
Inverse Reinforcement Learning with Hybrid Weight Tuning for
Autonomous Maneuvering

Yu Shen1, Weizi Li2, and Ming C. Lin1

https://gamma.umd.edu/researchdirections/autonomousdriving/eirl/

Abstract— Despite significant advancements, collision-free
navigation in autonomous driving is still challenging. On one
hand, the perception module needs to interpret multimodal
unstructured data and produce structured data of the envi-
ronment. On the other hand, the navigation module needs to
balance the use of machine learning and motion planning in
order to achieve efficient and effective control of the vehicle.
We propose a novel framework combining context-aware multi-
sensor perception and inverse reinforcement learning with
hybrid weight tuning (IRL-HWT) for autonomous maneu-
ver. IRL-HWT incorporates several attributes including non-
uniform prior for features, hybrid weight tuning based on trust-
region optimization, parameter reuse for continuous training,
and learning from accidents. These attributes help reduce the
number of collisions of the vehicle up to 41%, increase the
training efficiency by 2.5x, and obtain higher test scores up to
two orders of magnitude. Overall, our method can enable the
vehicle to drive 10x further than other methods, while achieving
collision avoidance over both static and dynamic obstacles.

I. INTRODUCTION

Autonomous vehicles (AVs) have the potential to con-
tribute to a more efficient and safer transportation system
by alleviating traffic congestion and reducing the number of
accidents. In general, autonomous driving can be realized
via either an end-to-end approach or a mediated-perception
approach [1]. An end-to-end approach meaning that raw
sensor data are directly mapped to control commands (e.g.,
steering angles), which usually results in a succinct training
pipeline at the cost of model interpretability. A mediated-
perception approach, on the other hand, decouples perception
and navigation, thus offering better model interpretability
and enhanced driving safety. However, a mediated-perception
approach commonly adopts a planning algorithm for nav-
igating an AV—a process that can be computationally ex-
pensive, given the requirement of holistic environment in-
formation for achieving global optimality and planning in
high-dimensional state space.

We propose a novel mediated-perception approach for
autonomous driving. Our approach consists of context-aware
multi-sensor perception and inverse reinforcement learning
with hybrid weight tuning mechanism (IRL-HWT). The
perception module interprets unstructured information (i.e.,
images and point clouds) of an environment using multi-
ple sensors with different viewpoints, extract context-aware

1Yu Shen and Ming C. Lin are with the Department of
Computer Science, University of Maryland at College Park
{yushen,lin}@cs.umd.edu

2Weizi Li is with the Department of Computer Science, University of
Memphis wli@memphis.edu

information, and produces structured information, such as
the size and position of an object in the environment. IRL-
HWT then takes the structured information along with expert
trajectories as input to learn a control policy for autonomous
driving. In particular, IRL-HWT addresses a fundamental
limitation of the original IRL, which imposes a uniform
prior on all features. This limitation can lead to undesired
behaviors (e.g., frequent collisions) even when the feature
expectation of the learned policy closely matches the feature
expectation of the expert policy (see Sec. IV for a concrete
example). IRL-HWT solves this problem by incorporating
a non-uniform prior for features and update the weights of
features using an automatic hybrid weight tuning mechanism
that is based on trust-region optimization. The pipeline of our
approach is illustrated in Fig. 1.

Fig. 1. System pipeline. At each time step, the vehicle/simulator generates
unstructured data such as images and point clouds. These data are processed
by the perception module to produce structured data, which are then used
by the IRL-HWT module to learn a control policy for autonomous driving.

Our approach has several advantages. First of all, as a
mediated-perception approach, instead of using a planning
algorithm for navigating an AV at all time steps, we only
use a planning algorithm to generate expert demonstrations
for IRL-HWT to imitate. Once learned, the control policy can
operate in real time with a small number of features. This
design choice greatly reduces the computational overhead of
using a planning algorithm. Second, IRL-HWT complements
the original IRL [2] with the flexibility to impose a non-
uniform prior on important features for a specific problem,
for example, collision for autonomous driving. Third, the
hybrid weight tuning scheme allows the learned policy to
adapt to different environments while maintaining desired
behaviors and avoiding aggressive exploratory behaviors.
Fourth, since our approach is based on reinforcement learn-
ing, compared to using supervised learning for imitation,
IRL-HWT is more robust in rare situations and can gen-
eralize better in new environments [2]. Lastly, similar to

https://gamma.umd.edu/researchdirections/autonomousdriving/eirl/


ADAPS [3], alternative safe trajectories are generated during
the analysis of an accident. This approach enables the
learning algorithm to learn from accidents, which is crucial
as collecting accident data from the real world is impractical.

The effectiveness and efficiency of our approach are
demonstrated in a variety of experiments. To show IRL-HWT
can work beyond perfect perception, i.e., use ground-truth
data from the environment, we run IRL-HWT in a complete
autonomous system as described in Sec. III-A. Overall, our
method can enable the AV to drive safely 10x further than the
other methods. The attribute non-uniform prior can assist in
reducing the number of collisions of the AV up to 41%; the
use of learned model parameters for continuous training can
result in 2.5x faster training; and learning from accidents can
help achieve higher test scores up to two orders of magnitude.
In addition to quantitative results, we qualitatively show that
our method can steer the AV to avoid both static and dynamic
obstacles, even in the presence of a narrow passage (see
supplementary video).

II. RELATED WORK

In this section, we briefly discuss the related work of
different aspects of our framework.

A. Autonomous Driving

Various methods have been proposed to solve the per-
ception, planning, and control problems for autonomous
driving [4], [5]. Examples of the end-to-end approach in-
clude end-to-end reinforcement learning [6] and end-to-end
imitation learning [3], [7], [8], [9]. These approaches usually
require a large amount of training data in order to be robust
in rare cases, such as pre-accident scenarios. In addition, the
use of deep neural networks in these approaches to directly
map raw sensor data to control commands can lead to low
model interpretability.

Examples of the mediated-perception approach include
perception plus motion planning [10] and perception plus
learning-based planning [7]. Because of the decomposition
of perception and navigation, these approaches enjoy better
model interpretability, hence improved driving safety. Re-
cently, Li et al. propose ADAPS [3], an end-to-end imita-
tion learning framework that enables an AV to learn from
accidents. Compared to ADAPS, our work proposes a new
architecture that can not only fuse data from different modal-
ities but also generalize better, as it relies on reinforcement
learning rather than using supervised learning to imitate the
expert’s behaviors.

B. Inverse Reinforcement Learning (IRL)

As an effective technique for imitation learning, IRL in-
volves two steps: 1) learning a reward function from experts’
demonstrations and 2) using the acquired reward function
for reinforcement learning to learn a control policy [2]. To
provide some examples, Sharifzadeh et al. [11] apply Deep
Q-Networks to extract a reward function in large state space.
You et al. [12] use deep neural networks to approximate the
latent reward function of the expert and then apply deep Q-
learning to obtain the control policy.

Compared to the original IRL [2], our approach allows the
use of a non-uniform prior, instead of a uniform prior, on the
features. This can prevent important features from receiving
trivial weights during the learning process. In addition, our
approach uses the parameters of a pre-trained policy as
the start point for continuous training, which can improve
training efficiency while maintaining the model performance.

III. APPROACH

A. Framework Overview

Our architecture combines context-aware multi-sensor per-
ception and inverse reinforcement learning via hybrid weight
tuning (IRL-HWT). The perception module takes multiple
sensors’ data as input and produces structured data, which
are then used by IRL-HWT to learn a control policy.

We assume that the AV can obtain a global map from an
external service, and compute its position and rotation with
on-board GPS and Inertial Measurement Unit (IMU). We
further assume that the AV knows beforehand a few sparse
waypoints on its path to the goal, and the task of the AV is
converted to reach the waypoints consecutively.

Our perception module can produce semantic-rich struc-
tured data to learn a reward function by utilizing the context-
aware semantic information. Features with clear semantic
interpretations can help construct non-linear features such as
“whether there is a car in front within 3 meters”, resulting
in more flexible decision-making. This is particularly useful
considering that IRL restricts the reward function to be a
linear combination of the features.

The IRL-HWT training process, shown in Fig. 2, consists
of an offline step and an online step. In the offline step, we
use a planning algorithm as the expert to generate driving
trajectories and compute the expert’s feature expectation. In
the online step, we learn the feature weights under a non-
uniform prior given the expert’s policy and the learned policy
at the current iteration. Then, we construct a reward function
using the learned feature weights. By further adopting the
notion of learning from accidents [3], we use the resulting
additional training data along with the newly constructed
reward function for RL to update the learned policy. Inspired
by transfer learning [13], the model parameters from the
previous iteration are used as a starting point in the updating
process.

B. Context-aware Multi-sensor 3D Perception

We simulate three RGB cameras for the front-view, left-
view, and right-view, respectively, as well as a 360-degree
Lidar of the AV. We combine one RGB image and the point
cloud on each side to detect nearby vehicles. Then, we merge
the results from all sides to obtain an overall view. The
module works as follows.

First, it generates the front-view data, which contain
segmentation and depth maps, and bird’s-eye-view image
from the point cloud. By having the calibration data between
the Lidar and camera, we can then align the front-view data
with the RGB images. In the second step, we combine and
feed the aligned front-view data with the RGB images into



Fig. 2. IRL-HWT training process. We compute the expert’s trajectories
and feature expectation offline. We then use the learned reward function to
compute the feature expectation of a learned policy online. If the feature
expectations of the expert and the learned policy differ too much, RL is
used to update the learned policy.

the feature extractor to obtain the front-view feature map.
We apply the same procedure for the bird’s-eye-view image
to obtain the bird’s-eye-view feature map. Then, we use the
region proposal network (RPN) [14] and detection network
from AVOD [15] to obtain the perception results for the
front-view. Similarly, we obtain the perception results for the
left-view and right-view. Finally, we merge all perception
results together using the extrinsic calibration data of the
three cameras.

The output of the perception module contains 3D bounding
boxes and types of nearby dynamic obstacles. Our approach
can also be extended to detect static obstacles when needed.
The context-aware, multi-sensor 3D perception detects dif-
ferent types of information to produce features used by IRL.
For example, lidar can detect depth information to ensure
safety while camera can identify object types to plan actions.

C. Inverse Reinforcement Learning Via Hybrid Weight Tun-
ing (IRL-HWT)

The original IRL achieves imitation learning
by first computing the expert’s feature expectation
µ̂(πE) = 1

m

∑m
i=1

∑∞
t=0 γ

tφ(s
(i)
t ), given m trajectories

{s(i)
0 , s

(i)
1 , . . . }mi=1 from the expert’s policy πE , the discount

factor γ, and the feature vector φ(·). Then, IRL learns w
(w ∈ Rk and ‖w‖1 ≤ 1) given π at the current iteration
and πE , and synthesizes a reward function R(s) = w · φ(s),
where s is the state of the environment. Next, the policy π
is re-learned using RL. This iterative process continues until
‖µ(π) − µ̂(πE)‖2 ≤ ε. The final policy is selected among
all learned policies from all iterations.

The features used by IRL-HWT are based on structured
data from the perception module, which include bounding
boxes of nearby vehicles and static obstacles in the scene.
See detailed feature list in Sec. IV.

One fundamental limitation of IRL is that it imposes a

uniform prior on all features, causing small weights to be
possibly assigned to some crucial features during the learning
process. For example, in the context of driving, we find
that the feature collision can receive a small weight as a
result of any collision behavior of the AV will terminate a
training episode. This limitation of IRL can lead to subpar
performance of the task learning to drive (see Sec. IV-B).
To give an example, the expert can drive the car safely
(without any collision), while a randomly initialized policy
can hardly drive the car far without collision. In this case, the
feature expectation of the expert is calculated using extended,
“global” trajectories, while the feature expectation of the
learned policy is calculated using short, “local” trajectories.
This discrepancy is likely to cause some important features
to receive small weights during the minimization process of
the feature expectations in IRL. A concrete example of this
phenomenon from our experiments is shown in Table I.

TABLE I
LIMITATION OF IRL. IRL LEARNS FEATURE WEIGHTS w BY MINIMIZING

THE DIFFERENCE OF FEATURE EXPECTATION BETWEEN THE EXPERT’S

POLICY µ(πE) AND A RANDOM POLICY µ(π0). WHILE BOTH POLICIES

HAVE SMALL EXPECTATIONS FOR THE FEATURE collision, THE ACTUAL

TRAJECTORY FROM THE EXPERT’S POLICY CAN BE MUCH LONGER THAN

THE TRAJECTORY FROM A RANDOM POLICY. AS A RESULT, IRL
ASSIGNS A NEGLIGIBLE WEIGHT TO collision (I.E., −5.34e− 06).

feature left dist. front dist. right dist. ... collision
weight 0.113 0.184 −0.124 ... -0.00000534
µ(πE) 139.14 369.50 25.84 ... 0
µ(π0) 40.31 216.06 142.87 ... 0.005

To alleviate the aforementioned limitation of IRL, we
propose IRL-HWT—an approach that not only incorporates
a non-uniform prior on the features by allowing users to
specify the weights of certain features for ensuring essential
properties of a task, e.g., collision for driving, but also
uses a hybrid weight tuning to update the policy so that
the AV can adapt to different environments while maintain-
ing desired behaviors. Formally, the overall weights w =
[wm, wl] consist of empirically-initialized weights wm =
[w1, . . . , wk] and the weights to be learned from scratch wl =
[wk+1, wk+2, . . . , wn], where n is the total number of fea-
tures. To achieve an optimal policy in diverse environments,
we use trust-region optimization [16] to automatically tune
wm by avoiding violent exploratory behaviors. Specifically,
in the ith iteration, we first try to update ε and w by solving
the following quasi-convex optimization program:

ε(i) = max
w(i+1):‖w(i+1)‖2≤1

‖w(i+1)
m −w(i)

m ‖2≤∆

{ min
j∈{0,...,i}

(w(i+1))T (µ(πE)−µ(π(j)))},

(1)

where ∆ is the trust-region radius (∆ = ∆(i)). The ratio
ε(i)/ε(i−1) is used to determine the acceptance of the newly
updated w. Since the predicted upper bound of ε(i)/ε(i−1) is

n√
n2+(1−γ)2ε2

[2], we set the acceptance condition to



ε(i)

ε(i−1)
≤ α n√

n2 + (1− γ)2ε2
, (2)

where α < 1 is the coefficient parameter. If the condition is
failed, we drop the newly found w, and update ε and w by
solving Eq. 1 with ∆ = 0. As the last step of one iteration,
we update ∆ as follows:

∆(i+1) =


min(cu∆(i), bu) Eq. 2 met
max(cl∆

(i), bl) Eq. 2 failed p times
∆(i) otherwise

(3)

where bu and bl are the upper- and lower-bound of the trust-
region radius, and cu > 1 and cl < 1 are the coefficients.

Additionally, IRL retrains π at each iteration, such a
process can be inefficient. In IRL-HWT, we improve the
training efficiency by using the learned model parameters
θ(i) of π(i) at the ith iteration as the initial parameters for
training π(i+1) at the (i+ 1)th iteration. The whole learning
process stops when ‖µ(π) − µ̂(πE)‖2 < ε. The complete
IRL-HWT algorithm is shown in Algorithm 1.

Algorithm 1: Inverse Reinforcement Learning Via
Hybrid Weight Tuning (IRL-HWT)

Result: policy π(i)

Initialization: Calculate µ(πE) with expert
trajectories;

Set i = 0, set ε, γ, α, bu, bl, cu, cl, p;
Randomly set the model parameters θ(0) for π(0);
Compute µ(π(0));
Set w(0)

m such that ‖w(0)
m ‖2 < 1;

Compute ε(0) = maxwl:‖w‖2≤1 w
T (µ(πE)− µ(π(0))),

where w = [w
(0)
m wl];

Let w(0)
l store the above maximum value and set

w(1) = [wm w
(1)
l ];

Set ∆(1);
while ε(i) > ε do

Set i = i+ 1;
Compute the reward function R = ((w(i))Tφ);
Using R and θ(i−1) in RL to compute an optimal

policy π(i);
Compute µ(π(i));
Solve Optimization 1 with ∆ = ∆(i), and get

solution ε(i) at w(i+1);
if Condition 2 is True then

Accept;
else

Reject, solve Optimization 1 with ∆ = 0, and
update ε(i) and w(i+1);

end
Set ∆(i+1) with Equation 3;

end

Inspired by ADAPS [3], we adopt learning from accident
to improve the training efficiency. Specifically, when the car
crashes during the online training process, we will backtrack
for certain frames and let the expert drive for certain frames
to avoid collision. Both the crash and collision-free data will
be (re-)used to train the policy. Essentially, by imposing a
non-uniform prior on extracted features, we can introduce
certain expert experience to the learning process directly. In
addition, although the synthesized reward function is differ-
ent at each iteration, they may embed useful information
to share with each other. Thus, inspired by transfer learn-
ing [13], we reuse learned parameters for continuous training
for faster convergence. Lastly, the process of learning from
accident can result in both negative examples and positive
examples in learning, leading to better performance and
faster convergence.

D. Autonomous Driving Training Platform

Our platform is developed using the Unity game en-
gine [17] and consists of the following components.

• Heavy-weight simulator for providing realistic 3D
scenes and light-weight simulator for improving plan-
ning efficiency.

• Virtual sensors. Our platform supports simulated RGB
camera, depth camera, lidar, gyroscope, and GPS.

• Portable learning algorithms. Our platform supports
end-to-end learning, perception plus traditional plan-
ning, and perception plus learning-based planning.
These algorithms can be switched and replaced at ease.

• Communication and control module. Our platform sup-
ports cross-platform communication with sockets. This
feature enables remote control of simulated AVs using
input from either a planning algorithm or user.

• Data collection module. Our platform can operate vari-
ous types of data, including sensor data, calibration data,
and environment data in any format. For example, our
platform can generate data that are compatible with the
KITTI dataset [18] for 3D object detection.

Compared to other platforms such as CARLA [19], ours
has both heavy-weight and light-weight simulators, providing
better flexibility and efficiency. To be concrete, while the
perception module requires a realistic 3D scene, the planning
module only needs information of the environment state such
as distance to obstacles. Our platform enjoys decoupling the
two simulators at different level of detail and avoids the
prohibitive computational cost of updating the policy solely
in the 3D environment. Using our platform, one can train
the perception module in the heavy-weight simulator and
the planning module in the light-weight simulator, and then
combine the results for a system-level test.

IV. EXPERIMENTS AND RESULTS

In this section, we detail our experiments and results. All
experiments are conducted using an Intel(R) Xeon(TM) W-
2123 CPU, an Nvidia GTX 1080 GPU, and 32G RAM.



A. Overall Performance

We compare IRL-HWT to the original IRL, and end-to-
end imitation learning (IM). We choose IM as a method for
comparison since it also learns from the expert trajectories.
We use the method by Bojarski et al. [20] as the IM, and deep
Q-learning with [164, 150] hidden units in each of the 2 dense
layers and 20% dropout rate in all RL-based methods (We
also experimented with more complex network architectures
up to 6 hidden layers, but found [164,150] with 2 hidden
layers works best). The features used in both the original
IRL and IRL-HWT are listed in Fig. 3.

Fig. 3. Features used in IRL and IRL-HWT (46 in total).

The action space contains 25 discrete (rational speed,
acceleration) action pairs: 5 levels of rotational speed (steer-
ing angle) and 5 levels of acceleration (throttle value and
break value). We set policy similarity threshold ε = 0.1
and discount factor γ = 0.99 for both IRL and IRL-HWT.
We collect 20,000 steps of the expert trajectory and train
all methods for 24 hours (we also observe that training
12 more hours will not improve the performance). For
IRL-HWT, specifically, we set the trust-region acceptance
coefficient α = 0.9, trust-region increasing and decreasing
coefficients cu = 1.1, cl = 0.9, upper- and lower-bound
bu = 0.05, bl = 0.001, and consecutive rejection number
p = 5. We empirically initialize weights for the first 4
features in Fig. 3 with values [0.4, 0.01, -0.1, -0.8], and let
IRL-HWT to learn the weights of depth- and object type-
related features. The perception network is trained using
10,000 frames of simulated data from our platform.

Our evaluation criterion is how far can the AV travel under
a fixed number of steps. The AV will stop if it finishes 1, 000
steps or is in collision. Since the AV is assumed to know
beforehand a series of waypoints on its path to the goal, we
compute the score based on the number of waypoints reached
by the AV:

sfinal = (nreached + (1− distnext
distlast next

))× sunit, (4)

where sfinal is the final score, nreached is the number of
waypoints reached, distnext is the distance between the last
position on the car’s trajectory and the next waypoint on
the car’s route, distlast next is the distance between the last
reached waypoint to the next waypoint, and sunit is the unit
score by reaching a waypoint, which is set to 100. Note that a
negative score may appear if distnext > distlast next, which
happens when the car drives away from the next waypoint.
We use three scenes shown in Fig. 4 for evaluation:
• Scene 1: open space with only moving vehicles;
• Scene 2: city street with only static obstacles;
• Scene 3: city street with moving vehicles and static

obstacles.

Fig. 4. Screenshots of the three scenes used in our evaluation. From left
to right: Scene 1, Scene 2, Scene 3.

We record the final scores sfinal,2 and sfinal,3 from
Scene 2 and 3; and average trajectory length lfinal,1, lfinal,2,
lfinal,3 from Scene 1, 2, and 3. Because sfinal is computed
based on the waypoint position and there is no explicit
waypoint in Scene 1, we do not compute sfinal,1. All data
are obtained by running each learning method for 100 times
with randomly initialized scene configurations such as the
start position and direction of the AV, and the start posi-
tion, direction and speed of obstacle vehicles. Our method
achieves the highest scores and can enable the AV to drive
safely 10x further (and longer) than the other methods. The
full results are shown in Table II.

TABLE II
OVERALL PERFORMANCE OF IRL-HWT VS. OTHER METHODS, USING

THE SCORE DEFINED IN EQN. 4 AND SAFE-TRAJECTORY LENGTH. OUR

METHOD NOT ONLY ACHIEVES THE highest scores BUT ALSO ENABLES

THE AV TO DRIVE SAFELY 10x FURTHER THAN THE OTHER METHODS.

Method sfinal,2 sfinal,3 lfinal,1 lfinal,2 lfinal,3

IM 77.4 60.1 105.6 m 53.7 m 44.7 m
IRL 110.7 59.7 228.8 m 69.4 m 33.2 m
Ours 205.8 177.3 276.3 m 748.4 m 324.2 m

B. Attribute Effectiveness

The first attribute of our approach is the non-uniform prior
for features. To test this attribute, we empirically set the
weight for collision to be −0.8. We count the number of
collisions from the original IRL and IRL+non-uniform prior
(EIRL) by running both approaches for 10,000 steps. As
shown in Table III, EIRL can reduce the number of collisions
up to 41%.

The second attribute of our approach is learned model
parameters for continuous training, which aims to improve
training efficiency. From the results shown in Fig. 5, we can
see that by having this attribute, we can achieve comparable
model performance at 2.5x faster.



TABLE III
THE NUMBER OF COLLISIONS IN DIFFERENT SCENES WITHIN 10,000

STEPS: ORIGINAL IRL VERSUS EIRL (IRL+NON-UNIFORM PRIOR). OUR

EIRL CAN REDUCE THE NUMBER OF COLLISIONS UP TO 41%.

Model Scene 1 Scene 2 Scene 3
IRL 35 58 111
IRL+non-uniform prior 33 41 93

Fig. 5. By using previous model parameters for continuous training, we
can achieve comparable score (model performance) 2.5x faster.

The last attribute of our approach is learning from ac-
cidents. We use ORCA [21] as the expert algorithm to
generate alternative safe trajectories during the analysis of
an accident. These trajectories are then used to generate
additional training data for our algorithm. In Fig. 6, we
show that the learning algorithm with this attribute added can
achieve much higher scores up to two orders of magnitude in
near collision scenarios under the same number of epochs.

Fig. 6. Having the additional training data by learning from accidents, the
learning algorithm achieves higher scores up to two orders of magnitude in
near collision scenarios under the same number of epochs.

C. Driving Cases

Our method can enable safe autonomous driving (without
collision) in scenes with both static and dynamic obstacles.
We show the results of certain driving cases achieved by our
method in Fig. 7. The full demo video can be found in the
supplementary material.

In Fig. 7(a), we show that our method can steer the
AV to make a left turn around the static obstacle while
maintaining safe driving; In Fig. 7(b), we show that our
method can lead the AV to avoid both static and dynamic
obstacles. In particular, the AV (in green) steers to the right
to avoid another vehicle coming from the opposite direction
while moving away from the static obstacle; Lastly, we show
that our approach can avoid multiple dynamic obstacles in
Fig. 7(c). In this case, the AV (in green) is able to turn left
to pass narrow space between two other vehicles.

Fig. 7. (a) Static obstacle avoidance. Our method can lead the AV to
make a left turn to avoid a static obstacle while maintaining safe driving.
(b) Static and dynamic obstacle avoidance. The AV (in green) can avoid
another vehicle (in yellow) coming from the opposite direction while steer
away from the static obstacle. (c) Collision avoidance with multiple dynamic
obstacles. Our method can direct the AV (in green) to avoid all nearby
vehicles even when a narrow passage is presented.

D. High-level comparison

IM does not generalize well to new environments since it
only mimics the expert trajectory. IRL can recover the reward
function used by the expert but suffer from the limitation
of a uniform prior. Our method addresses the limitations
of IM and IRL by combining expert trajectory and domain
knowledge. The hybrid weight tuning mechanism further
enables our method to adapt to different environments and
achieve desired behaviors.

V. CONCLUSION AND FUTURE WORK

We propose a framework integrating context-aware multi-
sensor perception and inverse reinforcement learning via
hybrid weight tuning (IRL-HWT) for autonomous driving.
We evaluate our approach using a variety of experiments,
over the entire algorithm and each individual component. As
shown in all comparison results, our method outperforms the
other state-of-the-art methods on all experiments.

There are some limitations of this work. First, the infer-
ence efficiency of the perception module can be improved.
Second, our approach inherits other limitations of IRL, for
example, information loss through encoding expert trajecto-
ries into a single feature expectation.

Future directions of this work are abundant. We plan to
develop a more efficient perception module by leveraging
the sparsity embedded in the input data [22]. We also
hope to alleviate the information loss during the expert’s
feature expectation computation. Lastly, We plan to test our
approach in dense virtual traffic [23] that is estimated and
reconstructed using real-world traffic data [24], [25], [26].



REFERENCES

[1] S. Ullman, “Against direct perception,” Behavioral and Brain Sciences,
vol. 3, no. 3, pp. 373–381, 1980.

[2] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 1.

[3] W. Li, D. Wolinski, and M. C. Lin, “ADAPS: Autonomous driving via
principled simulations,” in IEEE International Conference on Robotics
and Automation (ICRA), 2019, pp. 7625–7631.

[4] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annual Review of Control, Robotics,
and Autonomous Systems, 2018.

[5] Q. Chao, H. Bi, W. Li, T. Mao, Z. Wang, M. C. Lin, and Z. Deng,
“A survey on visual traffic simulation: Models, evaluations, and appli-
cations in autonomous driving,” Computer Graphics Forum, vol. 39,
no. 1, pp. 287–308, 2019.

[6] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep rein-
forcement learning framework for autonomous driving,” Electronic
Imaging, vol. 2017, no. 19, pp. 70–76, 2017.

[7] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2015,
pp. 2722–2730.

[8] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots,” in 2017 ieee
international conference on robotics and automation (icra). IEEE,
2017, pp. 1527–1533.

[9] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 1–9.

[10] M. Werling, S. Kammel, J. Ziegler, and L. Gröll, “Optimal trajectories
for time-critical street scenarios using discretized terminal manifolds,”
The International Journal of Robotics Research, vol. 31, no. 3, pp.
346–359, 2012.

[11] S. Sharifzadeh, I. Chiotellis, R. Triebel, and D. Cremers, “Learning
to drive using inverse reinforcement learning and deep q-networks,”
arXiv preprint arXiv:1612.03653, 2016.

[12] C. You, J. Lu, D. Filev, and P. Tsiotras, “Advanced planning for
autonomous vehicles using reinforcement learning and deep inverse
reinforcement learning,” Robotics and Autonomous Systems, vol. 114,
pp. 1–18, 2019.

[13] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, 2020.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[15] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint
3d proposal generation and object detection from view aggregation,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 1–8.

[16] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
derivative-free optimization. SIAM, 2009.

[17] Unity, “Unity game engine,” https://unity.com/, 2020.
[18] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous

driving? the kitti vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 3354–
3361.

[19] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[20] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[21] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” pp. 3–19, 2011.

[22] L. Lin, W. Li, and S. Peeta, “Efficient data collection and accurate
travel time estimation in a connected vehicle environment via real-time
compressive sensing,” Journal of Big Data Analytics in Transportation,
vol. 1, no. 2, pp. 95–107, 2019.

[23] D. Wilkie, J. Sewall, W. Li, and M. C. Lin, “Virtualized traffic at
metropolitan scales,” Frontiers in Robotics and AI, vol. 2, p. 11, 2015.

[24] W. Li, D. Nie, D. Wilkie, and M. C. Lin, “Citywide estimation of traffic
dynamics via sparse GPS traces,” IEEE Intelligent Transportation
Systems Magazine, vol. 9, no. 3, pp. 100–113, 2017.

[25] W. Li, D. Wolinski, and M. C. Lin, “City-scale traffic animation using
statistical learning and metamodel-based optimization,” ACM Trans.
Graph., vol. 36, no. 6, pp. 200:1–200:12, Nov. 2017.

[26] W. Li, M. Jiang, Y. Chen, and M. C. Lin, “Estimating urban traffic
states using iterative refinement and wardrop equilibria,” IET Intelli-
gent Transport Systems, vol. 12, no. 8, pp. 875–883, 2018.

https://unity.com/

	Introduction
	Related Work
	Autonomous Driving
	Inverse Reinforcement Learning (IRL)

	Approach
	Framework Overview
	Context-aware Multi-sensor 3D Perception
	Inverse Reinforcement Learning Via Hybrid Weight Tuning (IRL-HWT)
	Autonomous Driving Training Platform

	Experiments and Results
	Overall Performance
	Attribute Effectiveness
	Driving Cases
	High-level comparison

	Conclusion and Future Work
	References

