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ABSTRACT
The basic idea behind selective search is to partition a collec-
tion into topical clusters, and for each query, consider only a
subset of the clusters that are likely to contain relevant doc-
uments. Previous work on web collections has shown that
it is possible to retain high-quality results while consider-
ing only a small fraction of the collection. These studies,
however, assume static collections where it is feasible to run
batch clustering algorithms for partitioning. In this work, we
consider the novel formulation of selective search on docu-
ment streams (specifically, tweets), where partitioning must
be performed incrementally. In our approach, documents
are partitioned into temporal segments and selective search
is performed within each segment: these segments can ei-
ther be clustered using batch or online algorithms, and at
different temporal granularities. For efficiency, we take ad-
vantage of word embeddings to reduce the dimensionality
of the document vectors. Experiments with test collections
from the TREC Microblog Tracks show that we are able to
achieve precision indistinguishable from exhaustive search
while considering only around 5% of the collection. Inter-
estingly, we observe no significant effectiveness differences
between batch vs. online clustering and between hourly vs.
daily temporal segments, despite them being very different
index organizations. This suggests that architectural choices
should be primarily guided by efficiency considerations.

1. INTRODUCTION
The most common approach to building distributed search
systems is to divide the document collection into partitions
(or shards), which are assigned to different servers. A broker
coordinates query evaluation by forwarding queries to the
partition servers and then gathering results [6]. The sim-
plest partitioning strategy is to randomly distribute docu-
ments among partitions (e.g., via hashing), but this requires
that the broker forwards queries to every partition. The
downside of this strategy is the potentially large request“fan
out”, which makes the system sensitive to so-called “tail la-
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tencies” [16], where the end-to-end latency is bound by the
slowest component. To address this issue, as well as to re-
duce the number of documents that must be considered for
a given query, search engines can partition the document
collection in a non-random fashion and select the subset
of documents (partitions) that are most likely to be rele-
vant to a particular query—the literature calls this selective
search [21, 22] (vs. exhaustive search, where the entire doc-
ument collection is examined). Selective search reduces the
overall computation load as well as the query fan-out, with-
out significantly compromising search quality.

Previous work on selective search assumes static docu-
ment collections, typically in the web context. In this sce-
nario, the document partitions can be computed in batch
(e.g., using k-means clustering). In contrast, this paper ex-
plores selective search on dynamic document streams such
as tweets where partitions must be computed incrementally
since documents are arriving continuously.

Our contribution is the development of novel partitioning
and segment organization strategies for real-time selective
search on document streams. To our knowledge, we are the
first to explore such a problem formulation. In our approach,
the document stream is divided into temporal segments and
selective search is performed within each segment—that is,
within each time interval, we only consider a subset of the
documents. We articulate a design space where segments
can be partitioned in different ways (using batch or online
methods) and where the temporal granularity of the seg-
ments vary. For computational efficiency, we take advantage
of word embeddings to reduce the dimensionality of the doc-
ument space—this, to our knowledge, is also novel.

Within this broad design space we instantiate and eval-
uate a family of index organizations specifically for tweets,
using data from the TREC Microblog Tracks. Experiments
show that we are able to achieve precision indistinguish-
able from exhaustive search while considering only around
5% of the collection. Interestingly, for our particular ap-
plication, we observe no significant effectiveness differences
between batch vs. online clustering, and between hourly vs.
daily temporal segments—despite the fact that these repre-
sent very different points in the design space. This finding
suggests that it makes sense to guide architectural choices
based on efficiency considerations.

2. BACKGROUND AND RELATED WORK
Selective search has its roots in the cluster hypothesis [19],
which is the observation that relevant documents tend to
share similar content (i.e., cluster in document space). There



has been much work exploring this idea over the years (e.g.,
[45, 18, 29, 24, 28], just to name a few). The work of Xu
and Croft [47] represents one early attempt to exploit the
cluster hypothesis to organize a distributed retrieval sys-
tem. Shortly thereafter, Larkey et al. [25] studied selective
search on US Patent documents. Also relevant is the work
of Puppin et al. [35], who proposed a document partitioning
strategy based on co-clustering queries and documents.

Selective search can be seen as a special case of the feder-
ated search problem where each of the individual systems are
cooperative, and thus many algorithms for resource selection
in that context are applicable [38, 36, 43, 37]. The definitive
work of Kulkarni and Callan on selective search in the web
context [21, 22] provides a starting point for our own study.
Their basic idea is to partition a collection using k-means
clustering, and at query time search only the clusters that
are most likely to contain relevant documents. It is possible
to trade effectiveness for efficiency by controlling the num-
ber of clusters to search, and experiments on modern web
collections (e.g., ClueWeb09) have shown that substantial
efficiency gains can be achieved without significantly sac-
rificing effectiveness. Improvements in partition selection
strategies are reported in subsequent work by Kulkarni et
al. [23] and also Aly et al. [3]. Kim et al. [20] further intro-
duced refinements by assigning the document partitions to
physical servers based on a particular query workload.

Note that selective search is orthogonal but complemen-
tary to another common technique used in web search where
documents are partitioned by quality (for example, based on
their “spamminess” or some other editorial quality score).
For example, Baeza-Yates et al. [7] describe a search archi-
tecture comprised of a smaller “tier” of higher-quality docu-
ments and a larger tier of lower-quality documents. Query
prediction techniques are used to route the queries to the
tiers, but within each tier, exhaustive search is still per-
formed. A more general extension is to consider query rout-
ing between geographically-dispersed search engines [13, 42],
for example, to take advantage of document locality and the
price of electricity, but in this work we assume that the
search engine sits at a single site. However, selective search
can still be applied at each of the tiers or within each of the
sites in a multi-site setup.

It is worth mentioning that although selective search was
originally developed to address efficiency issues in distributed
search architectures (i.e., systems spanning multiple servers),
the same ideas are also applicable to search on a single
server. One common strategy is to build multi-partitioned
indexes on a single server (called micro-partitioning) to bet-
ter take advantage of the parallelism offered by modern
multi-core processors [41]. As a simple example, we could as-
sign each processor core to its own index partition to achieve
better data locality. In this context, the ideas behind se-
lective search are also applicable to search within a single
server, in that we might only need to consult a small frac-
tion of these micro-partitions to obtain high-quality results.
This application of selective search is particularly attractive
to organizations that do not have access to large clusters,
but may nevertheless require search capabilities over large
document collections. The techniques proposed in this paper
are agnostic to the exact execution context (i.e., inter-server
vs. intra-server partitioning.)

From an architectural perspective, the idea of dividing
a document stream into temporal segments is implemented

in Earlybird [11], Twitter’s production tweet search engine.
Each Earlybird instance comprises a sequence of temporal
index segments: the most recent ingests new tweets, and all
preceding ones are read-only. Thus, an incoming query is
issued to all index segments and the results are then merged
together. Earlybird, however, does not implement any se-
lective search capabilities—all documents are still consid-
ered for each query. We can imagine our proposed selec-
tive search algorithms deployed in an architecture similar
to that of Earlybird, combined with the micro-partitioning
techniques discussed above.

3. REAL-TIME SELECTIVE SEARCH
Let us begin with a formal definition of our problem: we
assume a stream of timestamped documents (tweets in our
case). Given a query Q and a query time t, our task is to
return a ranked list of documents up until the query time.
Although our evaluations focus on tweets, there is nothing in
our overall framework that ties us specifically to such data.
However, in our implementations we do take advantage of
the fact that tweets are generally short.

In the exhaustive search baseline, all tweets in the col-
lection before the query time are considered. With selec-
tive search, we only consider a subset of those tweets. Se-
lective search necessarily involves an effectiveness/efficiency
tradeoff—the interesting empirical question is how little of
the collection we need to examine, based on a particular
strategy, to achieve some level of effectiveness. Note that the
actual ranking algorithm is not important as long as both ex-
haustive search and selective search use the same one. This
holds even if we assume a more complex multi-stage ranking
architecture [14, 5, 44, 15], since what matters is the input
to the subsequent ranking stages, and here we focus on the
initial candidate generation stage. In this work, we assume
ranking using query-likelihood with Dirichlet smoothing.

3.1 Design Space
For a static collection, selective search strategies typically
divide the document collection into clusters, each represent-
ing a “topic” or otherwise coherent subset of documents,
and at query time search only the clusters that are most
likely to contain relevant documents. A variety of cluster-
ing approaches have been tried, ranging from relatively sim-
ple techniques such as k-means clustering to more sophisti-
cated techniques based on topic modeling. It is not entirely
clear that sophisticated clustering techniques are any more
effective—for example, Kulkarni and Callan [21] compared
k-means and LDA and found both to be equally effective.
Therefore, in this work we use k-means clustering due to its
simplicity and the existence of batch vs. online variants that
lend themselves well to contrastive experiments.

Selective search on static collections can take advantage
of batch clustering techniques (e.g., Lloyd’s algorithm), but
we are interested in the real-time streaming scenario where
documents are arriving continuously. How might we adapt
the basic selective search idea for this setting? The simplest
solution would be to periodically run batch k-means, let’s
say, every hour. In this case, cluster generation will be a
bit more than an hour behind (the one hour buffer, plus the
time it takes to perform the clustering). We could main-
tain a real-time index (on the entire collection) [11] over the
interval where clustering has not occurred yet (i.e., exhaus-
tive search), and then apply selective search techniques over



hourly slices moving back in time (i.e., for each hour, search
only a fraction of the clusters). For convenience, we refer to
a temporal slice of the collection as a segment—so with such
a strategy, we perform selective search on hourly segments.

One possible improvement is to consolidate smaller seg-
ments by re-clustering at larger temporal intervals to avoid
searching a multitude of small time slices, which is similar in
spirit to strategies for merging index segments in the context
of incremental indexing [12, 27]. As a concrete example, we
could cluster documents in the most recent complete day.
Thus, the search strategy might be: search exhaustively in
the unclustered results, then apply selective search on hourly
segments going back to the previous day, and finally ap-
ply selective search on daily segments moving back in time.
One could imagine aggregations at longer intervals (weekly,
monthly, etc.), where the setup begins to look closer and
closer to selective search on static collections.

The next obvious idea is to replace batch k-means with
online k-means (e.g., [2, 1, 10, 39]).1 In online k-means,
the clusters are incrementally updated with every new in-
put instance, which seems well-suited for our real-time sce-
nario. However, there is an important caveat: all the on-
line k-means algorithms we are aware of only keep track of
the cluster representatives, but not the cluster assignments.
Given a new input instance, the algorithm will compute its
nearest cluster (that is, the cluster that the instance would
be assigned to at that point in time) and adjust the clus-
ters appropriately. However, there is no guarantee that the
assignment will remain stable over time—since the clusters
themselves evolve, merge, and are created or destroyed. This
stands in contrast to batch k-means, where the output of an
algorithm is both the cluster centroids and the cluster as-
signments; the cluster assignments are by definition stable
once the algorithm converges.

This characteristic of online k-means algorithms actually
makes sense upon further reflection: in the context of a po-
tentially infinite data stream, it is assumed that the algo-
rithm does not have sufficient space to store all the observed
instances. In many streaming applications, one doesn’t ac-
tually care about individual instances, since the algorithm
must “forget” about them at some point in time. Thus, the
cluster assignment problem is in some ways not meaningful.
However, if the cluster assignments are actually needed, the
standard solution is to buffer a certain number of instances,
and then perform a second pass to compute the nearest clus-
ter centers (at a particular point in time). Applied to our
search scenario, this would mean performing online k-means
over an hour of tweets, buffering those tweets, and then at
the end of the hour going back to compute the cluster assign-
ments. Note that the alternative approach of dynamically
re-adjusting the assignments with each new input instance
is not computationally feasible.

Given this problem setup, the above discussion character-
izes two dimensions in the design space of a real-time selec-
tive search framework for document streams. We schemati-
cally illustrate this in Figure 1.

Batch vs. online clustering. Although online k-means
requires a second pass to perform cluster assignments, this
process involves a linear scan over the data and thus can
be accomplished efficiently. In contrast, batch algorithms

1The literature often refers to these as streaming k-means al-
gorithms; we use the term online in this paper to emphasize
the contrast with batch algorithms.
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Figure 1: Schematic illustration of the design space
for real-time selective search on document streams.
We can apply batch or online k-means at hourly in-
tervals and batch k-means at a coarser granularity
(e.g., a day). At query time, results can be assem-
bled from a combination of different segments.

need several iterations before convergence and are therefore
slower. If the buffered data fit into memory, then the costs
associated with batch algorithms will be relatively small.
Note that while the asymptotic complexity of batch k-means
clustering (e.g., Lloyd’s algorithm) is well known, asymp-
totic behavior is not particularly relevant, as running time
in practical contexts mostly depends on whether the data fit
into memory on a single server or if we require a distributed
architecture such as MapReduce or Spark.

In terms of the quality of the clusters, it is unclear whether
batch or online k-means is better. Although the batch ap-
proach has access to all documents and thus can take advan-
tage of global structure, it might be more vulnerable to the
effects of poor seed selection and other idiosyncratic features
of the document space. Since online k-means adjusts clus-
ter centers in response to new instances, it might be better
able to adapt to shifting topics in the Twitter stream. The
effectiveness of both approaches is an empirical question.

Fine-grained vs. coarse-grained. We can see advan-
tages and disadvantages of applying clustering to longer time
spans (e.g., a day) vs. shorter time spans (e.g., an hour).
Computationally, it may be more efficient to search through
a single large cluster than to search through a number of
smaller clusters, for at least two reasons: in the first case,
cluster selection only needs to be performed once, whereas in
the second case, we need to perform cluster selection for ev-
ery time slice. In addition, there are typically fixed startup
costs associated with search (e.g., initializing data struc-
tures), and searching fewer clusters means less time spent
on overhead. On the flip side, however, searching smaller
slices gives us the ability to select documents to examine
at a much more fine-grained level, and also to terminate
early—i.e., we can stop searching once we’ve found enough
results. Which is better? This is an empirical question.

3.2 Segment Organization
Our approach is to perform selective search over different
temporal segments and to integrate results from each seg-
ment. There are a variety of options for the organization of
these segments, as discussed above. Specifically, we explore:

Hourly batch (HB). In this strategy, we perform selective
search on hourly segments built using batch clustering, from
the most recent hour until the beginning of the collection.
Therefore, this involves searching as many sub-collections as
there are hours in the collection.

Hourly online (HO). This strategy is exactly the same
as the one above, except that the segments are built using
online clustering instead of batch clustering.



Hourly batch + daily batch (HB+DB). Here, we per-
form selective search on hourly segments (built using batch
clustering) moving backwards in time until we reach the pre-
vious complete day. At that point, we start performing se-
lective search on daily segments built using batch clustering.
Compared to the hourly batch (HB) approach, here we are
“consolidating” smaller segments for complete days, thus re-
ducing the number of sub-collections we are searching over.

Hourly online + daily batch (HO+DB). This strategy
is the same as the one above except that the hourly segments
are constructed with online clustering instead of batch clus-
tering. Note that the daily segments are still batch clustered,
as we see no advantage of applying online clustering at such
long temporal intervals.

In all cases, there is a gap between the last completed hourly
segment and the query time. That is, if the query time is 15
minutes past the hour, there are 15 minutes worth of tweets
that have not been clustered yet. We assume exhaustive
search over all documents in this gap.

As an additional simplification, we do not take into ac-
count the time needed to perform clustering and to build
indexes. That is, we assume the clusters are available and
searchable immediately after the hour (or the day) ends.
In reality, of course, this processing takes time: a produc-
tion deployment is likely to implement a common technique
known as shadowing [26], where background processes per-
form the appropriate clustering and indexing, and then the
updated indexes are “swapped in” when ready. However, we
do not model this implementation detail in our experiments
and assume that the appropriate segment organizations are
immediately available.

3.3 Clustering Implementations
Online clustering algorithms require that all intermediate
structures be held in memory. In our initial explorations,
we experimented with a variety of different online cluster-
ing implementations and discovered that they were unable
to handle the huge vocabulary spaces associated with noisy
documents such as tweets. For example, in Ackermann et
al. [1], which introduced StreamKM++ (the algorithm we
use in this work), the largest dataset explored comprised
of only 11 million 57-dimensional points. The dataset with
the largest number of dimensions in their experiments was
a mere 68. In a batch setting, it is possible to prune the
vocabulary space by discarding all terms whose frequencies
fall below some threshold—this is difficult to do in an on-
line setting. Thus, to enable online clustering, we need some
dimensionality reduction. In this work, we take advantage
of word embeddings from recent work in continuous space
language models [31, 33]. In both the batch and streaming
cases, we “project” each document into a reduced-dimension
space defined by word embeddings of dimension d (a param-
eter we vary) in the following manner:

We first trained word embeddings using the GloVe tech-
nique of Pennington et al. [33] on the Edinburgh tweet cor-
pus [34], comprising 97 million tweets from November 11th
2009 to February 1st 2010. The output of this training pro-
cess is a continuous real-valued vector of dimension d for
every term in the vocabulary V :

~wi “ tw1, w2, . . . , wdu, wi P R and 1 ď i ď |V |

where |V | is the vocabulary size. GloVe produces a global
log-bilinear regression model that combines the advantages

of two model families for continuous word representations:
global matrix factorization and local context methods. A
tweet is represented as the mean of the document word
vectors weighted by the word frequency: this representation
takes advantage of the fact that tweets are generally short.
Formally, if a document D is represented as a sequence of
tuples (of the word and its frequency):

D “ tp ~w1, f1q, p ~w2, f2q, . . . , p ~wn, fnqu

then its vector representation is computed as follows:

~D “

n
ÿ

i“1

fi ~wi{

n
ÿ

i“1

fi

All out-of-vocabulary terms are treated as vectors of zeroes.
For cluster selection (more details below), queries are repre-
sented in the same way. Importantly, the word embeddings
are trained on a corpus that is completely disjoint from our
test collection, and thus word vectors do not contain “future
knowledge” from tweets after the query time.

For batch clustering, we use the k-means implementation
in Apache Spark’s Machine Learning Library (MLlib) [30],
which implements a parallelized variant of k-means++ [4]
called k-means|| [8]. The algorithm is an efficient parallel
version of the inherently sequential k-means++ that reduces
the number of passes needed to obtain a good initialization
while obtaining a nearly optimal solution. The output of
MLlib is a set of clusters and the documents associated with
each cluster. Each cluster can be represented by its centroid,
which is also provided by MLlib.

For online clustering, we used the StreamKM++ [1] im-
plementation in the MOA toolkit [9]. StreamKM++ creates
coresets, which are small weighted point sets that approx-
imate points from the data stream. The algorithm uses a
treelike data structure to store points in such a way that
it can perform fast adaptive sampling, which is similar to
k-means++ seeding. As previously discussed, the output of
the online clustering algorithm is the cluster representatives
(but not the actual document assignments). Therefore, at
the end of each hour, we go back and iterate through all
tweets and assign each to the nearest cluster representative
(measured in terms of cosine similarity).

In our experimental setup we have taken care to isolate the
effects of batch vs. online approaches. The algorithms de-
rive from the same family of k-means clustering techniques;
both operate over the same document vectors (in embedding
space). Thus, differences in effectiveness can be attributed
to the inherent properties of batch vs. online processing.
Batch techniques are able to exploit the global structure of
the document space, while online techniques can adapt in-
crementally to the document stream as it evolves. It remains
an empirical question which approach is superior. It would
have been desirable to isolate the impact of word embed-
dings, but we were not able to successfully apply the MOA
implementation of StreamKM++ with normal term vectors
on our collection.

3.4 Cluster Selection and Document Ranking
Based on the techniques described above, each segment of
tweets (either one hour or one day) is partitioned into 100
clusters, with either batch or online k-means. Within each
segment, we apply a straightforward selective search tech-
nique. Clusters are represented by a representative vector
(in embedding space) and we use cosine similarity for cluster



selection. Given a query, we project it into embedding space
and rank all the cluster representatives in terms of cosine
similarity. By varying the number of clusters we then exam-
ine, we can trace an effectiveness/efficiency tradeoff curve.

As an alternative to cosine similarity, we did implement
ReDDE [38], a more sophisticated cluster selection algo-
rithm (also used by Kulkarni and Callan [21]). However, we
did not find ReDDE to be significantly more effective than
cosine similarity, and hence we adopted the latter approach,
primarily for efficiency reasons. ReDDE requires maintain-
ing a sample index, whereas we only need to maintain 100
dense vectors (the cluster representatives). The efficiency
of the cluster selection process is worth considering in our
case because we may have a multitude of queries over small
sub-collections, especially in the case of hourly segments.

To be clear, the number of clusters to examine is a global
parameter, i.e., we examine that many clusters across all
segments within the collection. For example, in the hourly
batch (HB) strategy, we examine the top n most similar
clusters in each hour. In the hourly batch + daily batch
(HB+DB) strategy, we examine the top n most similar clus-
ters in the hourly segments, and also the top n clusters in
each daily segment. In principle, however, this does not
need to be the case—for example, we could focus on partic-
ular segments, perhaps informed by some temporal model
(e.g., [17]), but this introduces additional parameters that
need tuning. To avoid the danger of over-fitting on limited
data, we decided not to take this route.

Once the clusters in each segment have been selected,
within each selected cluster, we rank documents using query-
likelihood with Dirichlet smoothing: note that this is accom-
plished in normal term space, not embedding space. That
is, word embeddings are used only for partitioning and clus-
ter selection, not actual document ranking. Although this
ranking can be performed in parallel because the clusters
are independent, for simplicity we consider only a sequential
implementation. We are careful to use collection statistics
only up to the query time for computing document rankings.
That is, to compute query-likelihood, we use the collection
frequency of the term from the beginning of the collection
up to the current segment. Thus, we are careful not to use
term statistics “from the future”, even though previous work
has shown that it doesn’t matter [46].

Finally, we rank all documents in the “leftover” temporal
interval between the query time and the last segment (where
we perform exhaustive search). Results from all segments
are then merged together with these into a final ranked list
and returned to the user.

4. EVALUATION METHODOLOGY
For evaluation, we used data from the Microblog Tracks at
TREC [32, 40]. The 2011 and 2012 evaluations used the
Tweets2011 corpus, which consists of an approximately 1%
sample (after some spam removal) of tweets from January
23, 2011 to February 7, 2011 (inclusive), totaling approx-
imately 16 million tweets. There are 50 topics for TREC
2011 and 60 topics for TREC 2012. Each topic consists of
a query and an associated timestamp, which indicates when
the query was issued. Using a standard pooling strategy,
NIST assessors evaluated tweets and assigned one of three
judgments to each: “not relevant”, “relevant”, and “highly
relevant”. For the purposes of our experiments, we consid-
ered both “relevant” and “highly relevant” tweets relevant.

Since the collection is static, we simulated the document
stream for our experiments. The queries for each topic were
issued at the specified (simulated) query time.

We measure effectiveness in terms of precision at rank
30 (P30) and average precision (AP) at rank 1000, the two
metrics used in the official TREC evaluations. Our selec-
tive search techniques are compared with exhaustive search,
where all tweets prior to the query time are ranked. In terms
of the effectiveness/efficiency tradeoff of our proposed tech-
niques, there are two different evaluation perspectives. One
could ask: if we examine n clusters per segment, what level
of effectiveness can we achieve for each of the segment or-
ganizations described in Section 3.2? The downside of this
evaluation approach is that the cluster sizes are different.
Nevertheless, for each condition we can compute efficiency
as a fraction of the number of documents that would be ex-
amined with exhaustive search. More precisely: the number
of clusters we examine per segment translates into the num-
ber of documents that need to be searched in total for the
particular segment organization (i.e., the sum of all docu-
ments in those clusters). We normalize this number into a
fraction of the entire collection at that time, i.e., the num-
ber of tweets up until query time. Recall that each query
is associated with a different query time, which means that
each query is effectively searching over a collection of dif-
ferent size. Thus, normalization is required for computing
meaningful averages across topics.

The complementary evaluation perspective is as follows:
given that we examine a particular fraction of the collection,
what is the level of effectiveness that we can achieve? An-
swering this question requires a different way of aggregating
the results: For each topic, we compute effectiveness as we
vary the number of clusters examined (as above). Efficiency
is still measured in terms of the fraction of the collection
that must be examined with respect to exhaustive search.
We then bucket the efficiency values and average effective-
ness across all points that fall into the bucket. This process
is similar to how IR researchers aggregate precision–recall
curves across multiple topics by computing averages in pre-
cision at specific recall levels. The final result is a single
effectiveness vs. fraction-of-collection-examined curve that
summarizes results across all queries.

As a final detail, due to the inherent randomness asso-
ciated with seed selection in k-means clustering, we repeat
the above experimental procedure five times and take the
average across all trials.

Note that our evaluation methodology is different from
that of Kulkarni and Callan [22] for a few reasons. With a
static collection, the number of documents in the collection
does not change—whereas in our case, the collection size
grows as time progresses. Thus, later queries need to search
more documents than earlier queries, all things being equal.
This explains the need for normalization. As a result, the
cost model used by Kulkarni and Callan is difficult to adapt
for our case. Our efficiency measure of “what fraction of the
entire document collection does a particular technique need
to examine” also accounts for the fact that clusters differ in
size, making it easy to meaningfully aggregate across topics.
Finally, our experiments do not explicitly take into account
the costs associated with cluster selection since those costs
are very small. In contrast to techniques that require search-
ing in a central index, our cluster selection approach only
requires computing cosine similarities between a query vec-



P30 HB HO HB+DB HO+DB

exhaustive 0.3182
2 0.2954 ˘0.0082 İ 0.3012 ˘0.0046 İ 0.2972 ˘0.0037 İ 0.2982 ˘0.0033 İ

3 0.3134 ˘0.0078 0.3172 ˘0.0029 0.3132 ˘0.0132 0.3144 ˘0.0104
4 0.3241 ˘0.0068 0.3270 ˘0.0065 0.3209 ˘0.0046 0.3218 ˘0.0038
5 0.3255 ˘0.0048 Ĳ 0.3282 ˘0.0060 Ĳ 0.3235 ˘0.0080 0.3234 ˘0.0051

10 0.3252 ˘0.0016 Ĳ 0.3265 ˘0.0043 Ĳ 0.3235 ˘0.0025 Ĳ 0.3229 ˘0.0030 Ĳ

20 0.3244 ˘0.0018 Ĳ 0.3245 ˘0.0011 Ĳ 0.3238 ˘0.0010 Ĳ 0.3234 ˘0.0009 Ĳ

AP HB HO HB+DB HO+DB

exhaustive 0.2368
2 0.1608 ˘0.0025 İ 0.1671 ˘0.0085 İ 0.1592 ˘0.0074 İ 0.1614 ˘0.0078 İ

3 0.1861 ˘0.0051 İ 0.1928 ˘0.0026 İ 0.1865 ˘0.0091 İ 0.1874 ˘0.0062 İ

4 0.2039 ˘0.0061 İ 0.2086 ˘0.0044 İ 0.2039 ˘0.0063 İ 0.2054 ˘0.0045 İ

5 0.2150 ˘0.0055 İ 0.2181 ˘0.0026 İ 0.2144 ˘0.0034 İ 0.2156 ˘0.0028 İ

10 0.2379 ˘0.0047 0.2415 ˘0.0017 Ĳ 0.2390 ˘0.0041 0.2396 ˘0.0043
20 0.2467 ˘0.0009 Ĳ 0.2474 ˘0.0015 Ĳ 0.2470 ˘0.0010 Ĳ 0.2468 ˘0.0003 Ĳ

Table 1: P30 and AP scores for different numbers of clusters examined under different segment organizations:
hourly batch (HB), hourly online (HO), hourly batch + daily batch (HB+DB), hourly online + daily batch
(HO+DB). İ/Ĳ indicate significant differences compared to exhaustive search (p ă 0.05).

tor and 100 cluster representatives. Since these are dense
vectors in embedding space, cluster selection latencies are
negligible compared to document ranking.

5. RESULTS

5.1 Segment Organizations
In our first set of experiments, we varied the number of
clusters examined per segment (out of a total of 100) for each
of the segment organizations discussed in Section 3.2: hourly
batch (HB), hourly online (HO), hourly batch + daily batch
(HB+DB), hourly online + daily batch (HO+DB). For these
experiments, we used word embeddings of 25 dimensions
(the effect of this parameter is explored later).

Experimental results are shown in Table 1 for t2, 3, 4,
5, 10, 20u clusters. The first row of each block reports the
effectiveness of exhaustive search, where all tweets prior to
the query time are ranked. In each condition, we report
the average across the five trials as well as the 95% confi-
dence interval, which quantifies the variability that can be
attributed to random aspects of our algorithms (e.g., clus-
ter initialization). The confidence intervals are quite small
and thus we can conclude that our proposed techniques are
robust to unpredictability in the clustering process.

The table is annotated with the results of statistical sig-
nificance testing using the paired t-test; the symbols İ and
Ĳ represent significant differences (depending on direction of
change) with respect to exhaustive search at the p ă 0.05
level. Somewhat surprisingly, it is possible to achieve signif-
icantly better effectiveness than exhaustive search (although
the effect size is small), which indicates that our clustering
strategies have the effect of reducing noise (this finding is
observed elsewhere as well [22]). We might consider this as
support for the cluster hypothesis, in that documents“close”
to the query, but not “close” to other documents are less
likely to be relevant—since these are exactly the documents
that would be discarded in our cluster selection method.

Overall, we see that three or four clusters are sufficient
to achieve P30 that is statistically indistinguishable from
exhaustive search. For AP, we need around ten clusters
to achieve the same result, which makes sense because AP

Clusters HB HO HB+DB HO+DB

2 0.021 0.024 0.021 0.022
3 0.032 0.035 0.033 0.033
4 0.044 0.047 0.045 0.045
5 0.056 0.594 0.057 0.057

10 0.115 0.121 0.117 0.117
20 0.231 0.242 0.235 0.236

Table 2: Number of clusters examined for each of
our segment organizations, translated into a fraction
of the entire collection.

considers recall as well. How does the number of clusters
translate into fraction of the collection? This is shown in
Table 2. As with the effectiveness results, we show averages
over five trials to account for natural variations due to the
randomness inherent in our clustering algorithms. We have
also computed the 95% confidence intervals—in all cases, the
intervals are less than ˘0.005 and so we leave the figures out
of the table for brevity.

The alternative perspective of our evaluation results are
shown in Figure 2, where we plot effectiveness against frac-
tion of the collection examined for each of the segment or-
ganizations, following the bucketing procedure described in
Section 4 with a bucket size of 0.02. The effectiveness of
exhaustive search is shown as the horizontal line. The ad-
vantage of these plots is that we can directly compare ef-
fectiveness vs. efficiency. The main plot shows the entire
range of the fraction of the collection examined, all the way
out to one, where examining all the clusters is equivalent to
exhaustive search. In the interior of the plot we focus on
the efficiency region of greatest interest—around the point
where selective search achieves effectiveness parity with ex-
haustive search. Recall that results in Table 1 show that
selective search can actually be more effective than exhaus-
tive search—this effect diminishes as we consider more and
more of the collection, such that the effectiveness of the two
ultimately converge (as expected).

A few selected operating points from Figure 2 are dis-
played in Table 3, which is also annotated with the results
of significance testing. These figures are entirely consistent
with Table 1, and we confirm that selective search is able to



Figure 2: Effectiveness (P30 and AP) vs. efficiency (fraction of the collection examined) under different
segment organizations: hourly batch (HB), hourly online (HO), hourly batch + daily batch (HB+DB), and
hourly online + daily batch (HO+DB).

P30 HB HO HB+DB HO+DB

exhaustive 0.3182
r0.02, 0.04q 0.3044 ˘ 0.0273 0.3092 ˘ 0.0228 0.3052 ˘ 0.0260 0.3063 ˘ 0.0250
r0.04, 0.06q 0.3248 ˘ 0.0086 0.3275 ˘ 0.0089 0.3222 ˘ 0.0099 0.3226 ˘ 0.0067
r0.10, 0.12q 0.3253 ˘ 0.0033 Ĳ 0.3269 ˘ 0.0028 Ĳ 0.3233 ˘ 0.0031 Ĳ 0.3223 ˘ 0.0041
r0.20, 0.22q 0.3242 ˘ 0.0027 Ĳ 0.3248 ˘ 0.0031 Ĳ 0.3236 ˘ 0.0014 Ĳ 0.3235 ˘ 0.0011 Ĳ

AP HB HO HB+DB HO+DB

exhaustive 0.2368
r0.02, 0.04q 0.1735 ˘ 0.0355 İ 0.1799 ˘ 0.0367 İ 0.1729 ˘ 0.0395 İ 0.1744 ˘ 0.0373 İ

r0.04, 0.06q 0.2095 ˘ 0.0173 İ 0.2126 ˘ 0.0128 İ 0.2091 ˘ 0.0163 İ 0.2105 ˘ 0.0115 İ

r0.10, 0.12q 0.2369 ˘ 0.0071 0.2395 ˘ 0.0032 0.2376 ˘ 0.0074 0.2381 ˘ 0.0085
r0.20, 0.22q 0.2462 ˘ 0.0012 Ĳ 0.2476 ˘ 0.0029 Ĳ 0.2461 ˘ 0.0017 Ĳ 0.2459 ˘ 0.0017 Ĳ

Table 3: Selected efficiency operating points from Figure 2. İ/Ĳ indicate significant differences compared to
exhaustive search (p ă 0.05).

achieve slightly better effectiveness than exhaustive search
in some cases. The table also reports the 95% confidence in-
terval of effectiveness variability across all the trials. Once
again, the narrow confidence intervals suggest that our find-
ings are robust with respect to cluster variations.

Taken as a whole, there are at most minor effectiveness
differences between the different segment organizations we
explored, which is somewhat surprising given how different
they are. In the absence of effectiveness as a discriminat-
ing factor, architectural choices might be guided by effi-
ciency considerations. From this perspective, online cluster-
ing holds a slight advantage over batch clustering in terms
of the computational requirements. Online algorithms are
inherently more efficient: StreamKM++ runs on a single
server, whereas Spark MLlib is designed for clusters.

Focusing on the online clustering variants, we draw a con-
trast between hourly online (HO) and hourly online + daily
batch (HO+DB): we could imagine either approach being
preferred under different scenarios. For example, hourly on-
line + daily batch reduces the number of sub-collections we
have to search. On the other hand, daily batch clustering
pre-supposes access to a cluster for running Spark, which
represents an additional resource requirement. The bottom
line: our results show that both segment organizations are

equally effective, and there are at best minor reasons to ex-
press a preference.

5.2 Distribution of Cluster Sizes
One common issue that has been previously pointed out
in the selective search literature is variations in cluster sizes
when using k-means clustering [21, 22]. Although one might
hypothesize that projecting document vectors into embed-
ding space might alleviate this issue since we are converting
sparse vectors into dense vectors, this does not appear to
be the case and our technique is not immune to the cluster
imbalance problem. In Figure 3, we show typical distri-
butions of cluster sizes for hourly batch, hourly online, and
daily batch configurations. We see that the distributions are
quite similar. The figure does not show the largest cluster
(in each case) that comprises 12.6%, 10.4%, and 16.6% of all
tweets, respectively. Manual examination of those clusters
reveal that they contain mostly non-English tweets.

These findings suggest that there is inherent “lumpiness”
in the document space and that our clusters simply reflect
the structure of the collection. On Twitter, topics vary
in popularity, which explains why some clusters are simply
larger than others (e.g., popular culture vs. niche communi-
ties). Although we can imagine techniques that would break



Figure 3: Typical distribution of cluster sizes un-
der different conditions: hourly batch, hourly online,
and daily batch.

up larger clusters into smaller ones, doing so in a principled
manner (for both batch and online clustering) is an interest-
ing direction for future work.

5.3 Impact of Word Embeddings
Our final set of experiments explored the impact of word
embeddings: the effect of varying the number of dimensions
and the training corpus. Note that we were not able to iso-
late the effect of word embeddings vs. term vectors because
we could not successfully run our online clustering imple-
mentation on the sparse term vector representations.

In all of the experiments presented thus far, we used word
embeddings of 25 dimensions. A natural question is: How
does effectiveness change if we vary the number of dimen-
sions? The answer to this question has a substantive impact
on the efficiency of our techniques, as it is more computa-
tional efficient to manipulate smaller vectors (since all the
vectors are dense). Holding all other aspect of our algo-
rithms constant, we considered word embeddings of t5, 10,
25, 50, 100u dimensions. The results of these experiments
are shown in Figure 4 for the hourly online (HO) and hourly
batch + daily batch (HB+DB) segment organizations (av-
eraged over five trials); the left column shows effectiveness
in terms of P30 and the right column shows effectiveness
in terms of AP. Results for the other segment organizations
look similar, and thus we omit for brevity.

We see that using word embeddings consisting of as few
as ten dimensions gives good results, on par with the effec-
tiveness we achieve with 25 dimensions. Effectiveness be-
gins to suffer if we use fewer than ten dimensions, but word
embeddings with more dimensions actually yield lower effec-
tiveness. In our plots, using 100-dimensional vectors results
in noticeably lower effectiveness than using 25-dimensional
vectors. These findings are surprising, in that the number of
dimensions necessary to achieve good effectiveness is lower
than expected. For example, natural language tasks such as
word analogies typically use embeddings of a couple hundred
dimensions. However, our task is different in nature—we are
not directly using the embedded representations for docu-
ment ranking, but rather using them, in effect, to prune the
search space. Nevertheless, this is an interesting observation
that perhaps warrants further exploration.

Finally, we wished to explore the effects of varying the
training corpus for the word embeddings. In all our exper-
iments, we took care to avoid using “future information”.
Word embeddings were trained on the Edinburgh tweet cor-
pus [34], which pre-dates the Tweet2011 corpus, and thus
we are not commingling training and test data. The con-
cern, however, is differences in the vocabulary space, since
tweet content evolves over time: new terms are introduced
and relationships between terms change. In the first case,
out-of-vocabulary (OOV) terms might be an issue, since in
our approach all OOV terms are simply treated as a vector of
zeros. In the second case, our projections may capture term
relationships (e.g., word senses) that are no longer conveyed
in the test corpus. Would these issues impact the effective-
ness of our selective search techniques?

To answer this question, we repeated our experiments,
but with 25-dimensional word embeddings trained using the
Tweets2011 corpus. This represents an oracle condition be-
cause we are taking advantage of tweets not yet available at
query time. Results are shown in Figure 5 for the hourly
online + daily batch (HO+DB) condition (averaged over
five trials); results from the other conditions look similar.
Although there are some minor differences in effectiveness,
they are not statistically significant. This suggests that our
proposed techniques are robust to differences in the under-
lying word embeddings.

6. CONCLUSION
The growing importance of information seeking over docu-
ment streams, exemplified by social media (tweets, Facebook
posts, etc.), has created novel problems for researchers to
tackle, in terms of ranking, evaluation, search architectures,
and many aspects of information retrieval.

This paper considers a novel formulation of the selective
search problem applied to document streams and we pro-
pose a general framework based on temporal partitioning,
where individual index segments can either be clustered us-
ing batch or online algorithms and at different temporal
granularities. We selected a few points in the design space
to examine in the context of tweet search, using data from
the TREC Microblog Tracks. Experiments show that, just
as in the case of static document collections, we can achieve
substantial increases in efficiency without compromising ef-
fectiveness. Interestingly, we observe no significant effective-
ness differences between very different index organizations.
In a sense, this is a negative result, but our finding is by
no means obvious given that our experimental conditions
represent very different points in the design space.

One limitation of this work is that we only considered
tweets, and thus it is unclear to what extent our findings
generalize to other types of document streams. Despite a few
tweet-specific techniques in the implementation, our frame-
work for index segment organization is general, and there-
fore it can provide a starting point for future explorations
of different real-time information seeking scenarios.
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Figure 4: The impact of word embeddings of different dimensions on selective search effectiveness: the hourly
online (HO) and hourly batch + daily batch (HB+DB) segment organizations (averaged over five trials); P30
on the left, AP on the right.

Figure 5: The impact of word embeddings trained on the Edinburgh tweet corpus vs. the Tweets2011 corpus
(25 dimensions): the hourly online + daily batch (HO+DB) segment organization (averaged over five trials);
P30 on the left, AP on the right.
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