Interactive Video Segmentation Using Occlusion Boundaries and Temporally
Coherent Superpixels

Radu Dondera, Vlad Morariu, Yulu Wang and Larry Davis
University of Maryland
College Park, MD USA

{rdondera, morariu, lsd}@cs.umd.edu, ylwang@umd.edu

Abstract

We propose an interactive video segmentation system
built on the basis of occlusion and long term spatio-
temporal structure cues. User supervision is incorporated
in a superpixel graph clustering framework that differs cru-
cially from prior art in that it modifies the graph according
to the output of an occlusion boundary detector. Working
with long temporal intervals (up to 100 frames) enables our
system to significantly reduce annotation effort with respect
to state of the art systems. Even though the segmentation re-
sults are less than perfect, they are obtained efficiently and
can be used in weakly supervised learning from video or for
video content description. We do not rely on a discrimina-
tive object appearance model and allow extracting multiple
foreground objects together, saving user time if more than
one object is present. Additional experiments with unsu-
pervised clustering based on occlusion boundaries demon-
strate the importance of this cue for video segmentation and
thus validate our system design.

1. Introduction

Video segmentation is the problem of determining pre-
cise support regions for the objects in a video. A satis-
factory solution would benefit important tasks like object
detection from video and human action recognition, and
this has motivated much research on unsupervised meth-
ods. However, the progress of these methods is fundamen-
tally limited because video segmentation is an undercon-
strained problem. Motion cues typically reduce ambigu-
ity compared to pure image segmentation, but objects can
move too slowly or too quickly or can have too many artic-
ulated parts for an automated procedure to correctly sepa-
rate them. It is clear that guidance from a human operator is
needed, but it remains to be seen how to optimally specify
it and combine it with techniques relevant to unsupervised
video segmentation. Interactive video segmentation work

in the Computer Graphics community [21] [3] focused on
collecting user annotations to obtain perfect object bound-
aries in all frames. There is no guarantee that the tradeoff
between segmentation quality and user effort is optimal and
this suggests exploring solutions that incur a small decrease
in quality for a large reduction in effort. While applications
like video editing could not use the output of such a system
directly, weakly supervised learning of object appearance
models from video is highly likely to improve if temporally
consistent image segments are available. High level video
analyses, e.g. video content description, can also build on
less-than-perfect segmentations.

A number of papers [3] [2] [14] cast the interactive seg-
mentation problem as assisted contour tracking, in which
the user traces the initial object contour and in subsequent
frames the system propagates it and the user corrects it. This
scheme does not exploit the global spatio-temporal struc-
ture of the video and as a result may require excessive su-
pervision when resolving local ambiguities. We propose
a system that incorporates user constraints in a superpixel
clustering framework that works on long time intervals and
accounts for occlusion boundaries. When an object moves,
it typically generates occlusion boundaries and the system
will likely produce segments that follow these boundaries
without needing supervision. On the other hand, if an ob-
ject is stationary, unsupervised clustering can fail, but a user
defined object mask will likely propagate reliably with op-
tical flow, which will be close to zero and have little noise.
In both cases, it is reasonable to predict that our system will
collect supervision efficiently: dynamic frames only need
minor corrections and static frames, while potentially re-
quiring more interaction, indirectly constrain the labels of
many superpixels in nearby video frames.

1.1. Related Work

In the interest of space, we limit our review to recent
papers in the video segmentation literature. In unsuper-
vised segmentation, Brox and Malik [4] clustered long term
point trajectories, providing a basic framework that other

authors built on. Another important direction was pursued
by Grundmann et al. [8], who adapted Felzenszwalb’s ag-
glomerative image segmentation [6] to video and produced
a segmentation hierarchy. Authors such as [10] built on im-
age segmentation by aggregating the image regions output
by generic object segmentation proposal methods like [5].

Some unsupervised methods oversegmented each frame
into superpixels and ran clustering on all the superpix-
els obtained. Levinshtein et al. [11] generated tempo-
rally coherent superpixels, built a superpixel graph, and hy-
pothesized multiple superpixel groupings with parametric
maxflow. We adopt Levinshtein et al.’s method to generate
superpixels, but take occlusion boundaries into account in
the affinities of edges between superpixels. Galasso et al.
[7] evaluated superpixel affinity measures to be used in a
spectral clustering framework. They obtained good perfor-
mance on the Berkeley moseg dataset, but since only low
level information is available when computing the affinity
of two neighboring superpixels in the same frame, this affin-
ity cannot reflect more than the presence or absence of an
occlusion boundary. Without user supervision, our segmen-
tation method is similar to that of [7], the crucial difference
being that it explicitly changes the superpixel graph accord-
ing to occlusions. Directly incorporating this essential sig-
nal makes our system more likely to work on more general
videos. Vazquez-Reina et al. [19] computed multiple su-
perpixel segmentations for each frame, generated plausible
superpixel tracks and finally labeled individual superpix-
els as belonging to one of the tracks using a higher order
CREF. Their method can oversegment severely, as there is no
mechanism to restrict splitting a single object into arbitrar-
ily many superpixel tracks. In contrast, our system upper
bounds the number of resulting objects by construction.

At the border between unsupervised and interactive
methods is work that assumes the existence of a prede-
fined set of pixel labels. Badrinarayanan et al. [1] mod-
eled the evolution of both the image data and the labels in
a video frame with a common set of latent patches. Vijaya-
narasimhan and Grauman’s work [20] is closer to interactive
video segmentation: they estimated label propagation errors
to select the video frames whose complete annotation min-
imizes the total user effort. This selection procedure cannot
be directly added to our system because the effort to label
a frame can vary significantly, according to the quality of
the previous segmentation. Furthermore, automatic frame
selection would offer little benefit because in our system
annotating any frame is likely to be efficient.

The interactive video segmentation has received the most
attention from the Computer Graphics community. Wang
et al. [21] employed hierarchical segmentation to improve
system response time and extended a 2D alpha matting
scheme to video volumes. Bai et al. [3] used multiple lo-
cal color and shape classifiers to discriminate between fore-

ground and background pixels in small neighborhoods of
the object contour. Their system updated the contour by
translating the neighborhood regions according to optical
flow, applying the classifiers and then retraining them from
new masks; user corrections were integrated via classifier
retraining. Later work by authors in the same group [2]
modeled foreground and background appearance in a scale
adaptive manner, updating color space Gaussians for indi-
vidual pixels using probabilistic optical flow. Price et al.
[14] proposed additional types of local classifiers, such as
color adjacency relations, but more importantly they dy-
namically weighted them to adapt to change. Although in
[3] [2] and [14] updating the object contour frame by frame
with help from the user is intuitive, such a short tempo-
ral neighborhood may require significant avoidable super-
vision in more complex videos (e.g., with moderate mo-
tion or with locally similar foreground and background ap-
pearance). Our system enables the use of long temporal
contexts by running spectral clustering on superpixels from
long video intervals. It is not designed to produce pixel per-
fect segmentations, but to obtain good results quickly.

1.2. Contribution

Our main contribution is to propose a system for inter-
active video segmentation that leverages long term motion
information to reduce annotation effort. On videos used to
evaluate interactive segmentation, we obtain satisfactory re-
sults significantly faster than existing systems [14]. Two
additional advantages of our system are that it does not as-
sume the objects have discriminative appearance and that
it allows extracting multiple objects at the same time, sav-
ing annotation work. The secondary contribution of this
work is to demonstrate the effectiveness of occlusion cues in
video segmentation. On a standard dataset, superpixel clus-
tering using occlusion cues only (no user supervision) has
performance comparable to a state-of-the-art unsupervised
method based on superpixels [7].

2. System Description

Our system first performs unsupervised clustering in a
superpixel graph and then repeated supervised clusterings
with more and more annotation from the user. In the pre-
processing stage, optical flow is computed [17] forward and
back and then temporally coherent superpixel segmenta-
tions for each video frame [11] (the target number of su-
perpixels per frame is fixed, S). The next preprocessing
operation is to run a simple occlusion detector that fires for
forward flow inconsistent with backward flow (inequation
1) or large flow gradient magnitude (inequation 2) [18]. If
at least one of the two inequations holds for a pixel, then the
pixel is deemed occluded (there is an OR between the con-
ditions). With respect to [18], we change the multiplicative
constants, requiring more consistency/allowing for larger

gradient magnitudes:

[w(p) +w'(p")I[3 > 0.01(/[w(p)|[3+]Iw'(p")][3) +0.01
D
IVu(p)|[3 + ||Vo(p)|3 > 0.01[lw(p)[5 +0.01 ()

where p, p’ are pixel coordinates, w and w’ are the forward
and backward optical flow with components v and v (p’ =

p + w(p)).
2.1. Graph Construction

We divide the input video into consecutive time inter-
vals of F' frames (or less, at the end of the video) and run
the system independently on each of them. Each interval
is represented with a graph of superpixels with two types
of edges: within-frame edges that link superpixels in the
same frame and between-frame edges that link superpix-
els in temporally adjacent frames. There are within-frame
edges only between superpixels that share a pixel border in
the image. Each superpixel has at most one between-frame
edge linking it to a superpixel in the next frame, depending
on the output of the occlusion detector. If the superpixel has
at least one non-occluded pixel, then its center is shifted us-
ing optical flow and it is linked to the closest superpixel in
the next frame:

successor(i, f + 1) = argmin||c; — (¢; + W;)|]2 (3)
JEf+1

where c; is the center of superpixel ¢ (in frame f) and W;
is the mean optical flow of its non-occluded pixels. If all
the pixels of the superpixel are occluded, then there is no
link the next frame (note that it will still be linked with
neighbors in the current frame and possibly with a super-
pixel in the previous frame). We do not consider two layer
spatial neighborhoods or temporal edges across multiple
video frames, like [7]. The segmentation results are slightly
more robust when these types of edges are included, but the
computation is noticeably slower because the affinity ma-
trix used in spectral clustering becomes more dense. With
our choice of F' and S, the graph for an interval of analysis
can exceed 100,000 vertexes, so it is computationally in-
feasible to work with a complete affinity matrix. However,
the more important problem is that it is unclear how to de-
fine a meaningful distance for superpixels far away in time
or image space based just on low level cues such as color or
optical flow.

We define the distance between the two superpixels of a
within-frame edge in a similar way to [11]:

, 1% — W12 >
d¥. = min <1, = W (4)
i, 1 4+ max(|[W;|2, |[W;||2)

If all pixels in a superpixel are occluded then the mean flow
is arbitrarily set to O, but the graph modifications described

at the end of this subsection ensure the distance values are
still meaningful. The difference from [11] is the 1 in the
denominator, which makes the distance tend to O if both
motions are small. We define the distance between the two
superpixels of a between-frame edge as the average of an
overlap distance and a color distance:
dg . +ds .
d’?,j — »J 5 5] (5)
The overlap distance d7 ; is defined using the support of the
earlier superpixel shlfted by its mean flow and the support
of the later superpixel:

o _ 1 {p + round(w;)|p € s;} N's;|
bJ {p + round(w;)|p € s;} Us;|

(6)

The color distance d; ; is defined using the normalized 8-bin
rgb histograms of the superpixels:

-—1—Zh (r,g,b

7,9,b

(r,9,b))

In most situations, the overlap distance is by itself adequate
for the purpose of d”, which is to characterize confidence
in a superpixel’s most likely temporal successor. The
color distance was included to prevent superpixels with
erroneous mean optical flow from matching random similar
shaped superpixels in the next frame, which can lead to
superpixel labels leaking across objects. Both d* and d”
are in the range [0, 1] and are converted to affinities with a
Gaussian kernel. Note that the upper bound on the distance
effectively caps the affinities from below and avoids noisy
superpixel sets with arbitrarily low normalized cut value.

Graph modifications according to occlusion boundaries.
Since occlusion boundaries often indicate objects moving
separately, the affinities of edges across these boundaries
should be small, but this might not be the case in the graph
constructed so far. We set the affinities of within-frame
edges “cut” by an occlusion boundary to € > 0, overriding
the distance defined in Equation 4. To detect “cut” situa-
tions, we examine the connected components formed by the
non-occluded pixels of the two superpixels of an edge. The
edge is defined to be “cut” if, for any of its two superpixels,
all the components reaching the common border are less
than half the superpixel size, see Figure 1. If a superpixel
is completely occluded, then all its within-frame edges
are “cut”. The criterion is not perfect (Figure 1d), but it
allows occlusion boundaries not coinciding exactly with
superpixel borders to still influence the graph structure.

2.2. Clustering with Constraints

We use the spectral clustering method of Ng et al. [13],
which partially eigendecomposes the symmetrically nor-
malized graph laplacian, row-normalizes the eigenvectors

(@ (b)
(c) (@)

Figure 1: Four representative occlusion cases for a within-
frame edge (colored red if it is “cut” by the occlusion
boundary and green otherwise). (a) Ideally, the occlusion
boundary (blue) includes all the pixels of the superpixel bor-
der and the connected components of non-occluded pixels
do not contain any. (b) The boundary splits the right super-
pixel into a large component neighboring the left superpixel
and a small component away from it, so the edge is not
“cut”. (c) The component on the border is small and the oc-
clusion boundary is close to that in (a), so the edge is “cut”.
(d) Errors of the occlusion boundary detector near the su-
perpixel border lead to the edge being considered “cut”.

of the smallest eigenvalues and runs k-means in this space.
We incorporate user input in the usual way for constrained
clustering, via must-link and cannot-link constraints, but
impose these on pairs of nodes already linked by edges,
essentially projecting all the annotation information on the
original graph structure. The constraints are implemented
by changing edge affinities to a large value 6 and to O
for must-link and cannot-link, respectively. This makes
spectral clustering strongly prefer to cut the cannot-link
edges, as all the other edges in the original graph have cost
€ > 0, and to avoid cutting must-link edges. Kamvar et al.’s
method [9] similarly modifies affinities to O or 1; however,
we empirically observed the segmentations it returns are
not so strongly influenced by the constraints, which tends
to reduce the efficiency of the interactive segmentation sys-
tem. Many other constrained spectral clustering methods
have been developed [22, 12, 16, 23], but they target set-
tings in which the graph is relatively small (thousands of
nodes), complete and there are few constraints; also, many
work for 2 class tasks only. For our video segmentation
problem, the graph is large (up to hundreds of thousands
of nodes) and sparse, there can be multiple classes (back-
ground and more than one object) and the user indirectly
specifies a large number of constraints (e.g. on 10% of the
graph edges) at once. Rangapuram and Hein’s method [15]
does work on large graphs, but preliminary tests demon-
strated that it cannot be employed in a real time system — on
a sample graph for which we computed a segmentation in
roughly 7 seconds, their code took 54 minutes.

We set the number of clusters & comparable to but larger

Figure 2: (a) The user browses through the video and finds
a frame that is relatively easy to correct. Then, s/he se-
lects a target label and changes superpixels to this label, in
one of two modes. In “superpixel” mode, only the clicked
superpixel changes; in “connected regions” mode, all the
superpixels in a connected component (same label as the
clicked superpixel) change. (b) The head contour is com-
pletely traced. What is left is to switch to “connected re-
gions” mode and relabel the hole in the head (c) and the
right background region (d). A checkbox allows to inform
the system that the current frame labeling is satisfactory.

than the number of actual objects in a video. Since the
graphs we encounter in practice have noisy small node sub-
sets with normalized cut value lower than for actual objects,
clustering with the correct number of segments would re-
turn the noisy subsets and an undersegmentation of the rest
of the graph, which does not lead to efficient annotation.
Instead of extracting the correct number of segments, we
prompt the user to assign the over-segmented clusters to
objects at the end. It would have been possible to allow
the user to change the number of clusters during the inter-
action, but this can be unintuitive for a non-computer vi-
sion/machine learning expert and the total interaction time
would have been strongly user-dependent.

2.3. User Interface

The interface displays the current proposed segmenta-
tion of the video, the completely unsupervised one in the
beginning or one of the constrained ones, following user in-
put. The user navigates through the video to decide which
frame(s) to correct, makes the corrections and reruns the

segmentation with an incrementally larger set of constraints,
iterating these steps until a satisfactory result is achieved
for the entire video. Corrections are specified as new su-
perpixel labels: starting with the previous labels, the user
clicks to change the labels of either individual superpixels
or of entire connected regions of superpixels with the same
label. In the example in Figure 2, the user traces the contour
of the head, which was wrongly segmented by the system,
fills the small hole and finally “unions” the two background
segments. Once the frame labeling becomes satisfactory,
the user informs the system (Figure 2d, bottom center of
the window); s/he can then request a segmentation given the
labels entered so far, or can proceed to correct other frames.

2.4. Temporal Label Propagation

A key feature of our system is that it generates con-
straints for clustering by temporally propagating the labels
of the superpixels in satisfactory frames. Only the between-
frame edges of the graph with distance less than d,,,,, are
used; in the graph with this reduced set of edges, if a la-
beled node A is the closest among an unlabeled node B’s
neighbors, then B receives A’s label. Starting from a frame
marked as satisfactory, the propagation proceeds frame by
frame, first forward and then backward in time. The prop-
agation is done independently for each satisfactory frame
and then constraints are derived on the original graph edges
without having to establish correspondences between labels
from different satisfactory frames. There are three possible
relations between the two labels assigned to the nodes of an
edge as a result of one propagation: same, different and un-
known (at least one node does not receive a label). If all sat-
isfactory frames agree in the relation they determine at an
edge — at least one ‘same’ and possibly some ‘unknown’,
but no ‘different’; or at least one ‘different’ and possibly
some ‘unknown’, but no ‘same’ —, then that edge generates
a must-link or cannot-link constraint, respectively. Clearly,
the set of constraints depends on d,,, ..., but there is a value
range that produces large amounts of correct constraints for
the videos tested, see Figure 5 and the explanation at the
end of Section 3.2.

3. Experimental Results
3.1. Parameter Values

The target number of superpixels per frame is S = 1, 200
and the number of frames in an interval is /' = 100. On
current PCs, spectral clustering can manage graphs with
roughly a hundred thousand vertexes and hundreds of thou-
sands of edges and this choice of S and F’ was a good com-
promise between respecting object boundaries and having
long temporal context. The Gaussian kernel used to ob-
tain superpixel affinities has o = 0.4 and the affinity value
for within-frame edges “cut” by occlusion boundaries is

LiveCut Our user
Video Frames | user time time
(mins) (mins)

ballerina 150 74 36
elephant 100 38 13

bass guitar 72 38 14
lemurs 86 36 15
flamingo 76 30 12

manincap 150 23 12
stairs 63 13 8
cat 56 5 5

Table 1: Comparison of interaction times using LiveCut
[14] versus using our system. Note that we extract both
foreground objects in the “lemurs” sequence while LiveCut
extracts just one. Our system is roughly 2-3 times faster,
except for the relatively short “cat” sequence, in which long
term motion information is not too effective.

€ = 0.01. The parameters related to constraints and con-
straint propagation are # = 1000 and d,,q, = 0.25. In the
evaluation videos, with dy,4. = 0.25, on average 11.3%
of a superpixel graph’s edges are constrained after a frame
is annotated. The number of clusters is £ = 10; since the
number of objects is from 1 to 3 in the evaluation videos, the
amount of extra work for assigning clusters to actual objects
is small.

3.2. Interactive Video Segmentation

We ran our interactive video segmentation system on
eight of the videos used by Price et al. [14] !. Our method
currently needs preprocessing time on the order of hours for
a video, mostly because of optical flow computation. How-
ever, this could be easily reduced to minutes by running on
a computer cluster or by using faster optical flow imple-
mentations. Furthermore, if results are needed for a batch
of videos, computationally heavy preprocessing can be run
on different machine(s) in parallel with interactive segmen-
tation for different videos. Running spectral clustering on
video intervals of up to 100 frames takes from 3 to 45 sec-
onds on an Intel Xeon E5@3GHz equipped with 8GB of
RAM (it can take less time if more constraints are avail-
able). To minimize the user’s wait, the initial unconstrained
spectral clustering is done in the preprocessing stage and
the user corrects small batches of 2 or 3 frames well spaced
out in time before asking the system to re-segment.

In Table 1 we compare our total user time, which in-
cludes the re-segmentation wait and the time for the fi-
nal segment-object assignment, with that obtained with the
LiveCut system [14]. For most of the sequences (except

For 2 of the 10 evaluation videos in [14] it was not clear what the start
and end frames were.

Figure 3: Interactive video segmentation results. The
“lemurs” sequence contains two foreground objects (first
and second row). While the masks are not perfect, they
are obtained much faster than with state of the art systems
[14]. Reasons for errors include heavy motion blur (sec-
ond row, second column), very fast articulated motion (sixth
row, second and third columns), and contours with inlets
(third row, second and third columns).

3

‘cat”, the shortest), our system is roughly 2-3 times faster
than [14]. Figure 3 shows sample object masks for videos
“lemurs”, “elephant”, “stairs”, “manincap”, “ballerina” and
“bass guitar”. The supplementary material includes visual-

izations of these masks for complete videos. Note that we

could have continued refining the masks, but we stopped
when they became reasonably good in all the frames. The
segmentation results we obtained required labeling between
4 and 8 frames in each video interval of analysis.

To gauge the sensitivity to frame choice and the increase
in segmentation quality as more annotations become avail-
able, we simulated system behavior for random configura-
tions of corrected frames. These were chosen at least 5
video frames apart from each other and re-segmentation was
done at each corrected frame using all the frames corrected
so far. In the simulation, correcting a frame was imple-
mented by completely replacing its current labeling with the
ground truth labeling. We created ground truth object masks
at the superpixel level for all the frames of two LiveCut se-
quences, “manincap” (1 object) and “lemurs” (2 objects).
To evaluate a proposed video segmentation, we assigned
its segments to the ground truth segments with the high-
est intersection over union and we computed the segmenta-
tion error as the ratio (number of superpixels covered by the
wrong segment as per the assignment) to (total number of
object superpixels). Note that the denominator does not in-
clude superpixels belonging to the background, which can
be fairly numerous, but we do count errors made on back-
ground superpixels in the numerator. Also note that multi-
ple segments may cover an object, but as long as a segment
does not contain superpixels from different objects, it does
not contribute to the segmentation error. We generated 10
random configurations per video interval and averaged the
10 errors obtained after each frame correction. The results
for the first 100 frames of “manincap” and for the entire
“lemurs” sequence are visualized in Figure 4. The segmen-
tation error generally decreases with respect to the number
of frames corrected, more so when this number is small.

With a similar setup, we examined the influence of
dmaz, the distance threshold for temporal label propaga-
tion, on the segmentation results. In Figure 5 we plot
the segmentation error curves for values of d,,q, in the
set {0.1,0.2,0.3,0.4,0.5}. Except for 0.1 and 0.5, a very
conservative/permissive threshold for label propagation, the
curves descend quite consistently, suggesting that in the
range [0.2, 0.4] the exact value of d,,,, has little impact on
segmentation quality.

3.3. Role of Occlusion Boundaries

To validate our choice to include occlusion boundary
cues in the interactive segmentation system, we ran spec-
tral clustering without user supervision, modifying the su-
perpixel graph only based on occlusion boundaries. We
compared this unsupervised version of our method against
Galasso et al.’s [7] on the Berkeley motion segmentation
dataset [4]. This dataset consists of 26 sequences show-
ing relatively simple traffic scenes (10 videos), short clips
from the movie “Ms. Marple” (13 videos), 2 pedestrian

17
0S5 - 1.6
15
08 12
= £ 13
g7 £12
] 811
Eos s
% 05 ERER
E € 03
€04 g 07
B aﬂDE q
203 % o5 4
0z m g'g
01 4 L 024 i
BT TET TS Dé 1 it ST T O N
o

o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 5 10

n frames corrected n frames corrected

(a) “manincap” (b) “lemurs”

Figure 4: Simulation of interactive video segmentation for
random configurations of corrected frames in two LiveCut
sequences. The starting point of the segmentation error
curves is unsupervised segmentation (0 corrected frames).
To ensure the frame selection is neither extremely favorable
nor extremely unfavorable, each curve displayed is the av-
erage of 10 curves for 10 random configurations.

08 _"-.- @ d_max01 ome d_max=01
0s 1t N - seses d_max=0.2 coseee d_maw=0.2
H 13 s & d_max=0.3 - d_max=0.3
A R g
%06 B . seides d_max=0.4 i ceidee d_max=0.4
H . 5
2 05 4 = d_max=0.5 2 d_max=0.5
] :]
£ H £
S04 : H
£ ° £
403 H] .
¥ - .
= ..,
0.2)(..-,K‘_x_ 03 - 3. I--...-'_." ..
017 R < Pl PR lc"’%»‘-’«..q: - .
SEing v E o1 A T v el ol il e
0]

01 2 3 4 5 6 7 8 9 10 o0 1 2 3 4 5 6 7 8 9 10

n frames corrected n frames corrected

(a) “manincap” (b) “lemurs”

Figure 5: Simulation of interactive video segmentation for
different values of d,,q., the threshold for temporal label
propagation. The test setup is the same as in Figure 4.

scenes, and a video of a tennis player. Challenges include
large camera motion, occlusions, objects sweeping across
the screen, objects being still for long periods of time and
highly non-rigid motion. We report results obtained with
the evaluation software accompanying the dataset. Given
the proposed segmentation of a video, the software matches
its segments with the ground truth segments available in a
few manually annotated frames and then computes five met-
rics reflecting the quality of the proposal: density, overseg-
mentation, overall error, average error and number of ex-
tracted objects. The density is the fraction of voxels covered
by segments (the proposed segmentation is allowed to be in-
complete). The oversegmentation is the average number of
proposed segments assigned to the same ground truth seg-
ment (ideally 1). The overall error is the fraction of voxels
covered by the wrong segment, given the assignment of pro-
posed segments to ground truth segments. The average error

.. | over- | overall | average | # ob-
method | density .
segm. CIror CIror _]CCtS
Galasso | 1600, | 677 | 9.92% | 16.52% | 17
etal. [7]
Ours | 99.31%| 6.65 | 12.35%| 23.38% | 19
Ours Wio | 697100 6.54 | 22.36%| 44.17% | 9
occ. bnd.

Table 2: Results obtained with Galasso et al.”’s method [7]
versus ours. While [7] use complex combinations of super-
pixel distance measures, we employ simple distances but
crucially integrate the output of an occlusion boundary de-
tector in the superpixel graph construction. These simple
distances perform poorly by themselves (last row), high-
lighting the importance of occlusion boundaries.

is also related to voxels covered by the wrong segment, but
it is an average fraction over ground truth segments instead
of over the entire video. The number of extracted objects
is the number of proposed segments matching ground truth
segments (except the background) with less than 10% error.

The evaluation software was run on the first 100 frames
of each video, or the length of the video if it was shorter,
to match the setting in [7]. Results are shown in Table 2.
Our method’s density is slightly less than 100% because we
eliminate small groups of superpixels that have small affin-
ity with the rest of the superpixels in the graph (in theory,
they should not affect spectral clustering, but in practice this
step always improves results). At virtually the same over-
segmentation rate, our method has somewhat higher overall
and average error, but also somewhat higher number of ex-
tracted objects, putting its performance close to [7]. The
last row of the table shows an almost 2-fold increase in both
overall and average error when the affinities of edges “cut”
by occlusion boundaries are not modified. This demon-
strates that (1) occlusion boundaries are a strong cue for
video segmentation and (2) it is correct to design an inter-
active system in which user annotations complement the ob-
ject contours found using occlusion boundaries.

Note that we do not aim to outperform [7] on unsuper-
vised clustering, since in the interactive system the user still
has to reduce error. Instead, we show that occlusion bound-
aries capture much of the performance of more complicated
and likely less general approaches.

3.4. Limitations and Remarks on Applicability

Our system does not produce pixel perfect contours, as
it operates on superpixels whose boundaries do not always
align with object contours. The most significant errors in
the unsupervised segmentation occur when the occlusion
boundary detector misfires in large portions of the image,
e.g. for motion blur or very fast and/or articulated motion.

More sophisticated occlusion detectors could be swapped
in, but our interactive system still allows to correct errors
efficiently even with the simple detector presented. Occlu-
sion detectors will not fire in the absence of motion, but in
this case user annotations typically propagate long term.

Our system does not do as well as LiveCut [14] if the
video is short and the object has discriminative appearance
— longer temporal context brings little benefit. However,
visual clutter poses no additional problem to our system be-
cause most of the low level information comes from mo-
tion. Note that it is far from trivial to extend [14] to trade
off segmentation quality for user time because their system
assumes perfect segmentation in the previous frame. The
user could correct the object mask less, but errors can accu-
mulate quickly for moderately complex videos. Also, since
[14] works frame by frame, it cannot produce a segmenta-
tion for the whole video given temporally incomplete anno-
tations, which is possible in our system.

4. Conclusion

We built a system for interactive video segmentation on
the basis of occlusion and long term spatio-temporal struc-
ture cues. With respect to other systems, ours provides
a large reduction in the amount of user supervision for a
small degradation of the segmentation results. Our system
has the advantages that it does not rely on a discrimina-
tive object appearance model and it allows extracting mul-
tiple foreground objects together (in other systems, extract-
ing each object is a separate task). Additional experiments
with unsupervised clustering based on occlusion boundaries
demonstrate the importance of this cue for video segmenta-
tion and validate the design of our system, which essentially
complements occlusion boundaries with user annotation of
the object contours.

References

[1] V. Badrinarayanan, F. Galasso, and R. Cipolla. Label propa-
gation in video sequences. In IEEE Conference on Computer
Vision and Pattern Recognition, 2010.

[2] X. Bai, J. Wang, and G. Sapiro. Dynamic color flow:
a motion-adaptive color model for object segmentation in
video. In European Conference on Computer Vision, 2010.

[3] X. Bai, J. Wang, D. Simons, and G. Sapiro. Video snap-
cut: Robust video object cutout using localized classifiers.
In ACM Transactions on Graphics, 2009.

[4] T. Brox and J. Malik. Object segmentation by long term
analysis of point trajectories. In European Conference on
Computer Vision, 2010.

[5] L Endres and D. Hoiem. Category independent object pro-
posals. In European Conference on Computer Vision, 2010.

[6] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based
image segmentation. In International Journal of Computer
Vision, 2004.

[7] F. Galasso, R. Cipolla, and B. Schiele. Video segmentation
with superpixels. In Asian Conference on Computer Vision,
2012.

[8] M. Grundmann, V. Kwatra, M. Han, and 1. Essa. Efficient
hierarchical graph based video segmentation. In /IEEE Con-
ference on Computer Vision and Pattern Recognition, 2010.

[9] S. Kamvar, D. Klein, and C. Manning. Spectral learning.
In International Joint Conference On Artificial Intelligence,
2003.

[10] Y. Lee, J. Kim, and K. Grauman. Key-segments for video
object segmentation. In IEEE International Conference on
Computer Vision, 2011.

[11] A. Levinshtein, C. Sminchisescu, and S. Dickinson. Spa-
tiotemporal closure. In Asian Conference on Computer Vi-
sion, 2010.

[12] Z. Lu and M. Carreira-Perpinan. Constrained spectral clus-
tering through affinity propagation. In IEEE Conference on
Computer Vision and Pattern Recognition, 2008.

[13] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. In Neural Information Process-
ing Systems, 2001.

[14] B. Price, B. Morse, and S. Cohen. Livecut: Learning-
based interactive video segmentation by evaluation of mul-
tiple propagated cues. In IEEE International Conference on
Computer Vision, 2009.

[15] S. Rangapuram and M. Hein. Constrained 1-spectral cluster-
ing. In Journal of Machine Learning Research, 2012.

[16] A. Sharma, E. von Lavante, and R. Horaud. Learning shape
segmentation using constrained spectral clustering and prob-
abilistic label transfer. In European Conference on Computer
Vision, 2010.

[17] D. Sun, S. Roth, and M. Black. Secrets of optical flow es-
timation and their principles. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2010.

[18] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajec-
tories by gpu-accelerated large displacement optical flow. In
European Conference on Computer Vision, 2010.

[19] A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller. Mul-
tiple hypothesis video segmentation from superpixel flows.
In European Conference on Computer Vision, 2010.

[20] S. Vijayanarasimhan and K. Grauman. Active frame selec-
tion for label propagation in videos. In European Conference
on Computer Vision, 2012.

[21] J. Wang, P. Bhat, R. Colburn, M. Agrawala, and M. Cohen.
Interactive video cutout. In ACM Transactions on Graphics,
2005.

[22] X. Wang and I. Davidson. Flexible constrained spectral clus-
tering. In International conference on knowledge discovery
and data mining, 2010.

[23] L. Xu, W. Li, and D. Schuurmans. Fast normalized cut with
linear constraints. In IEEE Conference on Computer Vision
and Pattern Recognition, 2009.

