh; Barthe et al.)

Distribution

Quantum Cryptanalysis:
Resource estimation of Complex Quantum Attack Programs

Post-Quantum Cryptography:
Classical Cryptographic Systems Resilient to Quantum “?""\'_&/ \

For Classical Cryptographic Systems
(1) Identify their post-quantum security

(2) automate the procedure to upgrade its post-quantum security
(3) formal post-quantum security proofs

Formally generated security analysis will provide not only efficient and high
assurance proofs that can replace the tedious and error-prone analysis for ler
experts, but also independently verifiable proofs that can be used by security oo T

practitioners without much quantum knowledge.
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Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs

Qp |0) n m—

N 2 B—Bi— i3 Verifying the circuit
Q 1o — - ? k3 = by observation
Q: o [ - - not scalable ...
oo El—-E8 -

(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers

Existing work on type enforced correctness in QPLs
No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Ancilla: keep track of the scope of ancilla qubits (Quipper)
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GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Question 1: high-level DSLs for classical computation in superposition?

Need to compile classical computation into reversible computation

Handle the ancilla gubits and potentially simpler error-correction issues.

Question 2: high-level abstractions for guantum applications?

Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Candidate applications: Quantum Simulation
Quantum Variational Methods

Question 3: allow program analysis w/ high-level abstractions?
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Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

However, well-defined classical problems that PL might help with.
Question 5: allow programmers to define quantum object/DS?
Allow direct modeling of quantum hardware components (QRAM, Sensors)

Consider quantum stack ~ truly quantum recursion ~ quantum apps
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Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?
Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Question 2: how to do verification of quantum internet applications?
Quantum Internet/Communication is another recent interest

Develop Q Hoare logic for parallel, concurrent, distributed programs.

Some preliminary results exist. Essential difficulty exists due to quantum correlations.
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GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple

e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors

For NISQ machines, all operations could be erroneous

Need also to be scalable

Classical simulation hard to scale; large q operations might contain more errors
Likely to be application-specific
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Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

*  examples identified, but no systematic study
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GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

d0 5

dl

500 1000 1500

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

Question 2: direct compilation to analog / special purpose g machines?

Analog machine modeled
after the phvsics to simulate

Unexplored yet. But would be of great interests!

Classical Examples:

Achour et al. (PLDI16)
Achour & Rinard (ASPLOS 20)
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Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

e Automatic error-resource-optimization on a per-program basis!
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Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware
- limited computational resource
® Good when approximate results are sufficient for applications!
- vision, machine learning; also with guarantees for critical data
e Various techniques developed in classical PL literature.
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Overview

Software Developers Hardware Designer
Exact Reliability/Accuracy Approximate Hardware
Program Specification Specification

Reliability/Accuracy ||error handling Resource Optimization

Constraint Generator primitives Objective Generator
a basic frameworkg i l ],
i inPOPLI19 Back-end Optimizer

Neural-based Code Synthesizer

l

Reliable Quantum Programs with Optimal Resources
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Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
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Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today
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Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
Computing Research

GCC : many bugs in software testing

CompCert: a certified “GCC”, bug-free

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Journal of the ACM, Vol 50, 2003
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VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq,.

Our infrastructure powerful enough:
an end-to-end implementation of Shor’s algorithm & its correctness proof.



