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How to effectively translate high-level 
descriptions of quantum applications 
to quantum machine instructions?

How to automate the design of quantum 
devices and its verification?
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- (automation) PL or formal methods (FM) can help us automate many tedious tasks and 
provide instance-specific solutions 

     — many detailed optimization and verification can be conducted with better correctness 
guarantees
     — the only way to scale up these tasks

- (computational thinking) developing abstractions is at the heart of developing PL/FM 
techniques 
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Disclaimer: perspectives and claims are potentially limited or biased by personal knowledge. 
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How to Develop Software for Q. Computing, e.g., compiler, system?

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers. 
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions 

A possible solution :  fully certified software, e.g., VOQC (POPL 2021)
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How to Design and Implement Architecture for Quantum Computing?

ibmq_toronto

Mapping, Error Mitigation, …
approximate computing

X. Fu et al MICRO 17

A lot of controlling 
operations need to be 
located close to 
quantum chips for 
small responsive time. 

ISA + Fast Compilation
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Verification of Quantum Cryptography:  
                  Relational Quantum Hoare Logic (Unruh; Barthe et al.)

Quantum Cryptanalysis: 
                 Resource estimation of Complex Quantum Attack Programs

Post-Quantum Cryptography: 
                 Classical Cryptographic Systems Resilient to Quantum Attacks

For Classical Cryptographic Systems  
               
           (1) Identify their post-quantum security 
           (2) automate the procedure to upgrade its post-quantum security 
           (3) formal post-quantum security proofs

Formally generated security analysis will provide not only efficient and high 
assurance proofs that can replace the tedious and error-prone analysis for 
experts, but also independently verifiable proofs that can be used by security 
practitioners without much quantum knowledge.
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How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

SNAPL 2019

Demonstrate A Lot of Design Choices  
Hard to Scale without Automatic Tools              

QRAM Architecture

Credit: ArXiv 0807.4994

Applies to Quantum Hardware too!              
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Quantum PLs

Software Tool-chain

Architecture 

Security

Hardware Design

some

a little

a little

a little

almost none

Satisfactory

More questions could be asked !

More details will come back in Part III of the tutorial.
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(3) lack of many desirable analyses, automation, & optimization: a 

     lot of burdens on the programmers

Verifying the circuit 

by observation


…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

Existing work on type enforced correctness in QPLs

No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Ancilla: keep track of the scope of ancilla qubits (Quipper)
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GAP:  in the past discussion, we focus on circuit-level-abstraction on bits       

Hard to code even real numbers and basic arithmetic operations 

Question 1:   high-level DSLs for classical computation in superposition?   

 Need to compile classical computation into reversible computation

 Handle the ancilla qubits and potentially simpler error-correction issues.

common as part of quantum algorithm design

information of the target applications. 

Question 2:   high-level abstractions for quantum applications?
Circuits pass little structural information of the target applications. 

e.g.,  encoding, structural freedom or so for automation and optimization 

Candidate applications: Quantum Simulation 

                                       Quantum Variational Methods

Question 3:  allow program analysis w/ high-level abstractions?
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Design of QPLs: the support of high-level objects
GAP:  existing QPLs focus on describing circuits, while not using other 

           common high-level abstractions, e.g., objects, data structures. 

Question 4:  allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness) 

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so. 
        Reversibility alone does not guarantee correct quantum interference b/c workspace.  
        Efficiency issues about reimplementing DS w/ above constraints.

 However, well-defined classical problems that PL might help with. 

Question 5:  allow programmers to define quantum object/DS?

Allow direct modeling of quantum hardware components (QRAM, Sensors)

Consider quantum stack ~ truly quantum recursion ~ quantum apps
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symbolic, abstract interpretation, or so, but certainly nontrivial!  

Verification w/ quantum machines: 
Largely unexplored! Run-time verification or other possibility?

Question 2:  how to do verification of quantum internet applications?

Quantum Internet/Communication is another recent interest

Develop Q Hoare logic for parallel, concurrent, distributed programs.
Some preliminary results exist. Essential difficulty exists due to quantum correlations. 
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Question 3:  how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors
For NISQ machines, all operations could be erroneous 

Need also to be scalable
Classical simulation hard to scale; large q operations might contain more errors

Likely to be application-specific

Quantum Simulation Variational Quantum 
Methods
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Question 2: direct compilation to analog / special purpose q machines?

Analog machine modeled 
after the physics to simulate 

Unexplored yet. But would be of great interests!

Classical Examples:

  Achour et al. (PLDI16)

   Achour & Rinard (ASPLOS 20)

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or so  

examples identified, but no systematic study 
for e.g., efficiency, and verification 

Shi et al. Proceedings of the IEEE, Jun 2020
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• General-purpose fault-tolerant quantum computers are impractical in 
the near term. 


• Near-term practical quantum applications must focus on Noisy and 
Intermediate-Scale Quantum (NISQ) computers, where precisely 
controllable quits are expensive, error-prone, and scarce. 


Goal: reliable quantum programs with resource optimization!

• Quantitive guarantee on the reliability/accuracy of quantum programs 
based on specifi

• High-level abstraction of error-handling primitives in quantum 
programs. 

• Automatic error-resource-optimization on a per-program basis!  
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Methodology

• Elevate the handling of errors to the level of programming language. 

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.  

An important classical tool:  approximate computing ! 

• Return possibly inaccurate/approximate results! 
    - unreliable hardware 
    - limited computational resource

• Good when approximate results are sufficient for applications! 
    - vision,  machine learning;  also with guarantees for critical data

• Various techniques developed in classical PL literature. 
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The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.
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Verified Optimization in a Quantum Intermediate Representation

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks
University of Maryland, College Park

We present a simple quantum language we call SQIRE 
(pronounced “squire”) that can be used as an 
intermediate representation (IR) in a certified compiler for 
quantum programs. SQIRE is implemented in Coq [2], on 
top of libraries developed for the QWIRE circuit language 
[8]. This allows us to formally verify properties of SQIRE 
programs and program transformations. We demonstrate 
the power of SQIRE as a compiler intermediate 
representation by verifying a number of useful program 
transformations. For example, we verify soundness of an 
optimization that removes unnecessary X gates from a 
unitary program. We also consider a transformation that 
turns general SQIRE programs into SQIRE programs that 
can run on a linear nearest neighbor architecture. 

The full paper is available at [5].

The corresponding code is available at [3].
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Our work is a first step towards a verified compiler for 
quantum programs. In the long term, we envision a fully-
verified compilation stack from high-level quantum 
languages to hardware instructions, as shown below.

The transformation from the high-level language to the 
general purpose IR must preserve the semantics of the 
source program, so that properties proved of the source 
program are also true in the IR representation.
Optimizations and machine-specific transformations 
applied to the general purpose IR to produce machine-
specific IR must similarly preserve the semantics of the
program, and also ensure that the produced IR satisfies 
the relevant hardware constraints. Finally, the compiler 
should not introduce errors when translating from the 
low-level IR to machine instructions.

We are currently working on:
• Additional verified optimizations and mapping 

algorithms, taking inspiration from existing compilers 
for quantum programs like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce qubit and 
gate count to make programs more feasible to run on 
near-term machines, circuit mapping aims to address the 
connectivity constraints of near-term machines. Circuit 
mapping algorithms take as input an arbitrary program 
and output a program that respects the connectivity 
constraints of some underlying architecture

We have verified a naïve mapping algorithm for a toy
architecture. We assume a linear nearest neighbor (LNN) 
architecture where each qubit can only interact with its 
immediate neighbor. We map a program to this 
architecture by adding SWAP operations before and after 
every CNOT so that the target and control are adjacent 
when the CNOT is performed, and are returned to their 
original positions before the next operation. 

We have proven that this transformation is sound, and 
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of 
a piece of software is known as formal verification.  Formal 
verification has been used in classical computing for 
many years to prove correctness and security properties of 
critical code. However, formal verification is particularly 
useful in the field of quantum computing, where 
standard software assurance techniques such as unit 
testing and runtime debugging are infeasible.

Examples of formal verification that have been applied to 
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that 
a quantum program satisfies some specification. For 
example, consider a program describing the quantum
teleportation protocol. The goal may be to prove that, 
given a Bell pair and a qubit in any state, the program will 
correctly “teleport” the input qubit to one of the elements 
of the Bell pair.

Another useful application of formal verification, which 
has received relatively little attention from the quantum 
formal verification community, is proving the correctness 
of program transformations. Verifying program 
transformations allows the construction of certified
compilers, which are compilers that guarantee that the 
executable code they output behaves as specified by the 
input source program. Certified compilers are guaranteed 
not to introduce bugs in a program during compilation 
because they are correct by construction. The most 
famous example of a certified compiler (for classical 
computing) is CompCert [1], an optimizing compiler for C 
proved correct using the Coq proof assistant. 

Formal Verification

SQIRE supports five quantum programming constructs: 
skip, sequencing, unitary application, measurement of a 
single qubit, and resetting a single qubit to a fixed basis 
state. 

For simplicity, we support a fixed set of gates. This set can 
be extended in our implementation, or new gates can be 
defined in terms of built-in gates. For example, we define 
the SWAP operation as follows.

We can then state and prove properties about the 
semantics of the defined operations. For example, we can 
prove that the SWAP program swaps its arguments, as 
intended.

Example. Superdense coding is a protocol that allows a 
sender to transmit two classical bits, b1 and b2, to a 
receiver using a single quantum bit. The SQIRE program 
corresponding to the unitary part of the superdense
coding protocol is shown below.

Although SQIRE was designed to be used as an 
intermediate representation, we can also prove properties 
about SQIRE programs directly, since these programs and 
their semantics are embedded in Coq. For example, we 
can prove that the result of evaluating the program 
(superdense b1 b2) on an input state consisting of two 
qubits initialized to zero is the state ∣b1, b2⟩. In our 
development, we write this as follows.

In our full paper, we show examples of verifying properties 
of n-qubit GHZ state preparation, quantum teleportation, 
and the n-qubit Deutsch-Jozsa algorithm. 

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able 
to perform small computations before decoherence takes 
effect, compilers for quantum programs must apply 
sophisticated optimizations to reduce resource usage. 
These optimizations can be complicated to implement 
and are vulnerable to programmer error. It is thus 
important to verify that the implementations of program 
optimizations are correct. 

In general, we will be interested in proving that a 
transformation is semantics-preserving, meaning that the 
transformation does not change the behavior of the 
program. When a transformation is semantics-preserving, 
we say that it is sound. 

For example, consider the optimization, which removes 
skip operations from a program.

To prove that this transformation is semantics-preserving, 
we prove the following lemma.

In our full paper, we verify soundness of a more realistic 
optimization from [7], which removes unnecessary X 
gates from a unitary program. 
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Verified Optimization in a Quantum Intermediate Representation

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks
University of Maryland, College Park

We present a simple quantum language we call SQIRE 
(pronounced “squire”) that can be used as an 
intermediate representation (IR) in a certified compiler for 
quantum programs. SQIRE is implemented in Coq [2], on 
top of libraries developed for the QWIRE circuit language 
[8]. This allows us to formally verify properties of SQIRE 
programs and program transformations. We demonstrate 
the power of SQIRE as a compiler intermediate 
representation by verifying a number of useful program 
transformations. For example, we verify soundness of an 
optimization that removes unnecessary X gates from a 
unitary program. We also consider a transformation that 
turns general SQIRE programs into SQIRE programs that 
can run on a linear nearest neighbor architecture. 

The full paper is available at [5].

The corresponding code is available at [3].
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Our work is a first step towards a verified compiler for 
quantum programs. In the long term, we envision a fully-
verified compilation stack from high-level quantum 
languages to hardware instructions, as shown below.

The transformation from the high-level language to the 
general purpose IR must preserve the semantics of the 
source program, so that properties proved of the source 
program are also true in the IR representation.
Optimizations and machine-specific transformations 
applied to the general purpose IR to produce machine-
specific IR must similarly preserve the semantics of the
program, and also ensure that the produced IR satisfies 
the relevant hardware constraints. Finally, the compiler 
should not introduce errors when translating from the 
low-level IR to machine instructions.

We are currently working on:
• Additional verified optimizations and mapping 

algorithms, taking inspiration from existing compilers 
for quantum programs like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce qubit and 
gate count to make programs more feasible to run on 
near-term machines, circuit mapping aims to address the 
connectivity constraints of near-term machines. Circuit 
mapping algorithms take as input an arbitrary program 
and output a program that respects the connectivity 
constraints of some underlying architecture

We have verified a naïve mapping algorithm for a toy
architecture. We assume a linear nearest neighbor (LNN) 
architecture where each qubit can only interact with its 
immediate neighbor. We map a program to this 
architecture by adding SWAP operations before and after 
every CNOT so that the target and control are adjacent 
when the CNOT is performed, and are returned to their 
original positions before the next operation. 

We have proven that this transformation is sound, and 
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of 
a piece of software is known as formal verification.  Formal 
verification has been used in classical computing for 
many years to prove correctness and security properties of 
critical code. However, formal verification is particularly 
useful in the field of quantum computing, where 
standard software assurance techniques such as unit 
testing and runtime debugging are infeasible.

Examples of formal verification that have been applied to 
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that 
a quantum program satisfies some specification. For 
example, consider a program describing the quantum
teleportation protocol. The goal may be to prove that, 
given a Bell pair and a qubit in any state, the program will 
correctly “teleport” the input qubit to one of the elements 
of the Bell pair.

Another useful application of formal verification, which 
has received relatively little attention from the quantum 
formal verification community, is proving the correctness 
of program transformations. Verifying program 
transformations allows the construction of certified
compilers, which are compilers that guarantee that the 
executable code they output behaves as specified by the 
input source program. Certified compilers are guaranteed 
not to introduce bugs in a program during compilation 
because they are correct by construction. The most 
famous example of a certified compiler (for classical 
computing) is CompCert [1], an optimizing compiler for C 
proved correct using the Coq proof assistant. 

Formal Verification

SQIRE supports five quantum programming constructs: 
skip, sequencing, unitary application, measurement of a 
single qubit, and resetting a single qubit to a fixed basis 
state. 

For simplicity, we support a fixed set of gates. This set can 
be extended in our implementation, or new gates can be 
defined in terms of built-in gates. For example, we define 
the SWAP operation as follows.

We can then state and prove properties about the 
semantics of the defined operations. For example, we can 
prove that the SWAP program swaps its arguments, as 
intended.

Example. Superdense coding is a protocol that allows a 
sender to transmit two classical bits, b1 and b2, to a 
receiver using a single quantum bit. The SQIRE program 
corresponding to the unitary part of the superdense
coding protocol is shown below.

Although SQIRE was designed to be used as an 
intermediate representation, we can also prove properties 
about SQIRE programs directly, since these programs and 
their semantics are embedded in Coq. For example, we 
can prove that the result of evaluating the program 
(superdense b1 b2) on an input state consisting of two 
qubits initialized to zero is the state ∣b1, b2⟩. In our 
development, we write this as follows.

In our full paper, we show examples of verifying properties 
of n-qubit GHZ state preparation, quantum teleportation, 
and the n-qubit Deutsch-Jozsa algorithm. 

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able 
to perform small computations before decoherence takes 
effect, compilers for quantum programs must apply 
sophisticated optimizations to reduce resource usage. 
These optimizations can be complicated to implement 
and are vulnerable to programmer error. It is thus 
important to verify that the implementations of program 
optimizations are correct. 

In general, we will be interested in proving that a 
transformation is semantics-preserving, meaning that the 
transformation does not change the behavior of the 
program. When a transformation is semantics-preserving, 
we say that it is sound. 

For example, consider the optimization, which removes 
skip operations from a program.

To prove that this transformation is semantics-preserving, 
we prove the following lemma.

In our full paper, we verify soundness of a more realistic 
optimization from [7], which removes unnecessary X 
gates from a unitary program. 
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Our infrastructure powerful enough: 
               an end-to-end implementation of Shor’s algorithm & its correctness proof. 


