
An Invitation to the intersection of

Quantum Computing & Programming Languages

D

Xiaodi Wu

QuICS & UMD

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

How to effectively express quantum
applications and do trouble shooting?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

Quantum Hardware
Design

How to effectively translate high-level
descriptions of quantum applications
to quantum machine instructions?

How to automate the design of quantum
devices and its verification?

PL as a tool for non-PL expert to explore

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then
 — temporal logic: propositional logic + today, tomorrow, eventually, never, …

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then
 — temporal logic: propositional logic + today, tomorrow, eventually, never, …

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then
 — temporal logic: propositional logic + today, tomorrow, eventually, never, …

- (Mind-set) Languages affect the way we think.

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then
 — temporal logic: propositional logic + today, tomorrow, eventually, never, …

- (Mind-set) Languages affect the way we think.
 — many constructs or so might be hard to imagine with quantum circuit abstraction

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then
 — temporal logic: propositional logic + today, tomorrow, eventually, never, …

- (Mind-set) Languages affect the way we think.
 — many constructs or so might be hard to imagine with quantum circuit abstraction
 — famous classical example: merge-sort and recursion. How about quantum recursion?

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then
 — temporal logic: propositional logic + today, tomorrow, eventually, never, …

- (Mind-set) Languages affect the way we think.
 — many constructs or so might be hard to imagine with quantum circuit abstraction
 — famous classical example: merge-sort and recursion. How about quantum recursion?

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then
 — temporal logic: propositional logic + today, tomorrow, eventually, never, …

- (Mind-set) Languages affect the way we think.
 — many constructs or so might be hard to imagine with quantum circuit abstraction
 — famous classical example: merge-sort and recursion. How about quantum recursion?

- (automation) PL or formal methods (FM) can help us automate many tedious tasks and
provide instance-specific solutions

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then
 — temporal logic: propositional logic + today, tomorrow, eventually, never, …

- (Mind-set) Languages affect the way we think.
 — many constructs or so might be hard to imagine with quantum circuit abstraction
 — famous classical example: merge-sort and recursion. How about quantum recursion?

- (automation) PL or formal methods (FM) can help us automate many tedious tasks and
provide instance-specific solutions

 — many detailed optimization and verification can be conducted with better correctness
guarantees

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then
 — temporal logic: propositional logic + today, tomorrow, eventually, never, …

- (Mind-set) Languages affect the way we think.
 — many constructs or so might be hard to imagine with quantum circuit abstraction
 — famous classical example: merge-sort and recursion. How about quantum recursion?

- (automation) PL or formal methods (FM) can help us automate many tedious tasks and
provide instance-specific solutions

 — many detailed optimization and verification can be conducted with better correctness
guarantees
 — the only way to scale up these tasks

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then
 — temporal logic: propositional logic + today, tomorrow, eventually, never, …

- (Mind-set) Languages affect the way we think.
 — many constructs or so might be hard to imagine with quantum circuit abstraction
 — famous classical example: merge-sort and recursion. How about quantum recursion?

- (automation) PL or formal methods (FM) can help us automate many tedious tasks and
provide instance-specific solutions

 — many detailed optimization and verification can be conducted with better correctness
guarantees
 — the only way to scale up these tasks

PL as a tool for non-PL expert to explore
- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of

understanding computability.
 — not easy to define the resource consumption… hence no good model for complexity theory
 — easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

 — propositional logic: and, or, not, if … then
 — temporal logic: propositional logic + today, tomorrow, eventually, never, …

- (Mind-set) Languages affect the way we think.
 — many constructs or so might be hard to imagine with quantum circuit abstraction
 — famous classical example: merge-sort and recursion. How about quantum recursion?

- (automation) PL or formal methods (FM) can help us automate many tedious tasks and
provide instance-specific solutions

 — many detailed optimization and verification can be conducted with better correctness
guarantees
 — the only way to scale up these tasks

- (computational thinking) developing abstractions is at the heart of developing PL/FM
techniques

The Role of Programming Languages
 Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!

The Role of Programming Languages
 Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!
 But of course, quantum computing model demonstrates some
fundamental differences and unique needs, which requires new
techniques to deal with.

The Role of Programming Languages
 Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!
 But of course, quantum computing model demonstrates some
fundamental differences and unique needs, which requires new
techniques to deal with.

Disclaimer: perspectives and claims are potentially limited or biased by personal knowledge.

How to Program Q. Applications, Debug, and Verify Correctness?
How to Develop Software for Q. Computing, e.g., compiler, system?
How to Design and Implement Architecture for Quantum Computing?
How to Handle Quantum Security Issues in Design&Implementation?
How to Scale and Automate the Design of Quantum Hardware ?

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
 semantics in various pictures, q. Hoare logic and verification, …

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
 semantics in various pictures, q. Hoare logic and verification, …

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
 QWIRE/SQIR (embedded in Coq), SILQ, … <- academia
 python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
 semantics in various pictures, q. Hoare logic and verification, …

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
 QWIRE/SQIR (embedded in Coq), SILQ, … <- academia
 python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
 semantics in various pictures, q. Hoare logic and verification, …

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
 QWIRE/SQIR (embedded in Coq), SILQ, … <- academia
 python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs

Verifying the circuit

by observation

…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
 semantics in various pictures, q. Hoare logic and verification, …

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
 QWIRE/SQIR (embedded in Coq), SILQ, … <- academia
 python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs

(3) lack of many desirable analyses, automation, & optimization: a

 lot of burdens on the programmers

Verifying the circuit

by observation

…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

How to Develop Software for Q. Computing, e.g., compiler, system?

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.

How to Develop Software for Q. Computing, e.g., compiler, system?

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

How to Develop Software for Q. Computing, e.g., compiler, system?

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

A possible solution : fully certified software, e.g., VOQC (POPL 2021)

How to Design and Implement Architecture for Quantum Computing?

ibmq_toronto

Mapping, Error Mitigation, …
approximate computing

How to Design and Implement Architecture for Quantum Computing?

ibmq_toronto

Mapping, Error Mitigation, …
approximate computing

X. Fu et al MICRO 17

A lot of controlling
operations need to be
located close to
quantum chips for
small responsive time.

ISA + Fast Compilation

How to Handle Quantum Security Issues in Design and Implementation?

Verification of Quantum Cryptography:
 Relational Quantum Hoare Logic (Unruh; Barthe et al.)

How to Handle Quantum Security Issues in Design and Implementation?

Verification of Quantum Cryptography:
 Relational Quantum Hoare Logic (Unruh; Barthe et al.)

Quantum Cryptanalysis:
 Resource estimation of Complex Quantum Attack Programs

How to Handle Quantum Security Issues in Design and Implementation?

Verification of Quantum Cryptography:
 Relational Quantum Hoare Logic (Unruh; Barthe et al.)

Quantum Cryptanalysis:
 Resource estimation of Complex Quantum Attack Programs

Post-Quantum Cryptography:
 Classical Cryptographic Systems Resilient to Quantum Attacks

For Classical Cryptographic Systems

 (1) Identify their post-quantum security
 (2) automate the procedure to upgrade its post-quantum security
 (3) formal post-quantum security proofs

Formally generated security analysis will provide not only efficient and high
assurance proofs that can replace the tedious and error-prone analysis for
experts, but also independently verifiable proofs that can be used by security
practitioners without much quantum knowledge.

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

QRAM Architecture

Credit: ArXiv 0807.4994

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

Demonstrate A Lot of Design Choices
Hard to Scale without Automatic Tools

QRAM Architecture

Credit: ArXiv 0807.4994

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

SNAPL 2019

Demonstrate A Lot of Design Choices
Hard to Scale without Automatic Tools

QRAM Architecture

Credit: ArXiv 0807.4994

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

SNAPL 2019

Demonstrate A Lot of Design Choices
Hard to Scale without Automatic Tools

QRAM Architecture

Credit: ArXiv 0807.4994

Applies to Quantum Hardware too!

Summary

Quantum PLs

Software Tool-chain

Architecture

Security

Hardware Design

some

a little

a little

a little

almost none

Summary

Quantum PLs

Software Tool-chain

Architecture

Security

Hardware Design

some

a little

a little

a little

almost none

Satisfactory

Summary

Quantum PLs

Software Tool-chain

Architecture

Security

Hardware Design

some

a little

a little

a little

almost none

Satisfactory

More questions could be asked !

Summary

Quantum PLs

Software Tool-chain

Architecture

Security

Hardware Design

some

a little

a little

a little

almost none

Satisfactory

More questions could be asked !

More details will come back in Part III of the tutorial.

Design of Quantum Programming Languages
Gap: (1) too-low-level-abstraction: very hard to write complex programs

(3) lack of many desirable analyses, automation, & optimization: a

 lot of burdens on the programmers

Verifying the circuit

by observation

…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

Design of Quantum Programming Languages
Gap: (1) too-low-level-abstraction: very hard to write complex programs

(3) lack of many desirable analyses, automation, & optimization: a

 lot of burdens on the programmers

Verifying the circuit

by observation

…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

Existing work on type enforced correctness in QPLs

No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Design of Quantum Programming Languages
Gap: (1) too-low-level-abstraction: very hard to write complex programs

(3) lack of many desirable analyses, automation, & optimization: a

 lot of burdens on the programmers

Verifying the circuit

by observation

…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

Existing work on type enforced correctness in QPLs

No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Ancilla: keep track of the scope of ancilla qubits (Quipper)

Design of QPLs: the level of abstraction
GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

information of the target applications.

Design of QPLs: the level of abstraction
GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations

Question 1: high-level DSLs for classical computation in superposition?

 Need to compile classical computation into reversible computation

 Handle the ancilla qubits and potentially simpler error-correction issues.

common as part of quantum algorithm design

information of the target applications.

Design of QPLs: the level of abstraction
GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations

Question 1: high-level DSLs for classical computation in superposition?

 Need to compile classical computation into reversible computation

 Handle the ancilla qubits and potentially simpler error-correction issues.

common as part of quantum algorithm design

information of the target applications.

Question 2: high-level abstractions for quantum applications?
Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Design of QPLs: the level of abstraction
GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations

Question 1: high-level DSLs for classical computation in superposition?

 Need to compile classical computation into reversible computation

 Handle the ancilla qubits and potentially simpler error-correction issues.

common as part of quantum algorithm design

information of the target applications.

Question 2: high-level abstractions for quantum applications?
Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Candidate applications: Quantum Simulation

 Quantum Variational Methods

Design of QPLs: the level of abstraction
GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations

Question 1: high-level DSLs for classical computation in superposition?

 Need to compile classical computation into reversible computation

 Handle the ancilla qubits and potentially simpler error-correction issues.

common as part of quantum algorithm design

information of the target applications.

Question 2: high-level abstractions for quantum applications?
Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Candidate applications: Quantum Simulation

 Quantum Variational Methods

Question 3: allow program analysis w/ high-level abstractions?

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so.
 Reversibility alone does not guarantee correct quantum interference b/c workspace.
 Efficiency issues about reimplementing DS w/ above constraints.

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so.
 Reversibility alone does not guarantee correct quantum interference b/c workspace.
 Efficiency issues about reimplementing DS w/ above constraints.

 However, well-defined classical problems that PL might help with.

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so.
 Reversibility alone does not guarantee correct quantum interference b/c workspace.
 Efficiency issues about reimplementing DS w/ above constraints.

 However, well-defined classical problems that PL might help with.

Question 5: allow programmers to define quantum object/DS?

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so.
 Reversibility alone does not guarantee correct quantum interference b/c workspace.
 Efficiency issues about reimplementing DS w/ above constraints.

 However, well-defined classical problems that PL might help with.

Question 5: allow programmers to define quantum object/DS?

Allow direct modeling of quantum hardware components (QRAM, Sensors)

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so.
 Reversibility alone does not guarantee correct quantum interference b/c workspace.
 Efficiency issues about reimplementing DS w/ above constraints.

 However, well-defined classical problems that PL might help with.

Question 5: allow programmers to define quantum object/DS?

Allow direct modeling of quantum hardware components (QRAM, Sensors)

Consider quantum stack ~ truly quantum recursion ~ quantum apps

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

 Hard questions also for classical programs. Solutions for special cases.

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

 Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

 Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

 Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Question 2: how to do verification of quantum internet applications?

Quantum Internet/Communication is another recent interest

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

 Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Question 2: how to do verification of quantum internet applications?

Quantum Internet/Communication is another recent interest

Develop Q Hoare logic for parallel, concurrent, distributed programs.
Some preliminary results exist. Essential difficulty exists due to quantum correlations.

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors
For NISQ machines, all operations could be erroneous

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors
For NISQ machines, all operations could be erroneous

Need also to be scalable
Classical simulation hard to scale; large q operations might contain more errors

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors
For NISQ machines, all operations could be erroneous

Need also to be scalable
Classical simulation hard to scale; large q operations might contain more errors

Likely to be application-specific

Quantum Simulation Variational Quantum
Methods

Compilation of Quantum Application: Analog Machines
GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Compilation of Quantum Application: Analog Machines
GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or so

Compilation of Quantum Application: Analog Machines
GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or so

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

Compilation of Quantum Application: Analog Machines
GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 2: direct compilation to analog / special purpose q machines?

Analog machine modeled
after the physics to simulate

Unexplored yet. But would be of great interests!

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or so

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

Compilation of Quantum Application: Analog Machines
GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 2: direct compilation to analog / special purpose q machines?

Analog machine modeled
after the physics to simulate

Unexplored yet. But would be of great interests!

Classical Examples:

 Achour et al. (PLDI16)

 Achour & Rinard (ASPLOS 20)

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or so

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

ERROR

ERROR

Nature

Quantum Error Correction
Fight

Quantum Decoherence

Approximate Computing & Quantum Computing

• General-purpose fault-tolerant quantum computers are impractical in
the near term.

• Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Approximate Computing & Quantum Computing

• General-purpose fault-tolerant quantum computers are impractical in
the near term.

• Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

Approximate Computing & Quantum Computing

• General-purpose fault-tolerant quantum computers are impractical in
the near term.

• Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

• Quantitive guarantee on the reliability/accuracy of quantum programs
based on specific hardware information.

Approximate Computing & Quantum Computing

• General-purpose fault-tolerant quantum computers are impractical in
the near term.

• Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

• Quantitive guarantee on the reliability/accuracy of quantum programs
based on specifi

• High-level abstraction of error-handling primitives in quantum
programs.

Approximate Computing & Quantum Computing

• General-purpose fault-tolerant quantum computers are impractical in
the near term.

• Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

• Quantitive guarantee on the reliability/accuracy of quantum programs
based on specifi

• High-level abstraction of error-handling primitives in quantum
programs.

• Automatic error-resource-optimization on a per-program basis!

Methodology

Methodology

• Elevate the handling of errors to the level of programming language.

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!
 - unreliable hardware

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!
 - unreliable hardware
 - limited computational resource

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!
 - unreliable hardware
 - limited computational resource

• Good when approximate results are sufficient for applications!

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!
 - unreliable hardware
 - limited computational resource

• Good when approximate results are sufficient for applications!
 - vision, machine learning; also with guarantees for critical data

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!
 - unreliable hardware
 - limited computational resource

• Good when approximate results are sufficient for applications!
 - vision, machine learning; also with guarantees for critical data

• Various techniques developed in classical PL literature.

Overview

Software Developers Hardware Designer

Exact

Program

Reliability/Accuracy

Specification

Approximate Hardware

Specification

Reliability/Accuracy

Constraint Generator

Resource Optimization

Objective Generator

Back-end Optimizer

Neural-based Code Synthesizer

Reliable Quantum Programs with Optimal Resources

error handling
primitives

Overview

Software Developers Hardware Designer

Exact

Program

Reliability/Accuracy

Specification

Approximate Hardware

Specification

Reliability/Accuracy

Constraint Generator

Resource Optimization

Objective Generator

Back-end Optimizer

Neural-based Code Synthesizer

Reliable Quantum Programs with Optimal Resources

error handling
primitives

a basic framework

in POPL 19

ERROR

Nature

Quantum Error Correction
Fight

Quantum Decoherence

ERROR

Nature

Quantum Error Correction
Fight

Quantum Decoherence

Human

28CT&TC Jeannette M. Wing

Correctness: Avoiding Bugs to Save Money and
Lives

Ariane 5 failure

Now Intel uses formal verification.

Intel Pentium FPU error

Now Microsoft uses formal verification.

Ariane 5

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

confirming the circuit by observation…. not scalable…

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

confirming the circuit by observation…. not scalable…

QISKIT Compiler ERRORs

Much HARDER to detect!

Serious Consequences!

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

confirming the circuit by observation…. not scalable…

QISKIT Compiler ERRORs

Much HARDER to detect!

Serious Consequences!

Similar Concerns

 in classical !

More SERIOUS

 in quantum !

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

Fully Formal Verification

Code

Spec

Proof
Assistant

Grad

interactively show
code satisfies
specification

Fully Formal Verification

Code

Spec

Proof
Assistant

Grad

ML x86

compile down to
machine code

Fully Formal Verification

Code

Spec

Proof
Assistant

Extremely strong
guarantees about

actual system!Grad

ML x86

Fully Formal Verification
Coq Theorem Prover

Software Writing

Theorem Writing

Proofs Writing

(1) Ensure correctness of code by construction.
(2) Scalability for quantum based on symbolic proofs.

source
circuit

target
circuit

VOQC
optimizers,

circuit
mapper ex

tra
ct

io
ntranslation

source
SQIR
circuit

target
SQIR
circuit

source
program

VOQC
optimizers,

circuit
mapper

OCaml

VOQC
Coq

✅✅

arch
spec

OpenQASM

(Verified Optimizer for Quantum Circuits)

Verified Optimization in a Quantum Intermediate Representation

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks
University of Maryland, College Park

We present a simple quantum language we call SQIRE
(pronounced “squire”) that can be used as an
intermediate representation (IR) in a certified compiler for
quantum programs. SQIRE is implemented in Coq [2], on
top of libraries developed for the QWIRE circuit language
[8]. This allows us to formally verify properties of SQIRE
programs and program transformations. We demonstrate
the power of SQIRE as a compiler intermediate
representation by verifying a number of useful program
transformations. For example, we verify soundness of an
optimization that removes unnecessary X gates from a
unitary program. We also consider a transformation that
turns general SQIRE programs into SQIRE programs that
can run on a linear nearest neighbor architecture.

The full paper is available at [5].

The corresponding code is available at [3].

Abstract

[1] The CompCert Verified Compiler. Available at http://compcert.inria.fr/.
[2] The Coq Proof Assistant. Available at https://coq.inria.fr/.
[3] SQIRE Development. Available at https://github.com/inQWIRE/SQIRE/.
[4] Qiskit. Available at https://qiskit.org/.
[5] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael
Hicks. Verified Optimization in a Quantum Intermediate Representation.
arXiv:1904.06319.
[6] Ali Javadi Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov,
Frederic T. Chong, and Margaret Martonosi. ScaffCC: Scalable Compilation
and Analysis of Quantum Programs. Parallel Computing 45. 2015.
[7] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri
Maslov. Automated Optimization of Large quantum Circuits with
Continuous Parameters. npj Quantum Information 4(1). 2018.
[8] Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE Practice:
Formal Verification of Quantum Circuits in Coq. QPL 2017.

References

Our work is a first step towards a verified compiler for
quantum programs. In the long term, we envision a fully-
verified compilation stack from high-level quantum
languages to hardware instructions, as shown below.

The transformation from the high-level language to the
general purpose IR must preserve the semantics of the
source program, so that properties proved of the source
program are also true in the IR representation.
Optimizations and machine-specific transformations
applied to the general purpose IR to produce machine-
specific IR must similarly preserve the semantics of the
program, and also ensure that the produced IR satisfies
the relevant hardware constraints. Finally, the compiler
should not introduce errors when translating from the
low-level IR to machine instructions.

We are currently working on:
• Additional verified optimizations and mapping

algorithms, taking inspiration from existing compilers
for quantum programs like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce qubit and
gate count to make programs more feasible to run on
near-term machines, circuit mapping aims to address the
connectivity constraints of near-term machines. Circuit
mapping algorithms take as input an arbitrary program
and output a program that respects the connectivity
constraints of some underlying architecture

We have verified a naïve mapping algorithm for a toy
architecture. We assume a linear nearest neighbor (LNN)
architecture where each qubit can only interact with its
immediate neighbor. We map a program to this
architecture by adding SWAP operations before and after
every CNOT so that the target and control are adjacent
when the CNOT is performed, and are returned to their
original positions before the next operation.

We have proven that this transformation is sound, and
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of
a piece of software is known as formal verification. Formal
verification has been used in classical computing for
many years to prove correctness and security properties of
critical code. However, formal verification is particularly
useful in the field of quantum computing, where
standard software assurance techniques such as unit
testing and runtime debugging are infeasible.

Examples of formal verification that have been applied to
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that
a quantum program satisfies some specification. For
example, consider a program describing the quantum
teleportation protocol. The goal may be to prove that,
given a Bell pair and a qubit in any state, the program will
correctly “teleport” the input qubit to one of the elements
of the Bell pair.

Another useful application of formal verification, which
has received relatively little attention from the quantum
formal verification community, is proving the correctness
of program transformations. Verifying program
transformations allows the construction of certified
compilers, which are compilers that guarantee that the
executable code they output behaves as specified by the
input source program. Certified compilers are guaranteed
not to introduce bugs in a program during compilation
because they are correct by construction. The most
famous example of a certified compiler (for classical
computing) is CompCert [1], an optimizing compiler for C
proved correct using the Coq proof assistant.

Formal Verification

SQIRE supports five quantum programming constructs:
skip, sequencing, unitary application, measurement of a
single qubit, and resetting a single qubit to a fixed basis
state.

For simplicity, we support a fixed set of gates. This set can
be extended in our implementation, or new gates can be
defined in terms of built-in gates. For example, we define
the SWAP operation as follows.

We can then state and prove properties about the
semantics of the defined operations. For example, we can
prove that the SWAP program swaps its arguments, as
intended.

Example. Superdense coding is a protocol that allows a
sender to transmit two classical bits, b1 and b2, to a
receiver using a single quantum bit. The SQIRE program
corresponding to the unitary part of the superdense
coding protocol is shown below.

Although SQIRE was designed to be used as an
intermediate representation, we can also prove properties
about SQIRE programs directly, since these programs and
their semantics are embedded in Coq. For example, we
can prove that the result of evaluating the program
(superdense b1 b2) on an input state consisting of two
qubits initialized to zero is the state ∣b1, b2⟩. In our
development, we write this as follows.

In our full paper, we show examples of verifying properties
of n-qubit GHZ state preparation, quantum teleportation,
and the n-qubit Deutsch-Jozsa algorithm.

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able
to perform small computations before decoherence takes
effect, compilers for quantum programs must apply
sophisticated optimizations to reduce resource usage.
These optimizations can be complicated to implement
and are vulnerable to programmer error. It is thus
important to verify that the implementations of program
optimizations are correct.

In general, we will be interested in proving that a
transformation is semantics-preserving, meaning that the
transformation does not change the behavior of the
program. When a transformation is semantics-preserving,
we say that it is sound.

For example, consider the optimization, which removes
skip operations from a program.

To prove that this transformation is semantics-preserving,
we prove the following lemma.

In our full paper, we verify soundness of a more realistic
optimization from [7], which removes unnecessary X
gates from a unitary program.

Verified Optimization

High-level Language
E.g. QWIRE, Quipper, Q#

General Purpose IR
E.g. SQIRE, Open QASM, Quil

Machine-specific IR

Hardware Instructions

Hardware Description
E.g. Gate set, connectivity

constraints

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq.

POPL
2021

source
circuit

target
circuit

VOQC
optimizers,

circuit
mapper ex

tra
ct

io
ntranslation

source
SQIR
circuit

target
SQIR
circuit

source
program

VOQC
optimizers,

circuit
mapper

OCaml

VOQC
Coq

✅✅

arch
spec

OpenQASM

(Verified Optimizer for Quantum Circuits)

Verified Optimization in a Quantum Intermediate Representation

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks
University of Maryland, College Park

We present a simple quantum language we call SQIRE
(pronounced “squire”) that can be used as an
intermediate representation (IR) in a certified compiler for
quantum programs. SQIRE is implemented in Coq [2], on
top of libraries developed for the QWIRE circuit language
[8]. This allows us to formally verify properties of SQIRE
programs and program transformations. We demonstrate
the power of SQIRE as a compiler intermediate
representation by verifying a number of useful program
transformations. For example, we verify soundness of an
optimization that removes unnecessary X gates from a
unitary program. We also consider a transformation that
turns general SQIRE programs into SQIRE programs that
can run on a linear nearest neighbor architecture.

The full paper is available at [5].

The corresponding code is available at [3].

Abstract

[1] The CompCert Verified Compiler. Available at http://compcert.inria.fr/.
[2] The Coq Proof Assistant. Available at https://coq.inria.fr/.
[3] SQIRE Development. Available at https://github.com/inQWIRE/SQIRE/.
[4] Qiskit. Available at https://qiskit.org/.
[5] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael
Hicks. Verified Optimization in a Quantum Intermediate Representation.
arXiv:1904.06319.
[6] Ali Javadi Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov,
Frederic T. Chong, and Margaret Martonosi. ScaffCC: Scalable Compilation
and Analysis of Quantum Programs. Parallel Computing 45. 2015.
[7] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri
Maslov. Automated Optimization of Large quantum Circuits with
Continuous Parameters. npj Quantum Information 4(1). 2018.
[8] Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE Practice:
Formal Verification of Quantum Circuits in Coq. QPL 2017.

References

Our work is a first step towards a verified compiler for
quantum programs. In the long term, we envision a fully-
verified compilation stack from high-level quantum
languages to hardware instructions, as shown below.

The transformation from the high-level language to the
general purpose IR must preserve the semantics of the
source program, so that properties proved of the source
program are also true in the IR representation.
Optimizations and machine-specific transformations
applied to the general purpose IR to produce machine-
specific IR must similarly preserve the semantics of the
program, and also ensure that the produced IR satisfies
the relevant hardware constraints. Finally, the compiler
should not introduce errors when translating from the
low-level IR to machine instructions.

We are currently working on:
• Additional verified optimizations and mapping

algorithms, taking inspiration from existing compilers
for quantum programs like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce qubit and
gate count to make programs more feasible to run on
near-term machines, circuit mapping aims to address the
connectivity constraints of near-term machines. Circuit
mapping algorithms take as input an arbitrary program
and output a program that respects the connectivity
constraints of some underlying architecture

We have verified a naïve mapping algorithm for a toy
architecture. We assume a linear nearest neighbor (LNN)
architecture where each qubit can only interact with its
immediate neighbor. We map a program to this
architecture by adding SWAP operations before and after
every CNOT so that the target and control are adjacent
when the CNOT is performed, and are returned to their
original positions before the next operation.

We have proven that this transformation is sound, and
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of
a piece of software is known as formal verification. Formal
verification has been used in classical computing for
many years to prove correctness and security properties of
critical code. However, formal verification is particularly
useful in the field of quantum computing, where
standard software assurance techniques such as unit
testing and runtime debugging are infeasible.

Examples of formal verification that have been applied to
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that
a quantum program satisfies some specification. For
example, consider a program describing the quantum
teleportation protocol. The goal may be to prove that,
given a Bell pair and a qubit in any state, the program will
correctly “teleport” the input qubit to one of the elements
of the Bell pair.

Another useful application of formal verification, which
has received relatively little attention from the quantum
formal verification community, is proving the correctness
of program transformations. Verifying program
transformations allows the construction of certified
compilers, which are compilers that guarantee that the
executable code they output behaves as specified by the
input source program. Certified compilers are guaranteed
not to introduce bugs in a program during compilation
because they are correct by construction. The most
famous example of a certified compiler (for classical
computing) is CompCert [1], an optimizing compiler for C
proved correct using the Coq proof assistant.

Formal Verification

SQIRE supports five quantum programming constructs:
skip, sequencing, unitary application, measurement of a
single qubit, and resetting a single qubit to a fixed basis
state.

For simplicity, we support a fixed set of gates. This set can
be extended in our implementation, or new gates can be
defined in terms of built-in gates. For example, we define
the SWAP operation as follows.

We can then state and prove properties about the
semantics of the defined operations. For example, we can
prove that the SWAP program swaps its arguments, as
intended.

Example. Superdense coding is a protocol that allows a
sender to transmit two classical bits, b1 and b2, to a
receiver using a single quantum bit. The SQIRE program
corresponding to the unitary part of the superdense
coding protocol is shown below.

Although SQIRE was designed to be used as an
intermediate representation, we can also prove properties
about SQIRE programs directly, since these programs and
their semantics are embedded in Coq. For example, we
can prove that the result of evaluating the program
(superdense b1 b2) on an input state consisting of two
qubits initialized to zero is the state ∣b1, b2⟩. In our
development, we write this as follows.

In our full paper, we show examples of verifying properties
of n-qubit GHZ state preparation, quantum teleportation,
and the n-qubit Deutsch-Jozsa algorithm.

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able
to perform small computations before decoherence takes
effect, compilers for quantum programs must apply
sophisticated optimizations to reduce resource usage.
These optimizations can be complicated to implement
and are vulnerable to programmer error. It is thus
important to verify that the implementations of program
optimizations are correct.

In general, we will be interested in proving that a
transformation is semantics-preserving, meaning that the
transformation does not change the behavior of the
program. When a transformation is semantics-preserving,
we say that it is sound.

For example, consider the optimization, which removes
skip operations from a program.

To prove that this transformation is semantics-preserving,
we prove the following lemma.

In our full paper, we verify soundness of a more realistic
optimization from [7], which removes unnecessary X
gates from a unitary program.

Verified Optimization

High-level Language
E.g. QWIRE, Quipper, Q#

General Purpose IR
E.g. SQIRE, Open QASM, Quil

Machine-specific IR

Hardware Instructions

Hardware Description
E.g. Gate set, connectivity

constraints

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq.

POPL
2021

Our infrastructure powerful enough:
 an end-to-end implementation of Shor’s algorithm & its correctness proof.

