An Invitation to the Iintersection of
Quantum Computing & Programming Languages

Xiaodi Wu
QuICS & UMD

JOINT CENTER FOR
UNIVERSITY OF QUANTUM INFORMATION
MAMLAND AND COMPUTER SCIENCE

%

Analysis of Algorithms

Artificial Intelligence

Combinatorial Algorithms Compilers Computational CompleXity

Computer Architecture Computer Hardware Crypt O gr aphy

Data Structures Databases Education Error Correcting Codes Finite Automata Graphics
Interactive Computing Internet Communications List Processing Numerical Analysis

Numerical Methods Object Oriented Programming Operating Systems Personal Computing
Program Verification Programming

PI'O gr ammin g L an gu a g e S Proof Construction Software

Theory Software Engineering
Verification of Hardware and Software Models Computer Systems Machine Learning
Parallel Computation

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ 0

Application Algorithm & Complexity Variational Methods Programming Languages

How to effectively express quantum
applications and do trouble shooting?

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ 0

Application Algorithm & Complexity Variational Methods Programming Languages

How to effectively translate high-level
descriptions of quantum applications
to quantum machine instructions?

System

How to automate the design of quantum ...
devices and its verification?

Quantum Hardware Quantum
Design Control

PL as a tool for non-PL expert to explore

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

- (Mind-set) Languages affect the way we think.

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

- (Mind-set) Languages affect the way we think.
— many constructs or so might be hard to imagine with quantum circuit abstraction

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

- (Mind-set) Languages affect the way we think.
— many constructs or so might be hard to imagine with quantum circuit abstraction
— famous classical example: merge-sort and recursion. How about quantum recursion?

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

- (Mind-set) Languages affect the way we think.
— many constructs or so might be hard to imagine with quantum circuit abstraction
— famous classical example: merge-sort and recursion. How about quantum recursion?

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

- (Mind-set) Languages affect the way we think.
— many constructs or so might be hard to imagine with quantum circuit abstraction
— famous classical example: merge-sort and recursion. How about quantum recursion?

- (automation) PL or formal methods (FM) can help us automate many tedious tasks and
provide instance-specific solutions

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

- (Mind-set) Languages affect the way we think.
— many constructs or so might be hard to imagine with quantum circuit abstraction
— famous classical example: merge-sort and recursion. How about quantum recursion?

- (automation) PL or formal methods (FM) can help us automate many tedious tasks and
provide instance-specific solutions
— many detailed optimization and verification can be conducted with better correctness
guarantees

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

- (Mind-set) Languages affect the way we think.
— many constructs or so might be hard to imagine with quantum circuit abstraction
— famous classical example: merge-sort and recursion. How about quantum recursion?

- (automation) PL or formal methods (FM) can help us automate many tedious tasks and
provide instance-specific solutions
— many detailed optimization and verification can be conducted with better correctness
guarantees
— the only way to scale up these tasks

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

- (Mind-set) Languages affect the way we think.
— many constructs or so might be hard to imagine with quantum circuit abstraction
— famous classical example: merge-sort and recursion. How about quantum recursion?

- (automation) PL or formal methods (FM) can help us automate many tedious tasks and
provide instance-specific solutions
— many detailed optimization and verification can be conducted with better correctness
guarantees
— the only way to scale up these tasks

PL as a tool for non-PL expert to explore

- (theory) functional PL or so based on type theory and lambda calculus, Church’s approach of
understanding computabillity.
— not easy to define the resource consumption... hence no good model for complexity theory
— easy in programming; a lot of useful properties can be expressed conveniently; almost
direct connection with compiler implementation.

- (theory) Logic is the subject of identifying true statements in a language of which you only
know a few words. Different logics study different language fragments:
— propositional logic: and, or, not, if ... then
— temporal logic: propositional logic + today, tomorrow, eventually, never, ...

- (Mind-set) Languages affect the way we think.
— many constructs or so might be hard to imagine with quantum circuit abstraction
— famous classical example: merge-sort and recursion. How about quantum recursion?

- (automation) PL or formal methods (FM) can help us automate many tedious tasks and
provide instance-specific solutions
— many detailed optimization and verification can be conducted with better correctness
guarantees
— the only way to scale up these tasks

- (computational thinking) developing abstractions is at the heart of developing PL/FM
techniques

The Role of Programming Languages

Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!

The Role of Programming Languages

Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!

But of course, quantum computing model demonstrates some
fundamental differences and unique needs, which requires new
techniques to deal with.

The Role of Programming Languages

Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!

But of course, quantum computing model demonstrates some
fundamental differences and unique needs, which requires new
techniques to deal with.

Disciaimer: perspectives and ciaims are potentially limited or biased by personal knowledge.

How to Program Q. Applications, Debug, and Verify Gorrectness?

How to Develop Software for). Computing, e.g., compiler, system?
How to Design and implement Architecture for Quantum Gomputing?
How to Handie Quantum Security Issues in Designgimplementation?
How to Scale and Automate the Design of Quantum Hardware 2

How to Program Q. Applications, Debug, and Verify Gorrectness?

The natural question with MOST investigation, but still a huge gap!

How to Program Q. Applications, Debug, and Verify Gorrectness?

The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
semantics in various pictures, q. Hoare logic and verification, ...

The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
semantics in various pictures, q. Hoare logic and verification, ...

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
QWIRE/SQIR (embedded in Coq), SILQ, ... <- academia
python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
semantics in various pictures, q. Hoare logic and verification, ...

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
QWIRE/SQIR (embedded in Coq), SILQ, ... <- academia
python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AwS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs

How to Program Q. Applications, Debug, and Verify Gorrectness?

The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
semantics in various pictures, q. Hoare logic and verification, ...

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
QWIRE/SQIR (embedded in Coq), SILQ, ... <- academia
python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AwS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs

%o —

o B8 é B—Bi— G Verifying the circuit
Q 1 f——— 111 Ey— by observation
0 [[S not scalable ...
on El—IHE =

How to Program Q. Applications, Debug, and Verify Gorrectness?

The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
semantics in various pictures, q. Hoare logic and verification, ...

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
QWIRE/SQIR (embedded in Coq), SILQ, ... <- academia
python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs

LN fa—

o B8 é B—Bi— G Verifying the circuit
Q 1 f——— 111 Ey— by observation
0 [[S not scalable ...
oo El—T-E0 -

(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers

How to Develop Software for . Gomputing, e.g., compiler, systems

a 1950s computing

Assembly language
(low-level) programs

Relay circuits and
discrete wires

b Classical computing today

Algonthms
High-level languages

Compiler

Classical architecture
(memory, arithemetic
operations, control
operations, communication)

Hardware building
blocks: gates, bits

VLSI circuits

Semiconductor
transistors

€ Quantum computing

Algorithms

High-level languages

Classical compiler Quantum compiler

Classical
architecture Quantum

(control operations) architecture
(QC gates, qubits,

Hardware building communication)
blocks (gates, bits)

Error-correction
and control pulses

Semiconductor Underlying technology
transistors (semiconductors,

trapped ions)

VLSI circuits

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.

How to Develop Software for (). Computing, e.g., compiler, system?

a 1950s computing b Classical computing today € Quantum computing

Algorithms Algorithms
High-level languages High-level languages

Compiler Classical compiler | Quantum compiler
Classical architecture |
(memory, arithemetic

operations, control ;
operations, communication) (control operations)

Classical

architecture Quantum
architecture

(QC gates, qubits,
Hardware building Hardware building communication)
blocks: gates, bits blocks (gates, bits)

Error-correction

Assembly language
and control pulses

(low-level) programs

VLSI circuits VLSI circuits

Semiconductor Semiconductor Underlying technology

transistors transistors (semiconductors,
trapped ions)

Relay circuits and
discrete wires

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- guantum mechanics prohibits certain testing, e.g., assertions

How to Develop Software for (). Computing, e.g., compiler, system?

a 1950s computing b Classical computing today € Quantum computing

Algorithms Algorithms
High-level languages High-level languages

Compiler Classical compiler Quantum compiler
\
Classical architecture

(memory, arithemetic Classical v
operations, control architecture

: S ' hitecture
operations, communication (control operations) ' '
perati ication) (QC gates, qubits,

Hardware building Hardware building communication)
blocks: gates, bits blocks (gates, bits)

Error-correction

Assembly language
and control pulses

(low-level) programs

VLSI circuits VLSI circuits

Semiconductor Semiconductor Underlying technology

transistors : (semiconductors,
e trapped ions)

Relay circuits and
discrete wires

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- guantum mechanics prohibits certain testing, e.g., assertions

A possible solution : fully certified software, e.g., VOQC (POPL 2021)

® (17
Q'?'Q'é'@'?'@'é'@'? Mapping, Error Mitigation, ...
? ? ? approximate computing
9-9'?'@'@'@'?'@-@'@
O 20,

ibmqg_toronto

ibmqg_toronto

A lot of controlling
operations need to be
located close to
quantum chips for
small responsive time.

ISA + Fast Compilation

Mapping, Error Mitigation, ...
approximate computing

Main Memory (instructions & data)

g LT Quantum Coprocessor Quantum Classical Interface
§ Fetch Quantum Analog-Digital Interface
Control Unit Fm Y _@
: I Timing Control Unit 7
EXx. II?:(ielglster @mmg Queue g) - 9‘
Physical m . - .C
Quantum Microcode g, Event I Queue 1 O
Unit ~
Instruction _"'6: @. o E
Cache AP}) (Event 1 Queven () S |E;rd:s I NEN @ >
— = m org Lut ". +—
Host CPU v Store 5 § :m L= - =
o T —i0aNt - S
Execution g E -J - o
Controller || e F
o : -
5 : :
: g
A
|

[
Synchronization Clock

X. Fu et al MICRO 17

How to Handie Quantum Security Issues in Design and Implementations

Verification of Quantum Cryptography: _QuantunPKep'
Relational Quantum Hoare Logic (Unruh; Barthe et al.) Distribution 5

How to Handie Quantum Security Issues in Design and Implementations

Verification of Quantum Cryptography: _QuantunPKep'
Relational Quantum Hoare Logic (Unruh; Barthe et al.) Distribution 5

Quantum Cryptanalysis:
Resource estimation of Complex Quantum Attack Programs

How to Handie Quantum Security Issues in Design and Implementations

Verification of Quantum Cryptography: * _Quantuni’Kep
Relational Quantum Hoare Logic (Unruh; Barthe et al.)

Distribution

Quantum Cryptanalysis:
Resource estimation of Complex Quantum Attack Programs

Post-Quantum Cryptography:
Classical Cryptographic Systems Resilient to Quantum “?""\'_&/ \

For Classical Cryptographic Systems
(1) Identify their post-quantum security

(2) automate the procedure to upgrade its post-quantum security
(3) formal post-quantum security proofs

Formally generated security analysis will provide not only efficient and high
assurance proofs that can replace the tedious and error-prone analysis for ler
experts, but also independently verifiable proofs that can be used by security oo T

practitioners without much quantum knowledge.

(a)

(b) . Transmon CPW resonator)

L |--€) i
: 13fF | 4 |
S il et 2,250 0, f =4.6 GHz ;

36.3 GHz

Tﬂﬂm m

|
|
|
|
1!
1!
1!
1!
1!
¥ L/(2m+1)?
1!
|
I
1!
1!
1!
1!
1!
I
|
l

G,

Superconducting Credit: arXiv:1704.06208

) NN .- s FHE
| § SES88’
- (Bigsssssssssasy gsssssssssssss @0 gae
! DU B :
| e ___ -
i = pu=s -== -
' - 53 jsssssss i
| (R e i,
| e giiiiysiiiss [asssssssssssss HHH+H
(b) , Transmon Y CPW resonator

A0 e

513fF | 403 fF
i Z,=50 Q, f =4.6 GHz

L 9¢

36.3 GHz

L, L/(2m+1)?

s L me «E:mj 2L
C, C,
»® B | o
E, I

CI'I

(c)

Superconducting Credit: arXiv:1704.06208

2D

Neutral Atoms Credit: arXiv:2006.12326

How to Scale and Automate the Design of Quantum Hardware 2
U e g il

.............
.........
WL

HEEE B
.. > =r
Ht '< “Ene
B T B
i
| sans
.
i
| e
i
j 1!
- V) :
22
Ind gist
A
]
=
B

s AR N o1 1 :
e = — — =\ fummmss’ LSLolololisssssss semmmsas It It Tt 5
(b) ' Transmon Ny CPW resonator 8 QRAM Architecture
A=) Hi SELEE Lo AL J1 Credit: ArXiv 0807.4994

5.13fF | 403 fF

Z =500, f=4.6 GHz

. . L] T
o . Zndi ot -

HEEEET NN

36.3 GHz : p]it
oL L/(2m+1)? % s
(c) ' g e
o | e | il - 5 T
C_| C; :
3 -
E, I G
Superconducting Credit: arXiv:1704.06208
2D

Neutral Atoms Credit: arXiv:2006.12326

How to Scale and Automate the Design of Quantum Hardware 2
U e g il

NESSSSSSSNNNS sEmEmEEsEEsEE 000 ERRANY
T

| BSEIIEEE G g0 i
| G"K I . . : I - {
E ;v SR i “; : 0 T
| iy 1 T i
S I il e T T 2
= L SE8S880 (SSSSSSssssssssss 2942 cuassans l:|—|: E—t EI_E 5
(b) , Transmon “: ' CPW resonator i | 8 QRAM Architecture
A=) Hi SELEE Lo AL J1 Credit: ArXiv 0807.4994
5.13fF | 403 f:F 7 2500, f =46 GHz - .]
o . Zndi e]
36.3 GHz : ﬁs =]
, oL L/(2m+1)? & T -
C | g T
-IF—II——II—W—Eﬁ ‘E:“H i 5 g
C, C T
’E‘ 5 '_'CF Demonstrate A Lot of Design Choices
' " Hard to Scale without Automatic Tools
Superconducting Credit: arXiv:1704.06208
2D ...-

Neutral Atoms Credit: arXiv:2006.12326

(a) | — 5 1111 sssmnas
R i

s ‘r W;—\
e g B

SESEgEEESEE/ .======= saaaaas ..:g

(b) " Transmon

5.13fF | 403 fF

L3¢

Z,=50 Q, f =4.6 GHz

o L, /(2m+1)?
e IR L ﬁg_fﬁj%

C, C,

% HE

E, 0 G

Superconducting Credit: arXiv:1704.06208

2D

Neutral Atoms Credit: arXiv:2006.12326

Ioes | mem | w9 HF

5 0 1
%” D] o T Y {
A, i W
:
il |l :
£y i A !
1 2 QRAM Architecture
ESELEEL . N @ Credit: ArXiv 0807.4994

- T 1T H

: T H

o L —

Demonstrate A Lot of Design Choices
Hard to Scale without Automatic Tools

A Golden Age of Hardware Description Languages:
Applying Programming Language Techniques to
Improve Design Productivity
Lenny Truong

Stanford University, USA
lenny@cs.stanford.edu

Verilog

Pat Hanrahan
Stanford University, USA
hanrahan@cs.stanford.edu

SNAPL 2019 HDL

(a)

(b) " Transmon

513fF | 403 fF
| Z,=50 Q, f =4.6 GHz

(c) | L L,/9 L,/(2m+1)?

c 'I|-<’—||_"—||E—"-"6'60'65‘ ’Mﬁ"‘E:“H"—h'
C, C. :
% HE A
E, : C, C C

Superconducting Credit: arXiv:1704.06208
3D B

2D

Neutral Atoms Credit: arXiv:2006.12326

%HFHF%) Hf

g0 I
B 1 ey o Y {
2 o P -
| il 1 §
Ly irn | fr 5
i g QRAM Architecture
SIS Al J1 Credit: ArXiv 0807.4994

A

L
i —

L
I T

L
I C

Output register :> D
4
1

£
I |

T
HEEEET NN

Demonstrate A Lot of Design Choices
Hard to Scale without Automatic Tools

A Golden Age of Hardware Description Languages:
Applying Programming Language Techniques to
Improve Design Productivity
Lenny Truong

Stanford University, USA
lenny@cs.stanford.edu

Verilog

Pat Hanrahan
Stanford University, USA
hanrahan@cs.stanford.edu

HDL

SNAPL 2019

Applies to Quantum Hardware too!

simmary

Quantum PLs S o

Software Tool-chain = e
Architecture ey
Security O - e

Hardware Design == zimost none

siimmary
Satisfactory

Quantum PLs S o

Software Tool-chain = e
Architecture ey
Security O - e

Hardware Design == zimost none

siimmary
Satisfactory

Quantum PLs S o

Software Tool-chain = e
Architecture ey
Security O - e

Hardware Design == zimost none

simmary

Satisfactory

N some

- R alittle

r
i 1
i 1
i 1
i 1
i 1
! :
|
— |
I "
: Software Tool-chain : e e
|
|
i 1
! :
I |
I |
I |
|

Security O - e

Hardware Design == zimost none

Design of Quantum Programming Languages

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs

Qo [0) n m—

o BN é B—E—— 8= Verifying the circuit
Q 1 ———1-0 K = by observation
Q0 [m_ hot scalable ...
o E—IHED -

(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers

Design of Quantum Programming Languages

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs

v I o
@ o B é B—EB 70— &= Verifying the circuit
Q 1o ———71-1F 3 by observation
e o [m_ hot scalable ...
o n E—-0 o

(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers

Existing work on type enforced correctness in QPLs

No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Design of Quantum Programming Languages

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs

Qp |0) n m—

N 2 B—Bi— i3 Verifying the circuit
Q 1o — - ? k3 = by observation
Q: o [- - not scalable ...
oo El—-E8 -

(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers

Existing work on type enforced correctness in QPLs
No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Ancilla: keep track of the scope of ancilla qubits (Quipper)

Design of QPLs: the level of ahstraction

GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Design of QPLS: the level of ahstraction

GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Question 1: high-level DSLs for classical computation in superposition?

Need to compile classical computation into reversible computation

Handle the ancilla gubits and potentially simpler error-correction issues.

Design of QPLS: the level of ahstraction

GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Question 1: high-level DSLs for classical computation in superposition?

Need to compile classical computation into reversible computation

Handle the ancilla gubits and potentially simpler error-correction issues.

Question 2: high-level abstractions for guantum applications?

Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Design of QPLS: the level of ahstraction

GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Question 1: high-level DSLs for classical computation in superposition?

Need to compile classical computation into reversible computation

Handle the ancilla gubits and potentially simpler error-correction issues.

Question 2: high-level abstractions for guantum applications?

Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Candidate applications: Quantum Simulation
Quantum Variational Methods

Design of QPLS: the level of ahstraction

GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Question 1: high-level DSLs for classical computation in superposition?

Need to compile classical computation into reversible computation

Handle the ancilla gubits and potentially simpler error-correction issues.

Question 2: high-level abstractions for guantum applications?

Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Candidate applications: Quantum Simulation
Quantum Variational Methods

Question 3: allow program analysis w/ high-level abstractions?

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

However, well-defined classical problems that PL might help with.

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

However, well-defined classical problems that PL might help with.

Question 5: allow programmers to define quantum object/DS?

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

However, well-defined classical problems that PL might help with.
Question 5: allow programmers to define quantum object/DS?

Allow direct modeling of quantum hardware components (QRAM, Sensors)

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

However, well-defined classical problems that PL might help with.
Question 5: allow programmers to define quantum object/DS?
Allow direct modeling of quantum hardware components (QRAM, Sensors)

Consider quantum stack ~ truly quantum recursion ~ quantum apps

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

Hard questions also for classical programs. Solutions for special cases.

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?
Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?
Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?
Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Question 2: how to do verification of quantum internet applications?

Quantum Internet/Communication is another recent interest

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?
Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Question 2: how to do verification of quantum internet applications?
Quantum Internet/Communication is another recent interest

Develop Q Hoare logic for parallel, concurrent, distributed programs.

Some preliminary results exist. Essential difficulty exists due to quantum correlations.

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple

e.g., only contains simple conditional and loops

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple

e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors

For NISQ machines, all operations could be erroneous

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops
Need to be very resilient to hardware errors
For NISQ machines, all operations could be erroneous

Need also to be scalable

Classical simulation hard to scale; large q operations might contain more errors

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple

e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors

For NISQ machines, all operations could be erroneous

Need also to be scalable

Classical simulation hard to scale; large q operations might contain more errors
Likely to be application-specific

q QE*F:%_L(,LQQQ—@@

UUggU-UgH=—Ht Quantum Simulation

ey Variational Quantum
Methods

UJ

e iR LT T

GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

do :.AJ <

¢ 5 5
z\vz

T

CR(+) CR(-)

ul H_Q_T 555
0 500 1000 1500 2000 2500

GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

* examples identified, but no systematic study
% fore.g., efficiency, and verification

CR(+) e Shi et al. Proceedings of the IEEE, Jun 2020

GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

dO +5—5—

dl

AL

500 1000 1500 2000 2500

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

Question 2: direct compilation to analog / special purpose g machines?

Unexplored yet. But would be of great interests!

Analog machine modeled
after the phvsics to simulate

GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

d0 5

dl

500 1000 1500

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

Question 2: direct compilation to analog / special purpose g machines?

Analog machine modeled
after the phvsics to simulate

Unexplored yet. But would be of great interests!

Classical Examples:

Achour et al. (PLDI16)
Achour & Rinard (ASPLOS 20)

ES |‘_ Z out X S E (a) generation (b) assembly

ERROR

Nature

ERROR

Quantum Error Correction
Fight

Quantum Decoherence

.........

ooooooooo

.....

.....
ooooo
.....

.....
.....
.....
.....
.....
.....
.....

.....
.....
.....
.....
.....

.....
aaaaa
.....
.....
.....

.........

Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

e Quantitive guarantee on the reliability/accuracy of quantum programs
based on specific hardware information.

Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

e High-level abstraction of error-handling primitives in quantum
programes.

Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

e Automatic error-resource-optimization on a per-program basis!

Methodology

Methodology

¢ Elevate the handling of errors to the level of programming language.

Methodology

¢ Elevate the handling of errors to the level of programming language.

e Reason reliability/accuracy of quantum programs via static analysis.

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware
- limited computational resource

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware
- limited computational resource
® Good when approximate results are sufficient for applications!

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware
- limited computational resource

® Good when approximate results are sufficient for applications!
- vision, machine learning; also with guarantees for critical data

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware
- limited computational resource
® Good when approximate results are sufficient for applications!
- vision, machine learning; also with guarantees for critical data
e Various techniques developed in classical PL literature.

Overview

Software Developers Hardware Designer
Exact Reliability/Accuracy Approximate Hardware
Program Specification Specification

Reliability/Accuracy ||error handling Resource Optimization

Constraint Generator primitives Objective Generator

L]

Back-end Optimizer

Neural-based Code Synthesizer

l

Reliable Quantum Programs with Optimal Resources

Overview

Software Developers Hardware Designer
Exact Reliability/Accuracy Approximate Hardware
Program Specification Specification

Reliability/Accuracy ||error handling Resource Optimization

Constraint Generator primitives Objective Generator
a basic frameworkg i l],
i inPOPLI19 Back-end Optimizer

Neural-based Code Synthesizer

l

Reliable Quantum Programs with Optimal Resources

Nature

ERROR

Quantum Error Correction
Fight

Quantum Decoherence

.........

ooooooooo

.....

.....
ooooo
.....

.....
.....
.....
.....
.....
.....
.....

.....
.....
.....
.....
.....

.....
aaaaa
.....
.....
.....

.........

Nature Human

Pentium FDIY Error

Quantum Error Correction
Fight
Quantum Decoherence

Ariane 5

MCAS safety system engages

Horizontal down
tail

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- guantum mechanics prohibits certain testing, e.g., assertions

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

- Sl Y
on B—HE—0— @
Y

o [I— i
confirming the circuit by observation.... not scalable...

o0 l—7-10 ~u

L @

- @

:

H = e
%L_.‘

AN

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

Qp 10) n
o B—0
o n B—EHD

o0 B—E
o0 l—7-10

A
B

=

QISKIT Compiler ERRORs

Much HARDER to detect!

L — = Serious Consequences!
A
lat—

confirming the circuit by observation.... not scalable...
= g E

1
1
a .
H
4

EEEEHHHEE:EE

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

QISKIT Compiler ERRORs

Qo [0) st mz

QO =_é - Much HARDER to detect!

e o Do _oa

Q 1o f—— 710 ? Serious Consequences!
)

H= WA RNWJ)

v [B—I8
confirming the circuit by observation.... not scalable... Similar Concerns

on l—
in classical !

More SERIOUS

o n o n (o E
E E o In quantum !

AR

il
li

EEEEHHHEE:EE

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE
Microsoft Research Ltd., Cambridge, UK Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for

Computing Research GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

TONY HOARE
Microsoft Research Ltd., Cambridge, UK Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
Computing Research

GCC : many bugs in software testing

CompCert: a certified “GCC”, bug-free

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Journal of the ACM, Vol 50, 2003

............. =
....................... w wg B Imperative Programs SQL .2@
: . Language: 3§53 . ~ iapplication' .
;%}lﬁt:: funtime ; ggig §§C—% gg Quick-
® S %5 Q i Coq + Functional ‘5&" Chick
. ' U]
g a g I)s‘ggghsle g(Galhna (Coq))..: Programs ‘g
-g (Spec of C program §'§ compiler
'3 Program Floyd g 2' - QI GHC frontend
] Logic proof 03) o(Core Haskell)
8 » o a0T g 29 : (unverified) :
Z & (Concurrent (Verifiable C = E GHC compiler
't: E% soundness fsoundness : :
3 ClightX g = proof proof Clight LLVM)
: to LLVM .
o o Concurrent (Clight e tvm | :
. -~ 93 ' compiler | : %)%;t{rl}g !
1Y
compiler - concurrencyf [CompCert EE 'E phase : unv}eigsféed ;
) correctness | [optimizing [§© 4 .
> proof compiler d g LLVM)
e :
x86 or ARM Instruction Set Architecture > S LLVM i LLY'M 5
— S| compiler § ¢ ferifita
~CGuleny) CC DO ¢ prase | i phwe
- . v
O [l jons, ~ Machine -
'&' = mgailnsjfalzitggzns | @ = models and E =) x86 or ARM ISA
A g proofs E 82 memory é =
g 8 (T) 8@ models 6 Reist
thin lines are ~ . egister
o) § colle{boraltitons (5) ~(Core Verllog Transfer
- external to

DeepSpec group

x86/ARM RTL) Language

Verified II
Software
Toolchain Il

CERTIKOS
l ellvm
verified
LLVM
W— Certi\X Coq

Certified software: a solution to validation of q. software

Software Writing

2sting
Coq Theorem Prover g-free

Proof
Assistant

— x86

'Guest:: Lan
' VM © 1u

()

\. J

Code \ 1
7

Extremely strong
CertiKOS
0.5, guarantees about

kernel
|
~rad \ actual S)’Stelll. J IKOS

\ J

CertiKOS
(Shao)

Proofs Writing

(1) Ensure correctness of code by construction.

(2) Scalability for quantum based on symbolic proofs. 5%

-2 o 3 . Register
(5) Core Verilog Transfer

x86/ARM RTL) Language

Project
(researcher)

Y Kami

JOINT CENTER FOR
QUANTUM INFORMATION 7 UM
AND COMPUTER SCIENCE

High-level Language
E.g. QWIRE, Quipper, Q#

(Verified Optimizer for Quantum Circuits)

VOQC

OCaml Coq

Hardware Description

E.g. Gate set, connectivity

constraints

OpenQASM

General Purpose IR

source
SQIR

source
program

source

ourc E.g. SQIRE, Open QASM, Quil
circuit

/‘\ /"\
. .
“ R P
Y 1 1
- [N [N
- 4 ~ SS ~ S
I 4 S . N
o Sso SoN AN
S0 SN SO
NS LY L Y
<0] N
N U !
tORY
]

circuit
s vOQC 5 vOQC 2021
> optimizers, | | G optimizers, Machine—speciﬁc IR
) circuit & circuit
=] mapper) mapper
, ;
I
! t t
| arge
oot | SR Spec -
: circuit Hardware Instructions
|
|

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq,.

JOINT CENTER FOR
QUANTUM INFORMATION 7 UM
AND COMPUTER SCIENCE

High-level Language
E.g. QWIRE, Quipper, Q#

(Verified Optimizer for Quantum Circuits)

VOQC

OCaml Coq

Hardware Description

E.g. Gate set, connectivity

constraints

OpenQASM

General Purpose IR

source

source source

E.g. SQIRE, Open QASM, Quil

/‘\ /"\
. .
“ R P
Y 1 1
- [N [N
- 4 ~ SS ~ S
I 4 S . N
o Sso SoN AN
S0 SN SO
NS LY L Y
<0] N
N U !
tORY
]

o SQIR
circuit circuit program
s vOQC 5 vOQC 2021
> optimizers, | | G optimizers, Machine—speciﬁc IR
) circuit & circuit
=] mapper) mapper
, ;
I
! t t
| arge
oot | SR Spec -
! circuit Hardware Instructions
|
|

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq,.

Our infrastructure powerful enough:
an end-to-end implementation of Shor’s algorithm & its correctness proof.

