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Abstract— Autonomous systems often rely on neural net-
works to achieve high performance on planning and control
problems. Unfortunately, neural networks suffer severely when
input images become degraded in ways that are not reflected in
the training data. This is particularly problematic for robotic
systems like autonomous vehicles (AV) for which reliability
is paramount. In this work, we consider robust optimization
methods for hardening control systems against image corrup-
tions and other unexpected domain shifts. Recent work on
robust optimization for neural nets has been focused largely
on combating adversarial attacks. In this work, we borrow
ideas from the adversarial training and data augmentation
literature to enhance robustness to image corruptions and
domain shifts. To this end, we train networks while augmenting
image data with a battery of image degradations. Unlike
traditional augmentation methods, we choose the parameters
for each degradation adversarially so as to maximize system
performance. By formulating image degradations in a way that
is differentiable with respect to degradation parameters, we
enable the use of efficient optimization methods (PGD) for
choosing worst-case augmentation parameters. We demonstrate
the efficacy of this method on the learning to steer task for
AVs. By adversarially training against image corruptions, we
produce networks that are highly robust to image corruptions.
We show that the proposed differentiable augmentation schemes
result in higher levels of robustness and accuracy for a range of
settings as compared to baseline and state-of-the-art augmen-
tation methods.

I. INTRODUCTION

Autonomous systems like drones and self-driving cars
have the potential to improve the efficiency of transporta-
tion, while reducing the risks of accidents. However, it is
challenging to develop a reliable and robust autonomous
system that can make correct decisions under different
adversarial conditions, such as changing ambient lighting
during day and night, unpredictable weather conditions, and
various hardware uncertainties, including camera distortion
and noises. Recently Deep Neural Networks (DNNs) have
achieved notable success in autonomous systems. In particu-
lar, vision-based autonomous driving offers the advantage of
relatively low hardware costs, with cameras on board instead
of delicate sensors. These vision-based autonomous driv-
ing systems are typically trained in an end-to-end fashion,
thereby reducing the overall system complexity.

However, DNN-based vision models are known to be
highly brittle to small image corruptions, changes in lighting
conditions, and other seemingly small changes in the data
distribution [1], [2]. For safety and reliability, it is crucial
to build robust DNN-based vision systems that perform
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well under unforeseen conditions. In this work, we propose
to improve the robustness of vision-based models using
ideas inspired by the adversarial training literature [3]. We
augment the training datasets with common image trans-
formations, like Gaussian blur, noise corruption, and color
shifts. Unlike standard augmentation methods, we choose the
image transformations and their parameters using adversarial
optimization to find the worst-case scenarios during training.
By doing so, we produce vision systems that are more robust
to image transformations than traditional methods.

In the proposed framework, transformations are applied
to each batch of training images. We find the optimal
parameters for each transformation that results in worst-case
model performance using Projected Gradient Descent (PGD)
[3], in which we take the derivatives of the model loss with
respect to the parameters that control the data augmentation
(i.e. the amount of blur, the level of noise, etc...). Once the
worst-case transformation has been identified via gradient
ascent on the augmentation parameters, the model is trained
on these “adversarial examples” using standard SGD.

With our proposed adversarial data augmentation strategy,
we observe a significant performance gain in terms of both
improved accuracy on the original dataset and generalization
to a broad range of image degradations, including corruptions
that are not seen during training. When tested on a set of
unseen corrupted images that simulate challenging real-world
scenarios, our model shows significant improvement on the
mean Corrupted Error (mCE) [2] over a baseline model [4].
Compared with the existing work [5] that also adopts a
similar idea of adversarial training but in an approximate
way that does not exploit differentiable augmentations, we
show that our formulation for adversarial training achieves
superior results. We demonstrate the efficacy of the adver-
sarial training framework by comparing to a model trained
with randomly chosen augmentations. We also provide an
ablation study on how the strength of the adversary can affect
the behavior of our training strategy.

Main Results: We introduce a differentiable and tunable
data augmentation framework for adversarial training of
autonomous systems, specifically self-driving cars in this
paper, to improve the robustness of computer vision-based
models. With this formulation, we can substantially improve
model performance and robustness against challenging real-
world conditions that pose threats to safety and reliability
of autonomous vehicles. In principle, the method is quite
general, and it can be applied to a wide range of vision-
based tasks, model architectures, and datasets.



II. RELATED WORKS

The work presented in this paper builds on existing needs
to enhance the robustness of vision systems, and draws in-
spiration from the data augmentation and adversarial training
literature. We discuss these connections here.
Robustness in Autonomous Driving. The robustness of
autonomous systems is a topic of interest and great im-
portance. Vision-based models rely heavily on training data,
which can be problematic in the task of autonomous driving:
training data are usually high quality images collected under
good weather conditions; models trained on this may fail
to generalize well to various real-world situations [6], [7].
For this reason, [8] collects a new dataset that contains
complicated real-world traffic conditions. [9], [10] propose
to enhance the robustness of autonomous systems by training
with synthetic data that models different weather conditions.
Instead of modeling any specific real-world situations, or
collecting new datasets. We exploit common image-quality
factors that affect the decision-making process of vision-
based models. Our work studies a regression problem in the
field of autonomous driving , learning to steer [11], [12]. We
propose to improve the robustness of autonomous systems
by introducing the above mentioned factors to our model
through data augmentation at the training time, incorporating
adversarial training for enhanced robustness.
Data Augmentation. Data augmentation is a widely-adopted
technique to prevent machine learning models from over-
fitting. Commonly used augmentation methods rely on basic
image processing operations like random scaling, random
cropping, etc. More complex data augmentation techniques
have been studied in recent works. Unlike traditional data
augmentations that consider each image separately, [13],
[14] train on random pair-wise combinations of images. [15]
trains using random averages of images after augmentations
are applied, resulting in higher diversity in the augmented
data. Rather than designing new augmentation operations,
another direction is to find the best choices and order of
operations for basic augmentation operations, i.e., an optimal
data augmentation policy, for a given learning task. [16]
aims to find the optimal augmentation policy by solving
a discrete search problem through reinforcement learning,
whereas [17] proposes to reduce the cost of the searching
procedure by relaxing this discrete optimization problem into
a differentiable one. In our work, instead of finding the
optimal augmentation policy for a learning task, we aim to
find the optimal setting of each basic augmentation operation
for each batch of input data using adversarial optimization.
With all of our operations made differentiable, we can solve
the optimization at relatively low cost.
Adversarial Training. Adversarial training and its variants
[3], [18] were first proposed to defend against adversarial
attacks, where adversarially crafted input data with imper-
ceptible perturbation, i.e., adversarial examples [1], [19],
are used to cause the malfunction of machine learning
models. In order to improve the adversarial robustness of
a model, adversarial training solves a min-max optimization

problem, in which the inner maximization perturbs the input
data to cause maximal loss of the model, while the outer
minimization problem updates the model so as to increase
performance on the perturbed input.

Recent works have shown that adversarial training can
be effectively applied to tasks other than defending against
adversarial attacks. [20] use adversarial training to improve
performance on non-adversarial data by disentangling the
feature statistics of the two during training. [21] improves
the generalization ability of a model through adversarial
training, where the adversary perturbs the midway feature
representations inside the model rather than the input data.
[5] proposes an approximate adversarial training for data
augmentation by selecting the “worst” augmentation among
a group of randomly generated augmentations, and use the
selected augmentation for training the model. We implement
a differentiable framework where gradient feedback from the
downstream task can be obtained to direct the search for the
“worst” augmentation.

III. BACKGROUND

Vision-based Learning to Steer. The vision-based learning
to steer task in autonomous driving aims to predict the ideal
steering angles of the autonomous vehicle (AV) from vision-
based inputs, i.e., one or more images, which are captured by
the camera device(s) installed on board of the AV. Usually
the input images are photographs from road scenes [11],
but other image formats are also possible like event camera
data [22]. The task can be solved using different learn-
ing methods, e.g., through Convolutional Neural Networks
(CNN) [4], or through Reinforcement Learning [12]. The
proposed approach in this paper is agnostic to the learning
methods used and it can be applied on the preparation of
training data for any AV and/or computing platform.
Robustness and Image Quality Attribute Factors. Ro-
bustness in autonomous driving refers to how stable the
autonomous system is under changes to input data. In vision-
based learning to steer task, when the input image quality of
the autonomous driving system is degraded by certain envi-
ronment factors, e.g., bad weather condition like snow/fog, or
changes in lightening conditions that occur due to transitions
from day to night or from cloud cover, the robustness of
the system is critical to ensure the AV drives safely. In
this paper we propose to train the networks by augmenting
training data with adversarial image degradations. We choose
eight common attributes that affect the image quality in the
training data for autonomous driving. They are Gaussian blur,
Gaussian noise, red/green/blue color balance (3 channels in
RGB space), hues/saturation/intensity values (3 channels in
HSV space) – together they capture many complicated or
even unseen factors in the scenes. Gaussian blur and noise are
two of the most commonly seen image-level perturbations,
while RGB and HSV space are among the most widely used
color model for image representation. We adopt the metric of
mean corrupted error (mCE) from [2] to evaluate robustness,
as will be specified in section V-D.



IV. METHOD

A. Overview

Our method features two major components: a differ-
entiable data augmentation framework, and the adversarial
training procedure that tunes the augmentation parameters to
improve the robustness of a model against image corruptions.
An overview diagram of the overall algorithmic framework
is shown in Figure 1. With each batch, we do adversarial
training for each augmentation operation one at a time. The
backbone network is used for both the adversarial process
and learning process. Only the training images are updated
during the adversarial process, and only the backbone pa-
rameters are updated during the learning process.
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Fig. 1. System Pipeline of Our Method: With each batch, we do
adversarial training for each augmentation operation one at a time. The
backbone network is used for both the adversarial process and learning
process. Only the training images are updated during the adversarial process,
and only the backbone parameters are updated during the learning process.

B. Differentiable Data Augmentation

We first propose a differentiable data augmentation frame-
work, where augmentation operations are differentiable w.r.t
associated parameters. Let Tδ denote an augmentation op-
erations in our framework parameterized by δ, given input
data x, this framework outputs augmented data x̂ = Tδ(x),
where δ controls the strength of operation T .

After feeding x̂ into a downstream DNN model and doing
a forward and backward propagation within the model, we
can get an upstream gradient for the input of the model, i.e.,
∇x̂J , where J is the objective of the downstream model.
Thus we can tune our augmentation operation by taking the
derivative of J w.r.t. δ, which can be easily obtained using
the chain rule given that the operation Tδ in our framework
is differentiable:

∇δJ = ∇δx̂i∇x̂i
J, (1)

We consider a set of transformations drawn from the tradi-
tional image processing literature. Specifically, our augmen-
tation set consists of 8 operations: Gaussian blur, Gaussian
noise, shifts in the R/G/B channel, and shifts in the H/S/V
channel.

Gaussian Blur. We tune the Gaussian blur operation through
a parameter δ controlling the standard deviation of the
Gaussian kernel by σ = 1 + δ, in which δ can be negative
or positive centering around 0. To make this operation
differentiable with respect to δ, we allocate a 21×21 array to
hold the Gaussian kernel. We then populate this array using
the analytical formula for a 2D Gaussian with radius 1 + δ,
i.e., we evaluate the formula

f(z) = e−‖z‖
2/2(1+δ)2 (2)

on the 21 × 21 grid of integer coordinates with the origin
at the center, and then normalize the array to sum to 1.
We can then perform convolution with this kernel, and then
use automatic differentiation to obtain the derivative of the
downstream loss with respect to δ.
Gaussian Noise. The Gaussian noise augmentation in our
framework consists of two parts: a random array n of noise
sampled from a standard Gaussian and a scalar multiplier δ
being used to tune the magnitude of the noise.

n ∼ N (0, 1) (3)
Tδ(x) = clip(x+ δ · n, 0, 1), (4)

where the function clip(x, a, b) clips the value of x into range
[a, b]. This is to make sure that the value of each pixel in the
transformed image falls in the valid range, which is [0, 1] in
our framework. Note that for each instance of Gaussian noise
augmentation, the base noise n is fixed, but it will be re-
sampled for each instance, i.e., each time this augmentation
is applied.
Color Systems. We perturb image colors by considering 6
channels, consisting of solid color representation in RGB
space and the hue, saturation and value in HSV channels.
We can simply perturb values of a single channel to change
the perception of colors in an image. All 6 types of color
shift augmentations can be tuned in the same manner where
parameter δ functions as a scalar to a chosen channel (out
of 6 possible) and controls its magnitude. Equation 5 gives
an example of shifting the value in the first channel of an
image x ∈ RH×W×3, xi,j,k ∈ [0, 1].

Tδ(x) = clip

1 + δ
1
1

 ◦
x(1)x(2)

x(3)

 , 0, 1

 , (5)

where x(i) ∈ RH×W is the i-th channel of the image (i =
1, 2, 3) in either RGB or HSV format, and ◦ denotes element-
wise matrix multiplication.

C. Adversarial Training
With the aforementioned differentiable data augmentation

framework, we can apply PGD adversarial training to tune
these augmentation operations “adversarially”. The goal of
tuning the data augmentation is to degrade the performance
of the downstream model, which can be formulated as a
min-max optimization problem:

min
θ

E(X,y)∼D

[
max
‖δ‖p≤ε

L(fθ(Tδ(X)), y)

]
, (6)
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Fig. 2. Optimization process of differentiable adversarial data aug-
mentation and the model in our system. The figure shows one augmentation
operation (value shift in a color channel) as an example. For each data batch,
the gradient of the data augmentation is used to perform PGD steps, and a
batch of images is crafted that maximize model error. Then, the adversarial
images are used to update model parameters.

where (X, y) is the (image, label) pair drawn from distri-
bution D, fθ is the model with parameter θ, and Tδ is our
differentiable data augmentation module parameterized by δ.
L denotes the objective function, which is the mean square
error loss in our task. We solve the inner maximization prob-
lem by running projected gradient descent (PGD) [3], where
the `p norm of the perturbation (i.e., δ) will be bounded
by ε. The outer minimization is solved by running gradient
descent. Fig. 2 provides an illustration of our optimization
process.

We summarize a formal description for adversarial training
with differentiable data augmentation in Algorithm 1.

Algorithm 1: Adversarial Differentiable Data Aug-
mentation

Input: Training data, model fθ, PGD parameters:
{bound ε, step size α, repeats m}, data
augmentation Ops: Tδ = {T 1

δ , . . . , T
k
δ }, Loss

function: L;
Output: Updated model parameters: θ;
for each training step do

Sample mini-batch x with label y;
for augmentation op T = T 1, . . . , T k do

Initialize augmentation parameter: δ = 0 ;
for adversarial step = 1, . . . , m do

δ ← δ + α · sign(∇δL(fθ(Tδ(x)), y));
δ ← clip(δ,−ε, ε);

end
x̂ = Tδ(x);
Minimize the total loss w.r.t. model

parameter:
θ ← argmin

θ
L(fθ(x̂), y);

end
end

V. EXPERIMENTS

We validate our method on the vision-based learning to
steer task. System inputs are images (often photos taken of
the road scene) and the output is a steering angle for the AV.

A. Datasets
We train and evaluate our models on three different real-

world driving datasets: SullyChen [23], HDD [24], and
A2D2 dataset [25], all of which are collected under good
weather conditions during the daytime. In each dataset,
images are extracted from videos at certain “frames per
second” (FPS), associated with their steering angles as the
label information. For training efficiency, we adopt a similar
approach in [4] by using low FPSs to reduce similarities
between adjacent frames. Specifically, we use 15 FPS for
A2D2, 5 FPS for SullyChen, and 1 FPS for HDD dataset.
For each dataset, we use approximately 10,000 images for
training, and 1,000 for testing.

B. Models
Model Architecture. We use the network architecture
from [4], which is known to be effective in both real [4]
and virtual [26] domains, and extensible to transfer learning
on “sim-to-real” [27]. The model is a 5-layer convolutional
network with 3 fully connected layers, which takes single
images as input, and outputs steering angle predictions.
Implementation Details. We use the Adam [28] optimizer
with learning rate 1 × 10−4 and batch size 128. The base-
line model is trained for 1,000 epochs. The differentiable
data augmentation module in our method is implemented
in PyTorch [29], which supports automatic differentiation
for our chosen augmentation operations. Following the pre-
processing for the baseline model in [4], input images are re-
scaled to 66× 200 resolution and converted to YUV format.

Based on the architecture and hyper-parameter settings
described above, we implemented 4 different methods in-
cluding the naive baseline, and two alternatives that are
conceptually related to ours for ablation study, as specified
below:
• Baseline. Our baseline model is trained without any

data augmentation.
• Ours. We fix the adversarial step-size as α = 0.2, and

for a m-step PGD attack, we set the perturbation bound
to be ε = α ·m − 0.1. We use m = 3, 4, 5 for A2D2,
SullyChen and HDD dataset respectively.

• Random Augment. This approach follows the same
training process as ours, except that the PGD adver-
sarial step is replaced with a random sampling of δ.
The distribution from which we draw δ is a uniform
distribution with range [−ε, ε], i.e., the PGD bound in
the adversarial setting.

• MaxUp. [5] approximates adversarial steps by select-
ing the worst augmentation from N randomly gen-
erated candidates directly without gradient feedback.
Our MaxUp implementation generates random candi-
date augmentations from the 8 operations introduced
in Section IV-B, with δ randomly sampled from a
uniform distribution with range [−ε, ε]. MaxUp models
are trained for 9,000 epochs to match the number of
parameter updates in our method. We follow the training
policy in [5] by not running the adversarial step in the
first 5 epochs, and using N = 4 for selecting candidates.
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Fig. 3. Example images from ”single factors” test sets. Each column corresponds to a factor. For the left 2 columns, corruption severity increases from
top to bottom. In the 6 rightmost columns, channel values range from decreased (top) to increased (bottom).

C. Test Scenarios

When evaluating a model’s performance on a dataset, in
addition the test set sampled from the original dataset, we
generate a range of variants of this test set, each one featuring
a challenging domain for an autonomous system.

We classify testing scenarios into four categories for
a systematic evaluation, with the first scenario being the
original test data with no domain shift, denoted as “Original
Data” in Table I. The second scenario, “Single Factors”,
consists of the 8 transformations we use for data augmenta-
tion (Gaussian blur, Gaussian noise, R/G/B shift, and H/S/V
shift), applied one-at-a-time to create 8 categories of test
sets under this scenario. For each category, we apply the
transformation with 5 different severity levels (for the 6 color
shift transformations, 5 severity levels are applied at both
negative and positive directions), creating a total of 70 test
sets. See Fig. 3 for sample images from these test sets.

In the third scenario, we consider “multi-factor” augmen-
tations that combine all the 8 transformations in a random
manner. For each multi-factor test set, we randomly sample
a parameter vector that controls each of the augmentation
operations, and sample a random permutation that decide
the order for these operations. The parameter vector we use
here is drawn from a normal distribution with σ = 0.33
and µ = 0. Model performances are averaged over 25
combinations to reduce the randomness.

In the final testing scenario, we evaluate model perfor-
mance on more complicated image corruptions that models
have not seen during training, denoted as “unseen fac-
tors.” We include 8 image corruptions, simulating real-
world situations that autonomous system may encounter
due to hardware or weather conditions: “radial distortion”,
“zoom blur”, “motion blur”, “jpeg compression”, “pixelate”,
“snow”, “frost”, “fog.” For each factor, we generate 5 test
sets with increasing severity levels. This set of corruptions
was originally proposed for benchmarking the robustness of
ImageNet classifiers in [2]. See Fig. 4 for visual effects of
each unseen factors.

D. Evaluation Metrics

Mean Accuracy. To measure the regression accuracy, we
use mean Accuracy (mAcc), similar to the mean Average
Precision (mAP) used in classification tasks [30] [31],
which evaluates the performance with different thresholds.

Distortion 

  Motion Blur Zoom Blur

Fig. 4. Example images for 8 “unseen” quality corruptions that simulate
real-word weather challenges and hardware-related artifacts.

The accuracy for a threshold τ is defined as:

accτ =
1

n
count(|vpred − vgt| < τ), (7)

where vpred and vgt are the predicted and ground-truth
value respectively, and n denotes the number of test
cases. The mAcc is computed as 1

|T |
∑
τ accτ∈T , where

T = {1.5, 3.0, 7.5, 15, 30, 75} contains empirically selected
thresholds of steering angles.
Mean Corrupted Error. To evaluate the domain general-
ization ability of a model, we adopt the metric of mean
corrupted error (mCE) from [2], where we compute a
weighted average of error rates among a range of test data,
each of which features a set of image corruptions. The
weights used for averaging come from the performance of a
baseline model: denote ErrCi

A as the error rate of model A
on a test set of corruption type ci. Then the mean Corrupted
Error of model A among test sets C = {c1, c2, ·, cm} will be

mCEA =
1

m

m∑
i

ErrciA
Errcibaseline

, (8)

where ErrciA = 1.0−mAccCi

A , which is derived from the mean
accuracy of model A on the test set ci. This weighted average
balances different corruption types in alignment with their
difficulties as determined by a baseline model, and reflects
the overall generalization ability of a model.

E. Comparing Results

Results in Table I show that our proposed method can
improve the performance of the baseline model under all
test scenarios and on all three datasets. By comparing to the
random augmentation, we prove the advantage of our adver-
sarial training strategy. We notice that even though MaxUp
also achieves non-trivial improvements over the baseline, it
does not compete well with other methods. We believe the
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Fig. 5. Detailed improvement on each category of the unseen factors. Presented results are mean accuracies (mAcc) on HDD[24] (left), SullyChen [23]
(center), and A2D2 [25] (right) test data. Our model consistently outperforms the baseline method on all 3 datasets with previously unseen factors.

TABLE I
EVALUATION OF ROBUSTNESS OF OUR VS. OTHER MODELS.

Performance of ours vs. other models under different scenarios with
single- and multi-factor image quality corruption, and complex ones that

simulate real-word weather challenges and hardware-related artifacts. Ours
outperforms other alternatives on 3 different driving datasets [23], [24],
[25] on the original test data and augmented data with image corruption

due to single, multiple, or previously unseen factors.

Original Data Single Factors Multi Factors Unseen Factors

Models mAcc(%)↑ mCE(%)↓ mCE(%)↓ mCE(%)↓

Baseline 72.25 100 100 100
MaxUp [5] 79.04 70.78 72.51 73.02
Random augment 78.81 61.96 54.75 63.49

Ours 79.91 60.00 52.05 61.73

(a) Results on HDD dataset [24].

Original Data Single Factors Multi Factors Unseen Factors

Models mAcc(%)↑ mCE(%)↓ mCE(%)↓ mCE(%)↓

Baseline 89.12 100 100 100
MaxUp [5] 89.05 58.18 53.44 84.23
Random augment 91.04 38.55 24.39 65.51

Ours 92.38 34.11 22.35 61.67

(b) Results on SullyChen dataset [23].

Original Data Single Factors Multi Factors Unseen Factors

Models mAcc(%)↑ mCE(%)↓ mCE(%)↓ mCE(%)↓

Baseline 95.17 100 100 100
MaxUp [5] 97.42 38.26 43.42 69.68
Random augment 96.98 19.94 13.40 57.31

Ours 97.55 14.80 9.12 48.36

(c) Results on A2D2 dataset [25].

selection procedure in MaxUp can be systematically biased
toward augmentations that are inherently more deleterious to
performance, while models trained on such imbalanced data
cannot generalize well to our diverse test scenarios.

In Fig. 5, we break down the evaluation for the test
scenario of “unseen factors”. Our method constantly improve
the performance on each of the unseen factor, especially on
weather-related image quality degradation, where baseline
models are shown to be significantly vulnerable.

F. Ablation Study

In this section, we study how adversarial strength impacts
the performance of our method on the SullyChen dataset. We
evaluate performance of our models trained with different
levels of “adversarial strength”, controlled by the number
of PGD adversarial steps m, as we fix the step size to be
α = 0.2 and set the perturbation bound ε = α ·m− 0.1.

As shown in Figure 6, when a model is trained with
small perturbations, the improvement decreases under all test
scenarios. This drop may be due to the lack of diversity in the
data augmentation, as small perturbations cause augmented
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Fig. 6. Ablation study on the effect of PGD adversarial strength in
our method, evaluated on SullyChen [23] test data under all test scenarios.

data to be near the original one. Models trained with large
perturbation also show smaller performance gain. This is
expected because training data becomes extremely noisy and
distorted when the adversarial strength is excessively strong.

VI. CONCLUSION

This work focuses on the reliability of machine learning
models for robotic systems like autonomous vehicles. Our
methods improve the robustness of models by training with
data augmentation, where each operation is optimized adver-
sarially in a differentiable framework. To evaluate the perfor-
mance of our framework, we consider different scenarios that
cover a wide range of image degradations, including simula-
tion of real-world situations related to autonomous systems.
Models trained with our method demonstrate consistent
robustness and outperform other recent works under various
testing scenarios, including previously unseen factors (e.g.
those from poor weather conditions and camera artifacts).

Note that our method functions as a base framework for
training neural networks and it can be combined with various
data augmentation methods. Although we have only focused
on the learning to steer task for AVs in this paper because
of its relevance to robotics, this method is generalizable and
can be applied to a wide range of vision-based tasks, model
architectures, and datasets that we hope to further investigate.
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