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Abstract. The generation of realistic apparel model has become increasingly
popular as a result of the rapid pace of change in fashion trends and the growing
need for garment models in various applications such as virtual try-on. For such
application requirements, it is important to have a general cloth model that can
represent a diverse set of garments. Previous studies often make certain assump-
tions about the garment, such as the topology or suited body shape. We propose a
unified method using the generative network. Our model is applicable to different
garment topologies with different sewing patterns and fabric materials. We also
develop a novel image representation of garment models, and a reliable mapping
algorithm between the general garment model and the image representation that
can regularize the data representation of the cloth. Using this special intermedi-
ate image representation, the generated garment model can be easily retargeted to
another body, enabling garment customization. In addition, a large garment ap-
pearance dataset is provided for use in garment reconstruction, garment captur-
ing, and other applications. We demonstrate that our generative model has high
reconstruction accuracy and can provide rich variations of virtual garments.

1 Introduction

The generation of realistic garment is one of the most important steps during the gar-
ment design and manufacturing process. Usually, a garment model needs to be manu-
ally designed by an experienced designer—this step can be time-consuming and labor-
intensive. The efficiency can be dramatically improved if a garment model can be gen-
erated automatically. The generation of garment model can also benefit certain virtual-
reality applications such as the virtual try-on system. As e-commerce becomes more
prevalent in the apparel industry, a rich and realistic virtual try-on system can con-
siderably improve the user experience during online shopping, where garment model
generation plays a central role.

However, there are many challenges in automatically generating garment models.
First, garments usually have different topologies, especially for fashion apparel, that
make it difficult to design a universal generation pipeline. Moreover, it is often not
straightforward for the general garments design to be retargeted onto another body
shape, making it difficult for customization. Some previous work started to address
this problem using either user-assisted input [16] or cloths with fixed topology such as
a T-shirt or a skirt [33].
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We propose a learning-based parametric generative model to overcome the above
difficulties. Given garment sewing patterns and human body shapes as inputs, we com-
pute the displacement image on the UV space of the human body as a unified represen-
tation of the garment mesh. Different sizes and topologies of garments are represented
by different values and geometric adjacencies in the image. The 2D displacement im-
age, as the representation of the 3D garment mesh data, is given as input into a condi-
tional Generative Adversarial Network (GAN) for latent space learning. Using this 2D
representation for the garment mesh, on one hand, we can transform the irregular 3D
mesh data to regular image data where a traditional CNN can easily learn; on the other
hand, we can extract the relative geometric information with respect to the human body,
enabling straightforward garment retargeting onto a different human body.

Our network can generate a series of garment models that meet the constraints of
inputs with various appearances. The generated garments can be easily retargeted to an-
other body shape using our 2D representation, while other generative methods [16,33]
need to rerun the generative network and cannot ensure the same appearance as the
original.

To train such a generative model, a sufficient amount of garment data is needed.
However, there is no publicly available garment dataset which provides the appear-
ances of the garments undergoing different motions and on varying human body shapes.
Therefore, we generate a large dataset with different garment geometries for this spe-
cific task. We employ physically-based simulation of different garment meshes and
fabric materials. Together with different human body motions, we can obtain a large
variety of garment appearances on the body.

Overall, our contributions include:

– The first image-based garment generative model (Sec. 5) which supports most gar-
ment topologies and patterns (Sec. 6.3), human body shapes and sizes (Sec. 6.5),
and garment materials (Appendix 2).

– A novel image representation for garments (Sec. 4) that can transfer to/from gen-
eral 3D garment models with little information loss (Sec. 6.2), enabling garment
retargeting (Sec. 6.5).

– A large garment appearance dataset for training (Appendix 2).

2 Related work

In this section, we survey related works in garment modeling, garment retargeting, and
generative networks.

2.1 Garment modeling

Garment model generation has attracted attention these days due to its importance in
both real-world and virtual garment design application. Although professional tools,
such as Marvelous Designer [2018], can help design high-quality garment models, it
may take an excessive amount of time to use it. Several studies have addressed this is-
sue by introducing an automatic generation pipeline to improve the efficiency. Assum-
ing different priors, most previous studies lie in three categories: sketch-based, image-
based, and depth-based.
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Sketch-based methods. Generating garment models with sketches is one of the most
popular ways. Turquin et al. [30] and Decaudin et al. [10] developed some of the early
work in this area. They used grid and geometric methods to generate garment mod-
els with sketches. Later, Robson et al. [28] proposed a context-aware method to make
the generated garment model more realistic based on a set of observations on key fac-
tors which could affect the shapes of garments. Jung et al. [18] proposed a method
to model 3D developable surfaces with a multi-view sketch input. Bartle et al. [3]
proposed a physics-driven pattern adjustment method for direct 3D garment editing.
FoldSketch [20] supports simple and intuitive fold and pleat design. Recently, Huang et
al. [16] proposed a realistic 3D garment generation algorithm based on front and back
image sketches. Wang et al. [33] proposed a method that can achieve retargeting easily.

In addition, a common limitation of these methods is the domain knowledge require-
ment on garment sketching, while our method does not require any domain knowledge.
Image-based or depth-based methods. Other information such as images can also be
used to generate a garment model. Bradley et al. [6] and Zhou et al. [36] researched
early on garment modeling using multi-view images and single-view image, respec-
tively. Jeong et al. [17] created the garment model with a single photograph by detecting
the landmark points of the garment. Yang [34] made a full use of garment and human
body databases to generate the garment models from image. Daněřek et al.’s [9] method
can estimate the 3D garment shape from a single image using deep neural networks. Re-
cently, Tex2Shape [1], PIFu [29], DeepHuman [35], Gabeur et al. [12] proposed models
for detailed clothed full-body geometry reconstruction. MGN [5] predicts body shape
and clothing, layered on top of the SMPL [23] model from a few (typically 1 - 8) frames
of a video. Depth information can also be useful. Chen et al. [8] proposed a method to
generate garment models given an RGBD sequence of a worn garment.

However, these methods require photos or depth images from a real garment, which
means they cannot generate a garment model from size parameters only. In contrast, our
model is able to generate 3D garment meshes directly from sewing patterns and sizing
parameters by using the generative network.

2.2 Garment Retargeting
Retargeting the garment model from one body to another is often needed due to differ-
ent body shapes. Retargeting can save computational costs if it can be done efficiently.
Brouet et al. [7] introduced a fully automatic method for design-preserving transfer of
garments among characters with different body shapes. In contrast, Guan et al. [14] used
a learning-based architecture to replace the expensive simulation process and present re-
targeting examples. GarNet [15] presented a two-stream architecture to fit a 3D garment
template to a 3D body. TailorNet [26] predicts clothing deformation given the pose and
shape of human and garment model.

In our method, by making use of the image representation of the garment, we can
easily retarget one generated garment model from one body shape to another, without
additional computations.

2.3 Generative Network
Generative networks have been becoming more popular due to their impressive perfor-
mance. There are several well-known generative networks, such as Generative Adver-
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Fig. 1. Label image generation process. We first generate the label image with the pattern con-
figuration registered on the body mesh and mapped to the body UV map. Then we can edit the
original label image to new, different label images, which will lead to different garment topolo-
gies in the final results.

sarial Network (GAN) [13] and Variational Auto-Encoder (VAE) [11]. With the devel-
opment of the neural network research, new variants of generative networks have been
proposed, such as Pix2PixHD [31] based on GAN or VQ-VAE [27] based on VAE. In
our algorithm, we design the network architecture based on the Pix2PixHD network
architecture due its high accuracy and efficiency.

3 Method Overview

Our objective for this work is to develop a GAN-based generator that creates different
types of garment meshes, given the garment design (or sewing) patterns. The overall
pipeline is shown in Fig. 1.

First, we unify the common garment pattern configurations to a body mask that
shows the region of garment coverage. To do this, we mark the sizes of each pattern
pieces from the 2D sewing pattern and register each piece to its corresponding body
part. We can then obtain the label map by coloring the covered body part according to
the registration. As an auxiliary step, we may edit the label image to vary the sizes and
the connectivity of different parts, leading to different garment styles and topologies in
the final results.

We model the garment mesh using a 2D image representation in the UV space of
the corresponding human body (Fig. 11), which shares the same space as the label map
that we obtained from the pattern input. This step regularizes the input mesh onto a
CNN-friendly format that is independent to the original mesh resolution. We compute
the correspondence between 3D points of the mesh and the 2D pixels of the image using
non-rigid ICP and a Voronoi diagram, as later discussed in Sec. 4.

We then train a deep GAN to learn the distribution of the representative images.
We use a state-of-the-art conditional GAN to learn a mapping between a topology label
mask and the final image representation, conditioned on the human pose, shape and a
random noise, as shown in Fig. 2. We define a set of loss functions to provide smooth



GAN-based Garment Generation Using Sewing Pattern Images 5

Fig. 2. Our network architecture. We first encode one dimensional input to match the sizes to the
label image (upper branch). It is then concatenated with one hot labelled image (bottom branch)
and fed into the GAN network. Finally, the network outputs the image representation of the
garment (right).

results and avoid mode collapse (Sec. 5.1). To train the network model, we create a large
dataset consisting of different garments, human body shapes and motions using cloth
simulation. Our dataset not only covers most of the commonly seen garment shapes
and geometries, but also assigns different fabric materials to the garments so that the
simulated garment motions may vary noticeably even with the same clothing geometry
(Sec. 5.2).

Fig. 3. Our inference pipeline. The upper branch generates the image representation of the gar-
ment, while the bottom branch generates the body mesh. Finally, we recover the garment mesh
by decoding the image representation of the garment given the body mesh.

The inference pipeline of our method is shown in Fig. 3. We use the previously
obtained label mask as input to constrain and control the topology of the output mesh.
Given the label mask, we can generate a set of different image representations of the
garment by varying the human pose and shape parameters, as well as the noise vector.
As the last step, we recover the 3D garment mesh using its image representation and
the corresponding human body. The final garment mesh can naturally fit onto the given
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human body shape due to the nature of our representation model (See Sec. 4), and can
provide realistic details depending on the body pose and shape.

4 Garment Representation in UV Space

As stated before, there are several challenges involved in modeling garments. First,
garment meshes are graph data with nonuniform structures. Different meshes usually
have different numbers of vertices and connections. It is difficult to set up a uniform
and vectorized graph representation for all garments. Also, in contrast to other graph
data, subdivision does not change the geometric information of the mesh. Graph rep-
resentation cannot easily account for this ambiguity or redundancy of the mesh. Next,
there are many kinds of garments that have different topologies. Shoulder style can pro-
vide a large variety of garment looks, not to mention the difference between skirts and
pants. This makes high-level parameterization (e.g., sleeve length) impossible without
predefined classification.

To overcome these difficulties, we employ displacement maps on human body UV
space as a unified representation of the garments. The geometric information of the
mesh can be preserved, as long as the map resolution is sufficient. The key idea is that
the garment mesh, as a 2D manifold, can be non-rigidly deformed onto the human body
surface, and the UV space of the human body surface preserves most of the adjacency
and connectivity of the 3D space. Also, this representation is independent to the res-
olution of the original mesh. No matter how the mesh is subdivided, the underlying
representation will remain the same.

The method of using displacements from the human body surface as a way to rep-
resent clothes has been adopted in previous works [19,5]. However, in their work, the
clothes are fixed to a template mesh. The representations are thus forced to be separated
into a set of different clothes, since they have different templates. In contrast, we do not
rely on specific clothing templates. Our model not only unifies different cloth types, but
also generates clothes with new topologies.

4.1 Encoding Process

To create a displacement map of a certain garment, we first use non-rigid ICP [2] to
register the cloth surface to the body surface, which makes the cloth tight-fit to the
body. We then subdivide the cloth surface according to the Voronoi regions of body
vertices to assign garment surface to body vertices. Finally, for each point on the body
UV map, we compute the corresponding 3D position on the body surface, match it to
the point on the cloth with the interpolated normal vector (of the garment surface that
is assigned to the region), and fill in pixel value of the map using the displacement.

Specifically, we first register the cloth surface G = (VG, EG) to the body surface
B = (VB , EB) by optimization:

X = argmin
X

E(X) =
∑

vi∈VG

d2(B,Xivi) + α
∑

(vi,vj)∈EG

‖(Xi −Xj)D‖2F (1)
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where X is the set of affine matrices for all garment vertices, α and D = diag(1, 1, 1, γ)
are importance weights, and d() is the distance between a point to a mesh. We set α
and γ to a small value (typically 0.1) to encourage non-rigidity so that the cloth is
mapped onto the body surface without large global rigid transformation. Note that after
the non-rigid ICP, there may still be some vertices that are far from the body surface
because of the topology constraint (e.g.dresses). We then design an algorithm to create
a correspondence mapping of the surfaces between the cloth and the body.

As a preliminary step, we create the correspondence between each face of the cloth
mesh and the vertices of the body mesh according to the Euclidean distance. First, we
subdivide the registered cloth mesh using the 3D Voronoi diagram of the body surface.
Voronoi regions [22] of the body vertices cuts the garment surface into convex polygons,
which can be easily triangulated. Given that computing the analytical intersection to
Voronoi regions is challenging, we achieve the subdivision by repeatedly check if an
edge of the cloth mesh belongs to multiple Voronoi regions:

∃e = (v0,v1) ∈ EG : Vmin(VB ,v0)
⋂
Vmin(VB ,v1) = ∅ (2)

where Vmin(V,u) computes the subset of V that has the closest distance to u:

Vmin(V,u) = {v ∈ V : ∀v′ ∈ V, d(v′,u) ≥ d(v,u)} (3)

If so, we subdivide the edge using the perpendicular bisector plane of the two vertices
selected from Vmin(VB ,v0) and Vmin(VB ,v1), and its adjacent faces accordingly. Fi-
nally, we ensure that each face of the cloth mesh belongs to only one Voronoi region.

The next step is to match each subdivided face of the cloth mesh to the UV space of
the corresponding Voronoi region. The intersection of the Voronoi region of a vertex and
the body surface is bounded by the perpendicular bisector planes of each of its adjacent
edges. We refer it as the ‘Voronoi surface’ of a vertex. Instead of further subdividing the
cloth face into smaller faces and mapping them to different UV regions of the Voronoi
surface, we iterate each pixel of the UV regions and shoot a ray out of the surface.
To ensure an even sampling, the direction of each ray is computed by interpolating
between the normal direction of face, edge and vertex (See description with figure in
Appendix 5). An intersection of the ray and the cloth face creates a match between a
pixel of the UV space and a point on the cloth surface. We enforce that the pixels on
the edge of the pattern cuts are positioned on the body edge in 3D space. This ensures
that their ray directions are the same, resulting in that the adjacent pairs of faces that
are separated in the UV map have their common edge mapped onto the same garment
edge in the 3D space, thus preserving connectivity. This property is used to reconstruct
the 3D cloth mesh from the representation, as discussed in Sec. 4.2.

The quality of our mapping algorithm depends heavily on the load balance of the
Voronoi regions. This is why we perform non-rigid ICP as pre-processing: it prevents
loss of reconstruction details when the garment pieces are far from the body surface.
Nonetheless, the non-rigid ICP may still not be able to handle extreme cases such as
complex stacked garment layers. When multiple faces overlap on the same region, we
choose the garment vertices that are the farthest from the body surface. This will result
in smoother and simpler reconstructed garments in these challenging cases.
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4.2 Decoding Process

Decoding the image representation back to the 3D cloth mesh is straightforward. Since
adjacent pixels of the UV space correspond to adjacent points in the 3D space, we can
simply connect adjacent pixels together to form the mesh. The only problem is that
the connectivity will be lost when the cloth is cut into different UV regions. We solve
this problem by ensuring that the two edges at different sides of the cut boundary are
mapped to the same garment edge, as discussed in the encoding process. After fusing
the duplicated 3D edge, the surface will be faithfully reconstructed.

5 Latent Space Learning

We apply a GAN-based model to learn the latent space of the representation image. Our
network structure is shown in Fig. 2.

Since the pixel values in the representation image are related to the human body
pose and shape, we add them as the conditional input in the network. Additionally,
we provide a label map that indicates the overall topology of the garment to further
constrain the generated image. The noise vector here serves mostly as the encoded
detailed appearance, such as wrinkles and tightness of the cloth. We re-format the label
image to one-hot version, and concatenate it with the encoded features of the other 1D
input. Currently we only have binary information for the garment label map, but we
can also support labels of different garment parts, as long as the corresponding data is
provided. We use Pix2PixHD [32] as our backbone network, but other state-of-the-art
methods can also work in practice.

5.1 Loss Functions and Training Process

Because we cannot simply enumerate every possible garment and simulate them on
every possible human pose, the trained model can easily have mode collapse problems,
which is not ideal. To deal with this problem, we use a two-phase learning process.
First, we train the model with the usual GAN loss and the feature loss:

L = LGAN + λ0Lfeat (4)

LGAN = ‖D(Ireal)− 1)‖1 + ‖D(Ifake)‖1 + ‖D(G(Ifake))− 1‖1 (5)

Lfeat = ‖D∗(Ireal)−D∗(Ifake)‖1 + ‖V GG∗(Ireal)− V GG∗(Ifake)‖1 (6)

In the above equations, L is the total loss, LGAN is the GAN loss, and Lfeat is the
feature loss.D() is the discriminator,G() is the generator, and V GG() is the pretrained
VGG network. Ireal and Ifake are the real and the fake images. D∗ and V GG∗ means
the concatenation of the activations in all layers. After the first phase, the network can
learn a conditional mapping between the input label and the output image, but it lacks
variation from the noise vector.
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Next, we fine-tune the model using the GAN loss and the new smoothness loss only:

L = LGAN + λ1Lsmooth (7)

Lsmooth = ‖∂Ifake
∂x

‖1 + ‖
∂Ifake
∂y

‖1 (8)

where Lsmooth is introduced to the GAN model to enforce the smoothness of the rep-
resentation image. Since the paired supervision from the feature loss is removed, the
model will gradually become diverse to include more plausible but unseen results. We
show later in our experiments that our learned model can generate clothing styles that
are not from the training dataset.

5.2 Data Preparation

To learn the network model with high accuracy and variety, a large dataset depicting
the joint distribution between the garment geometry and the human body is required.
Previous datasets such as Bhatnagar et al. [5] or Liang et al. [21] have limited garment
styles and body motions and are thus not suitable for our needs. Therefore, we propose a
physics-based simulated dataset to represent most common garment types, human mo-
tions, and cloth materials. We sample different human motions and body shapes using
the Moshed CMU MoCap dataset [24]. Our garments are obtained from various online
sources, which we will make public with the dataset. We initialize the human to a T-
pose and dress the body with each of the garments. Then we use the cloth simulator [25]
to generate the cloth motion along with the body motion. We notice that the cloth ma-
terial of the garment can significantly alter the appearance, so we also vary the material
parameters during data generation. For quantitative details, please refer to Sec. 6.3. We
show examples of different garment data in Appendix 2.

6 Experimental Analysis

In this section, we will first introduce the implementation details of our method. Next,
we show the effectiveness and performance of the key parts of our method by various
experiments, including garment reconstruction, clothing style generation, and garment
retargeting.

6.1 Implementation details

We collected 104 types of garment models, each with 10 materials, and chose one ran-
dom body motion sequence out of the 10 most commonly seen sequences. Then we
dressed the garment on the body and simulated it using a cloth simulator [25] to gen-
erate a series of garment meshes with different poses, thereby generating 104*10*250
= 260,000 garment (split into 80%/20% for training/test). After that, we applied the
representation transfer process on those garment instances and generated the image
representation as well as the label mask. Next, we fed the images together with body
shapes, poses, and the label images to the network for training. In practice, we randomly
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Fig. 4. Comparison between original mesh (first row), reconstructed mesh (second row), and re-
fined mesh (third row). Our method is able to retain most of the original information, independent
of the topology or the geometry of the garment mesh. The refined meshes indicate that the post-
process is able to fix the small holes and gaps on the reconstructed meshes.

chose 2 materials in each epoch, to reduce the training time while making full use of
the whole dataset.

We set λ1 to 500, and the learning rate to 0.0002. We trained the model on an
Nvidia GTX 1080 GPU. It took around 4 hours to train for each epoch, and we trained
our model for 20 epochs in total.

6.2 Garment Reconstruction

Image representation of garments is one of the key contributions for the entire pipeline.
We show the accuracy of the representation transfer process on our training data both
qualitatively and quantitatively.

By transferring the 3D mesh of the garment to its 2D image representation and
transferring back to a 3D mesh, we were able to recover the original 3D garment mesh.
We randomly chose 5 different types of garments from the entire training dataset, chose
1 instance in each type, and generated the 3D mesh pair. The first row of Fig. 4 shows
the original garments, while the second row shows the results of the recovered gar-
ments. As shown in the figure, our method is able to retain most of the original in-
formation when transferring between the 3D mesh and 2D image representation, un-
der different types and topologies of garments. There might be small gaps or holes on
the reconstructed meshes because of the resolution differences between two represen-
tations. We performed post-processing on the reconstructed meshes to resolve these
small gaps/holes, as shown in the third row of Fig. 4. The post-processing method that
we used is Ball Pivoting [4] on incomplete regions.

Since the regenerated vertices and edges of garments are aligned with those of the
body mesh, it is inadequate to only compare the Euclidean distance of vertices of the
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Fig. 5. The first row shows the garments generated by our network with different design patterns.
The second row shows the most similar garments in the training data. Our model is capable of
generating new garments.

original and reconstructed garment meshes. Assume we have mesh M1={V1,E1,F1}
and mesh M2={V2,E2,F2}, we define a mesh-based reconstruction error as the average
distance from each point in V1 to M2, and each point in V2 to M1, shown as follows:

dm =

∑
p1∈V1

dist(p1,M2) +
∑

p2∈V2
dist(p2,M1)

‖V1‖+ ‖V2‖

where dist(p,M ) is the smallest distance from point p to the surface of mesh M . We
randomly sampled 6,000 garment instances from all the 260,000 garment instances in
our training dataset, calculated the reconstruction error for each sample and computed
the error distribution. The average percentage error is less than 1%, with the largest
being less than 1.4%. The error distribution is shown in Appendix 6. Our method is
robust to all garment topologies, materials, body poses, and shapes.

6.3 Clothing Style Generation

In this section, we demonstrate the generalization ability of our method. Specifically,
we did the experiments in the following steps. First, we fed new label images and body
information not included in the training data to the network, and obtained the image
representation result. The output further went through the reconstruction algorithm and
the post-processing and was finally transformed to the refined 3D garment. The gener-
ated image representation was further searched for its nearest neighbor in the training
data using L1 distance. We retrieved the original mesh of the nearest neighbor for com-
parison.

In Fig. 5, we show the generated garments in the first row with different topologies
or patterns. There are cases including a single-shoulder dress (the first column) and a
backless dress (the last column), showing that our model is able to generate garments of
varying topology. The second row shows the nearest neighbors in the training dataset.
The geometric differences between the generated meshes and the nearest neighbors are
significant, which means that our network can generalize to unseen topologies.
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Fig. 6. Interpolation results between two specific cases. As shown in the figure, the garment
changes smoothly from the leftmost style to the rightmost style, showing that our learned latent
space is smooth and compact.

6.4 Interpolation Results

We did the interpolation experiment to show the effectiveness of our method. In the
experiment, we chose two garments, generated the intermediate label images and fed
them into our method. We show the interpolation results between two specific cases in
Fig. 6. As shown in the figure, the garment changes smoothly from the leftmost style to
the rightmost style, showing that our learned latent space is smooth and compact.

6.5 Garment Retargeting

Ease of retargeting is an important property in garment generation. In this experiment,
we first generated a garment model with a specific body shape, then retargeted the
generated garment to different body shapes. We show some of the retargeting results
in Fig. 7, which are qualitatively as good as the results of Wang et al. [33]. We found
that both algorithms can retain the appearance of the original garment retargeted onto
bodies of different shapes and sizes. However, in their method, an additional Siamese
network needs to be trained to achieve the retargeting goal [33], while our method can
retarget the garment directly from the generated image representation and the new body
shape – requiring less computation and demonstrating greater ease. Our method can
also naturally ensure the consistency of the garment style by the definition of our image
presentation. Other works, such as Brouet et al. [7], which is based on an optimization
framework, or Guan et al. [14], which uses a learning-based architecture, are more
computationally expensive than our method in the retargeting process.

6.6 Garment Generation Methods Comparison

There are methods that can generate garments through sketches, e.g., Huang et al. [16]
and Wang et al. [33]. Thanks to the information contained in the sketches, Huang et
al.’s method can generate textures of garments, and Wang et al.’s method can generate
garments with realistic wrinkles. However, our method only needs label images instead
of full sketches. Also, our method can generate garments with different topologies given
our image representation of garments, while these methods can only support at most
three types of topologies.

In addition, a recent work Tex2Shape [1] can generate the combined body and gar-
ment mesh from photographs. However, it can only reconstruct the entire body mesh



GAN-based Garment Generation Using Sewing Pattern Images 13

Fig. 7. Retargeting results for different body shapes and sizes, compared with Wang et al. [33].
The retargeting qualities are nearly the same qualitatively, i.e.both algorithms can retain the ap-
pearance of the original garment retargeted onto bodies of different shapes and sizes. However,
an additional Siamese network is needed in their retargeting process, while our method retargets
the cloth directly from the image representation, thereby requiring less computation than [33].

Fig. 8. Output comparison. Huang et al. [16] generate garment model with texture. Wang et
al. [33] generate garments with realistic wrinkles as the sketch. Tex2Shape [1] generates com-
bined body and garment models. Our method generates garments with various topologies.

with garments as a whole and is not able to separate the garment apart, while our method
generates a stand-alone garment mesh. Moreover, Tex2Shape reconstructs the result
with the same topology as the body mesh, so it can only handle body-like garments. In
contrast, our method uses an extra label image to provide sewing information to the net-
work, and reconstructs the garment mesh by training the network to assemble and stitch
different pieces together, thereby applicable to generate garments of varying topologies.

We show the outputs of the three methods mentioned above and our method in
Fig.8. Huang et al. [16] generate garment model with texture. Wang et al. [33] generate
garments with realistic wrinkles as the sketch. Tex2Shape [1] generates combined body
and garment model. Our method can generate garments with various topologies. Also,
we show the different characteristics of different methods in Table 1. Because different
methods have different characteristics and focus on different aspects, specific inputs
would require different methods.
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Table 1. Characteristic comparisons of different methods

Characteristics Huang et al. [16] Wang et al. [33] Tex2Shape [1] ours
input sketch YES YES NO NO
input photograph NO NO YES NO
input body pose or shape NO NO NO YES
input garment sewing pattern NO NO NO YES
use geometric representation YES NO NO NO
use GAN NO YES YES YES
use body UV map NO NO YES YES
infer body pose or shape NO YES YES NO
generate texture YES NO NO NO
generate wrinkles NO YES NO NO
generate body model NO NO YES NO
topology supported Limited Limited Limited Various

6.7 Performance

Our network inference (Sec. 5) takes about 369 msec on average, which is around 16.4%
of the entire process. Garment reconstruction (Sec. 4.2) takes about 1,303 msec on
average, around 57.9%. Post-processing refinement takes the last 25.7%, nearly 576
msec on average. Overall, our method takes 2,248 msec on average. Since the image
resolution in our method is fixed to 512*512, the variation in image processing time
is insignificant. It is possible to further accelerate the performance of our algorithm.
Please refer to Appendix 8.

7 Conclusion

We presented a learning-based parametric generative model, which is the first garment
generative model that can support any type of garment material, body shape, and most
garment topologies. To offer this capability, we propose a special image representation
of the garment model. Our method also makes garment retargeting much easier. In
addition, a large garment dataset will be made available for further research in this area.
Limitation and Future Work: Currently our method does not automatically generate
fabric textures. In addition, due to the intermediate image representation of the gar-
ment, our method cannot generate multi-layer garment models, e.g., multi-layer lace
skirts. This problem offers new research challenges. Our network can be further used
as an extension of existing garment datasets because of its applicability and generaliz-
ability to unseen topologies. The generated 3D garments can also be used in user-driven
fashion design and apparel prototyping.
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1 Samples of garment sewing pattern

We show garment sewing pattern samples in Fig.9, including a dress, pants, a shirt, and
a skirt. Since sewing patterns offer common information about the garments, they are
generally available.

Fig. 9. Garment sewing pattern samples. We show 4 cases here, including a dress, pants, a shirt,
and a skirt. Since sewing patterns offer common information about the garments, they are gener-
ally available.

2 Example Meshes from Our Garment Dataset

In Fig. 10, we show that our garment dataset consists of clothing on different human
body poses/sizes/shapes and of varying garment topologies, patterns, and materials. We
sample ten human motions from the CMU MoCap dataset, including motions of walk-
ing, running, climbing and dancing. As stated in the main text, we have over 100 differ-
ent garment types in the dataset, including dresses, t-shirts, pants, skirts and swimsuits.
We use different material parameters and material space scales to control the sizes of
the garments. Given this large and diverse dataset, our network can successfully dis-
entangle different parts of the body label to generate garments with topologies totally
different with those in the training dataset, while keeping a visually plausible result.

3 One-hot Version of the Label Image

In Fig. 2, we first transfer the label image to one-hot version by the one-hot opera-
tion. One-hot version of the label image is an array of binary images, where each pixel
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Fig. 10. Examples meshes from our garment dataset. The dataset includes several common gar-
ment topologies and materials, as well as various human poses. The last two columns show the
same garment pattern with different materials. The wrinkle appearances of the two sequences are
different.

on the i-th binary image represents whether the label ID of that pixel on the origi-
nal image equals to i. We use one-hot to support different garment components (e.g.,
shirts+jacket+pants) in future work. One-hot version of label image can decouple dif-
ferent class IDs and will be easier for the network to learn. Currently, we use it to
differentiate between garment and other pixels. Overall, it is an extensible data format.

4 Data Format Transfer Process

Fig. 11 shows the data format transfer process. The garment model and the image rep-
resentation of the garment can transfer to each other using the body mesh and UV map,
as discussed in Sec. 4.
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Fig. 11. Data format transfer process. The garment model and the image representation of the
garment can transfer to each other using the body mesh.

5 Point Matching between Body and Garment

We show the mapping process from body surface pixels to the garment surface in
Fig. 12. Within the Voronoi region of a body vertex, the ray direction of a pixel (brown)
is interpolated between the vertex normal (black) and the face normal (gray), according
to the barycentric coordinates.

Fig. 12. Mapping from body surface pixels to the garment surface. Within the Voronoi region of a
body vertex, the ray direction of a pixel (brown) is interpolated between the vertex normal (black)
and the face normal (gray), according to the barycentric coordinates.

6 Reconstruction Results under Different Conditions

We show in Fig. 14 that our algorithm introduced in Sec. 4 is robust to any kind of gar-
ment input. We tested our algorithm with garments of different topologies on different
human bodies. Different cloth materials are expressed with different sizes and detailed
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wrinkles based on the geometry. Our method can also retain the material information
faithfully.

Fig. 13. Distribution of reconstruction error dm (in percentage w.r.t. the garment height) over
6, 000 randomly selected garment instances. The error is relatively small across all types of gar-
ments, with the largest being less than 1.4% and most within 1%.

Fig. 13 shows the distribution of dm in our training dataset. The error is relatively
small across all types of garments, with the largest being less than 1.4% and most of
them within 1%.

7 Garment Retargeting

In Sec. 6.5, we show the garment retargeting results using only a T-pose. In Fig. 15, we
show more cases with different poses. As shown in the figure, our method can retar-
get garments with different topologies, patterns, and materials to bodies with different
shapes, sizes, and poses.

8 Performance

Our method takes about 2,248 msec on average. For garment generation, 2 seconds
would be quite acceptable if the quality is good enough, while the garments designed
manually usually take much longer. Also, there is room for performance improvement
and parallelization of the post-processing after the network inference. More importantly,
we use a resolution of 512*512 for the displacement map, so there are up to 512*512
vertices and 511*511*3 edges in our reconstructed mesh, with resolution much higher
than other works, thus taking slightly longer. As needed, the implementation of our
method can be much improved by reducing the resolution of the displacement map.
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Fig. 14. Reconstructed mesh results under different human poses and shapes, garment topologies,
sizes, and materials. Our data transfer method is able to map any 3D mesh to its 2D image
representation with little information loss.
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Fig. 15. Garment retargeting results. Our method can retarget garments with different topologies,
patterns, and materials to bodies with different shapes, sizes, and poses.
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