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ABSTRACT
The real-time search problem requires making ingested doc-
uments immediately searchable, which presents architectural
challenges for systems built around inverted indexing. In
this paper, we explore a radical proposition: What if we
abandon document inversion and instead adopt an architec-
ture based on brute force scans of document representations?
In such a design, “indexing” simply involves appending the
parsed representation of an ingested document to an exist-
ing buffer, which is simple and fast. Quite surprisingly, ex-
periments with TREC Microblog test collections show that
query evaluation with brute force scans is feasible and per-
formance compares favorably to a traditional search archi-
tecture based on an inverted index, especially if we take ad-
vantage of vectorized SIMD instructions and multiple cores
in modern processor architectures. We believe that such a
novel design is worth further exploration by IR researchers
and practitioners.

Categories and Subject Descriptors: H.3.4 [Information
Storage and Retrieval]: Systems and Software—Performance
evaluation

Keywords: search architectures; multi-core processors

1. INTRODUCTION
Real-time tweet search exemplifies a class of retrieval prob-

lems that requires dealing with a host of architectural chal-
lenges compared to “traditional” web search. Many of these
were identified by Busch et al. [5], including the need for
rapid data ingestion of high velocity data streams and en-
suring that documents are immediately searchable. As they
discussed, one major performance bottleneck is the construc-
tion of the inverted index in an incremental fashion. For per-
formance considerations, indexes and related data structures
must be kept completely in main memory (which is a stan-
dard assumption today). Nevertheless, inverted indexing re-
quires non-regular data structures and data access patterns
that are at odds with modern processor architectures. This
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paper explores the following question: What if we abandoned
document inversion? Can we envision a retrieval architec-
ture that addresses the architectural challenges of real-time
tweet search in a completely different way?

We explore the feasibility of a simple retrieval architec-
ture based on brute force scans of document representations.
The sketch of the approach is as follows: whenever we en-
counter a new document (tweet), we convert it into arrays
of integers. “Indexing” simply means appending this repre-
sentation to an existing in-memory buffer. For retrieval, we
perform a brute force scan of these representations and com-
pute query–document scores according to a scoring model.
We can build on this simple idea by exploiting vector SIMD
instructions and modern multi-core processors to further in-
crease performance. Note that although this approach may
seem reminiscent of bit signatures [9], the critical difference
is that we work with exact document representations since
there is no hashing involved.

Surprisingly, the retrieval performance of such an architec-
ture is quite reasonable compared to a search engine built
on a standard inverted index. We experimentally verified
our techniques on data from the TREC Microblog evalu-
ations from 2011 and 2012. Compared to the open-source
search engine Lucene (a variant of which Twitter deploys for
real-time search in production), we achieve query latencies
that are within 30% when exploiting SIMD instructions and
intra-query parallelism to its fullest.

2. BACKGROUND AND RELATED WORK
Initially, query evaluation based on brute force scans seems

impractical, perhaps even outlandish. Nevertheless, we ar-
gue that this approach is worth considering for a couple of
reasons. One challenge in designing software for modern
architectures is the so-called “memory wall” [3]: increases in
processor speeds have far outpaced improvements in memory
latency. Today, memory latencies are hidden by hierarchical
caches, but cache misses remain expensive. Another salient
property of modern CPUs is pipelining, where instruction
execution is split between many stages. Modern superscalar
CPUs add the ability to dispatch multiple instructions per
clock cycle. Pipelining suffers from two dangers or “haz-
ards”: Data hazards occur when one instruction requires the
result of another, such as when manipulating pointers. Sub-
sequent instructions cannot proceed until we first compute
the memory location and the processor stalls. Control haz-
ards are instruction dependencies introduced by branches.
Such hazards are alleviated, but not completely eliminated,
by branch prediction techniques.



document pool 1 2 3 4 5 6 7 3 8

tfs 2 1 1 1 1 1 1 1 1

uniq 5 4

docids 1 2

Figure 1: Document representations for two tweets.

The upshot is that branches and irregular memory ac-
cesses such as pointer chasing significantly reduce a pro-
cessor’s maximum performance. Unfortunately, inverted in-
dexing and query evaluation algorithms are rife with exactly
these inefficiencies. In contrast, brute force scans yield pre-
dictable memory accesses and code with minimal branching,
yielding higher instructions-per-clock-cycle throughput. We
wonder: has the latter caught up with the former?

The case for brute force scans is further bolstered by vec-
tor instructions that are common in today’s processors. Ad-
vanced Vector Extensions (AVX) are extensions to the x86
instruction set architecture that support SIMD (single in-
struction multiple data) processing. AVX provides a number
of instructions for operating on special 128-bit registers and
256-bit registers; AVX2 expands most vector integer AVX
instructions to operate on 256-bit registers. The simplicity
of the brute force scan approach allows us to exploit these
instructions to achieve high instruction throughput.

3. SYSTEM DESIGN

3.1 Document Representations
We begin with a dictionary that provides a mapping from

terms to 32-bit integer term ids. For simplicity, newly-
encountered terms are assigned the next available term id.
Whenever a new document (i.e., tweet) is encountered, it is
first converted into an array of unique term ids, which is then
appended to the end of a large array called the document
pool. A parallel array of 8-bit integers stores correspond-
ing term frequencies (tfs). We keep track of the number
of unique terms in each document in a third array of 8-bit
integers (uniq), which provides pointers into the otherwise
unsegmented document pool. A final array keeps track of
document ids. Figure 1 illustrates these data structures for
two tweets: “BBC News: The BBC cuts budget” and “Just
watched The Rite” (tokenized to “bbc new the bbc cut bud-
get” and “just watch the rite”). To work with AVX2 instruc-
tions, we pad the document pool and the tf array to the
nearest multiple of eight to align document boundaries with
SIMD instructions. Thus, we have unpadded and padded
variants of the data structures. To facilitate the computa-
tion of document scores, we also need to store document
lengths and collection frequencies (but these data structures
are not specific to our approach).

One aspect of our design is worth discussing: we decided
not to compress the document pool for two reasons. First,
our approach to assign term ids incrementally means that,
on the whole, the ids are relatively large, and hence the doc-
ument pool does not compress well. In an initial experiment,
we tried compression using SIMD-BP128 [6], which yielded
slower performance at only a modest saving in memory; we
decided the tradeoff was not worthwhile. Although it is
possible to assign term ids to facilitate compression (e.g.,
ordering terms based on frequency), this would complicate

Algorithm 1 Scan1

1: procedure Scan1(Q, pool, tfs, uniq, docids)
2: b← 0
3: for i← 1 to N do
4: s← 0
5: for j ← 1 to uniq[i] do
6: for k ← 1 to |Q| do
7: if Q[k] = pool[b + j] then
8: s← s + S(·)
9: end if

10: end for
11: end for
12: if s > 0 then
13: heap.add(docids[i], s)
14: end if
15: b← b + uniq[i]
16: end for
17: end procedure

dictionary construction in a real-time scenario. Second, leav-
ing the document pool uncompressed makes it straightfor-
ward to exploit SIMD instructions (more later); compression
would significantly complicate matters.

3.2 Query Evaluation
We explored a number of query evaluation approaches

based on a brute force scan of the document representations
to compute query-document scores (query-likelihood in our
case). The top k are retained in a heap and returned after
all documents are processed. Four different implementations
are described below:

Scan1. Our first approach (Algorithm 1) operates on the
unpadded document pool and is a straightforward imple-
mentation consisting of three nested loops: over all docu-
ments, over all unique terms in each document, and over all
query terms. The notation S(·) is shorthand for computing
the score contribution of the current query term.

Scan2. In our second approach, which also uses the un-
padded document pool, we unroll the innermost loop of the
first approach (i.e., lines 6–10). This is accomplished by cre-
ating a separate query evaluation function for every query
length (a relatively small number); such a design allows us
to hard code the number of query terms and avoid branch
mispredicts in the innermost loop.

AVXScan1. This approach replaces the two inner loops of
Algorithm 1 with SIMD instructions. The key is an AVX2
instruction that performs element-wise comparison of two
vectors of eight 32-bit integers concurrently (in 256-bit reg-
isters); the result is a mask indicating which of the integers
match. Our approach is as follows: for each query term,
we replicate its term id eight times in a 256-bit register,
and then apply the AVX2 vectorized comparison to eight
integers at a time from the document pool. Based on read-
ing the result mask, if there is a match, we then compute
the query term score contribution and add it to the current
score. Thus, we scan eight unique term ids within a docu-
ment at a time. As with the Scan2 algorithm, we implement
different query evaluation functions for queries of different
lengths to reduce branching when scanning the document
pool (however, branches involved in checking the mask are
unavoidable). Note that this technique requires padding the
document pool and tf array with zeros to the nearest mul-
tiple of eight so that the AVX2 instructions do not cross
document boundaries. We lack the space to provide de-



tailed pseudo-code, but we welcome the reader to examine
our open-source code for more details.

AVXScan2. In this approach, we build on the previous
algorithm by partially unrolling the outer loop that iterates
over the documents. Instead of considering one document
at a time, we consider six documents at a time, and use the
vectorized comparison operation described in the AVXScan1
approach to score each document. Partial scores are held in
a six-document array, and once all query-document scores
have been computed, we examine each element in the array
and insert non-zero scores into the heap; this is accomplished
in a fully-unrolled loop to avoid branches.

The intuition behind this approach is to reduce loop over-
head, and is similar to vectorized processing in databases [4].
The number of documents to process at once requires bal-
ancing two factors: a value too small does not significantly
reduce loop overhead, while a value too large might cause
cache churn. In our application, the value of six was heuris-
tically determined. As with before, we lack sufficient space
to provide the pseudo-code for this approach, but our source
code is available online.

3.3 Exploiting Parallelism
Modern processors contain multiple cores, so it makes

sense to explore how we can exploit parallelism in our brute
force scan approach. The two obvious strategies are inter-
query parallelism and intra-query parallelism.

With inter-query parallelism, we simply run our query
evaluation algorithm on multiple threads, each of which op-
erates on one query independently. In this approach, as the
number of threads grows, query throughput increases up to
a certain point, after which performance no longer increases
(or may suffer) due to resource contention.

With intra-query parallelism, we split the collection into
equal portions and scan the document pool in parallel on
multiple threads; each thread maintains its own heap. There
is a synchronization point in waiting for the threads to finish,
and then to merge all the heaps to produce a final top k
ranking. With this approach, we still evaluate one query
at a time, but parallelism decreases latency. However, we
eventually run into diminishing returns: beyond a certain
point, the costs of synchronization outweigh the benefits of
increased parallelism.

4. EXPERIMENTAL SETUP
We implemented our system in C and compared against

the open-source search engine Lucene (version 4.3.1). All
code used in our experiments is released under an open-
source license.1 The use of Lucene, which is written in
Java, might strike some as an odd baseline, but we pro-
vide the following rationale: Lucene has been proven to be
“industrial strength”, with numerous deployments in pro-
duction settings. Twitter itself runs a variant of Lucene
for real-time search, and numerous other companies includ-
ing LinkedIn and Bloomberg rely on Lucene in production.
Thus, it is substantially more mature than research systems
that may be implemented in C/C++. More importantly,
though, Lucene has two features lacking in many research
systems: First, near-real-time indexing, where ingested doc-
uments are available for search within a short amount of
time. This is a key feature of our brute force scan approach

1https://github.com/lintool/c-bfscan

and it would be unfair to compare our techniques against a
system that does not have this feature. Second, Lucene has
robust support for multi-threaded retrieval, which provides
a point of comparison to parallel versions of our brute force
scan approach. To provide a fair comparison, all Lucene in-
dexes were loaded into main memory at startup. For both
Lucene and brute force scan, we retrieved the top 1000 hits,
per usual practice in IR research.

Experiments were conducted on a machine with two Intel
Xeon E5-2680 v3 processors at 2.5 GHz. Each processor has
12 cores, with a total of 24 physical cores capable of sup-
porting 48 virtual cores via hyperthreading. Our machine
has 768 GB of RAM, although our experiments used only a
small fraction of the total. The machine runs RedHat En-
terprise Linux (release 6.6) and we used gcc version 4.9.1.
All reported results represent the average of three trials.

We used test collections from the recent Microblog tracks
at TREC [7, 8]. The 2011 and 2012 evaluations used the
Tweets2011 collection (16 million tweets). We first verified
with the TREC topics that our system generates exactly
the same document scores and ranking as Lucene; subse-
quent experiments focused exclusively on efficiency. For
these experiments, we took the first 1000 queries from the
TREC 2005 terabyte track efficiency queries (we needed
more queries for reliable measurements). The TREC Mi-
croblog queries are associated with timestamps, which are
missing from these efficiency queries; thus, we searched over
the entire collection (without any early termination).

5. RESULTS
After processing, the size of the document pool was 162

million; all data structures (but not the vocabulary) occupy
1026 MB memory. For the padded AVX2 representations,
the document pool expanded to 225 million, or an increase of
39%. The padded data structures occupy 1341 MB memory
in total. For reference, the Lucene index occupies 4.8 GB
(although it stores positions and other metadata).

5.1 Single-Threaded Experiments
Results for the single-threaded experiments are shown in

the first row of Table 1. We report average query latency (in
milliseconds) of Lucene and our brute force scan approaches
(with 95% confidence intervals). We see that the Scan1 ap-
proach is approximately 4.3× slower than Lucene, but each
successive improvement to the basic brute force scan ap-
proach improves query latency. We get a big gain from un-
rolling the inner loop over query terms and writing a query
evaluation function for queries of different lengths (Scan2).
Applying SIMD instructions in the inner loop (AVXScan1)
yields small improvements, but processing six documents at
a time (AVXScan2) makes a noticeable contribution. Bot-
tom line: the best brute force scan approach is within a factor
of two of the performance of Lucene.

5.2 Multi-Threaded Experiments
Multi-threaded performance exploiting intra-query paral-

lelism is shown in the rest of Table 1. We report query la-
tency (in milliseconds) of Lucene versus the four brute force
scan approaches (with 95% confidence intervals).

The results show that Lucene achieves maximum perfor-
mance with 24 threads, which equals the number of phys-
ical cores in our machine—in other words, hyperthreading
doesn’t help. On the other hand, we get a small gain in



Threads Lucene Scan1 Scan2 AVXScan1 AVXScan2

1 178±25 769±4 417±11 408±13 361±3
2 109±37 610±23 358±56 297±16 261±15
4 86±38 456±24 270±6 228±7 189±1
8 76±13 297±7 168±7 141±5 135±1

12 73±8 217±3 126±5 107±8 109±7
24 62±1 156±3 92±1 87±3 88±7
48 81±1 134±2 89±2 81±2 84±3

Table 1: Latency (in milliseconds) with 95% confi-
dence intervals of Lucene versus brute force scan,
exploiting intra-query parallelism.

going from 24 to 48 threads with our brute force scan ap-
proaches. Interestingly, we noticed a different relative per-
formance ordering of the brute force scan approaches com-
pared to the single-threaded results. Even though AVX-
Scan2 achieves the fastest single-threaded performance, it is
(slightly) slower than AVXScan1 beyond 12 threads. Over-
all, the maximum performance we achieve with brute force
scan (AVXScan1 with 48 threads) is about the same speed
as Lucene under the same parallelism setting, but still a bit
slower than the absolute best Lucene results (24 threads).
Bottom line: the best brute force scan approach is only 30%
slower than the best Lucene performance.

Multi-threaded performance exploiting inter-query paral-
lelism is shown in Table 2. We report the throughput of
Lucene versus the four different brute force scan approaches
(with 95% confidence intervals). We see that maximum
throughput with Lucene is achieved with 24 threads. This
suggests that the benefits of additional parallelism are out-
weighed by resource contention that reduces overall through-
put. Unfortunately, none of our brute force scan approaches
are able to achieve anywhere close to the throughput of
Lucene. Interestingly, however, just as in the intra-query
parallelism case, we noticed a different relative performance
ordering of the brute force scan approaches compared to the
single threaded results. The Scan2 approach achieves the
highest throughput with maximum parallelism, even though
it has significantly lower performance on a single thread.
Bottom line: inter-query parallelism does not appear to be
the best way to exploit multiple cores using brute force scan
techniques in today’s processors.

6. FUTURE WORK AND CONCLUSION
What do we make of these results? Although none of

the brute force scan approaches beat Lucene in terms of
performance, we were surprised that the results are even
this close. To recap: on a single thread, retrieval using the
best brute force scan approach is within a factor of two of
using an inverted index, and when exploiting intra-query
parallelism to the fullest extent, the performance gap drops
to 30%. We believe that we are a couple more optimizations
away from achieving performance parity, and invite other
researchers to help us get there.

The obvious advantage of our approach is that it elim-
inates the complexities of document inversion, which we
do not show with indexing experiments here. In real-time
search, there is another important advantage: users most
often care only about the latest results. With an inverted
index, it is desirable to traverse postings lists “backwards”
(from most recent) and early exit when enough results have
been accumulated [2]. Most systems are not designed this
way, which foregoes optimization opportunities; adapting
traditional query evaluation algorithms to operate in this

Threads Lucene Scan1 Scan2 AVXScan1 AVXScan2

1 7.5 ±0.1 1.3±0.1 2.5±0.3 2.5±0.1 2.9±0.3
2 20.7 ±1.5 2.6±0.1 4.8±0.6 5.1±0.2 5.9±0.1
4 38.2 ±0.7 5.0±0.1 9.4±0.7 9.6±0.3 11.0±0.1
8 52.6±12.0 9.3±0.2 17.1±1.3 17.0±0.3 19.2±0.5

12 104.0 ±4.6 13.5±0.3 24.5±2.2 23.8±1.2 25.8±1.5
24 188.7±21.0 25.3±1.2 41.6±5.1 38.3±1.9 40.0±0.1
48 164.4±10.3 30.3±0.5 53.1±2.7 49.3±2.5 48.4±4.2

Table 2: Throughput (query per second) with 95%
confidence intervals of Lucene versus brute force
scan, exploiting inter-query parallelism.

manner is non-trivial. In contrast, with an approach based
on brute force scans, it is easy to factor in temporal con-
straints: since the documents are arranged chronologically,
we simply stop scanning once we’ve reached the proper time.

We see an additional advantage beyond optimizations for
real-time search: many web search engines today adopt a
multi-stage architecture [1] that begins with a simple ranker
(e.g., BM25) followed by one or more complex (machine-
learned) rankers. Later stages typically access document-
level features (e.g., static priors) that are not stored in the
inverted index, thus requiring a separate “document store”
from which those feature vectors are fetched or computed.
This requires storing two separate structures (in essence,
both a forward and an inverted index). With the brute
force scan approach, the document store is no longer nec-
essary, as document-level features can be directly stored in
the document pool (suitably encoded). This yields a simpler
and potentially more efficient end-to-end architecture.

To conclude: we show that the simplest possible approach
to document retrieval—one based on simply scanning all
documents in the collection—is surprisingly feasible given
today’s hardware. We hope to inspire future work that fur-
ther explores this novel line of inquiry.
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