
Inverse Reinforcement Learning with Hybrid-weight Trust-region
Optimization and Curriculum Learning for Autonomous Maneuvering

Yu Shen1, Weizi Li2, and Ming C. Lin1

https://gamma.umd.edu/researchdirections/autonomousdriving/eirl/

Abstract— Despite significant advancements, collision-free
navigation in autonomous driving is still challenging, consider-
ing the navigation module needs to balance learning and plan-
ning to achieve efficient and effective control of the vehicle. We
propose a novel framework of inverse reinforcement learning
with hybrid-weight trust-region optimization and curriculum
learning (IRL-HC) for autonomous maneuvering. Our method
can incorporate both expert demonstration (from real driving)
and domain knowledge (hard constraints such as collision
avoidance, goal reaching, etc. encoded in reward functions)
to learn an effective control policy. The hybrid-weight trust-
region optimization is used to determine the difficulty of the
task curriculum for fast incremental curriculum learning and
improve the efficiency of inverse reinforcement learning by
hybrid weight tuning of different sets of hyperparameters. IRL-
HC is also compatible with domain-dependent techniques such
as learn-from-accident, which can further boost performance.
Overall, IRL-HC can reduce the number of collisions up to
48%, increase the training efficiency by 2.8x, and enable the
vehicle to drive 10x further compared to other methods.

I. INTRODUCTION

Autonomous driving generally can be realized via either
an end-to-end system or a mediated-perception approach [1].
The former takes in raw sensor data and directly output
control commands (e.g., steering angles), which usually
results in a succinct training pipeline at the cost of model
interpretability. The later decouples perception and naviga-
tion, thus offering better model interpretability with enhanced
driving safety. However, a mediated-perception approach
commonly adopts a planning algorithm for navigating a
self-driving car, which can be computationally expensive,
given the requirement of an holistic environment informa-
tion for achieving global optimality and planning in high-
dimensional state space.

We propose an efficient and novel mediated-perception
framework for autonomous driving that exploits context-
aware multi-sensor perception for inverse reinforcement
learning with hybrid-weight trust-region optimization and
curriculum learning (IRL-HC). The perception module inter-
prets unstructured information (i.e., images and point clouds)
of an environment using multiple sensors, extracts context-
aware information, and produces structured information (e.g.,
the shape and position of an object). IRL-HC then takes the
structured information along with expert trajectories as input
to learn a control policy for autonomous vehicles (AV).

1Yu Shen and Ming C. Lin are with the Department of
Computer Science, University of Maryland at College Park
{yushen,lin}@cs.umd.edu

2Weizi Li is with the Department of Computer Science, University of
Memphis wli@memphis.edu

Our novel IRL-HC contains two main elements: (a)
hybrid-weight trust-region optimization and (b) curriculum
learning. Hybrid-weight trust-region optimization addresses
a fundamental limitation of the original IRL [2]: a uniform
prior is imposed on all features, which can lead to subpar
imitation performance of the learner to the expert even their
feature expectations converge and match [3]. In the context
of autonomous driving, since some hard constraints like
collision avoidance for safety and goal-oriented navigation
to destination are most critical over other considerations, this
limitation due to uniform priors in weight tuning can lead to
frequent collisions. Our method alleviates this problem by
imposing a non-uniform prior on task features and updat-
ing the features’ weights using hybrid-weight trust-region
optimization, which is progressively updated to automate
weight-tuning optimization. This design of hybrid-weight
optimization enables the use of both expert demonstrations
and domain knowledge for learning an effective policy that
takes into account of both experts (e.g., driver) and desired
constraints (e.g., reaching the goal without collision). The
second element of IRL-HC is curriculum learning, which
has been shown effective in improving RL agents’ perfor-
mance [4]. Our key insight is that the trust-region is naturally
linked to the estimation of the task learning progress—which
can then be used to determine the difficulty of the task
curriculum that is built on the maximum step size for the
learner to progress on the expert’s trajectory.

In summary, we introduce a novel, efficient IRL frame-
work consisting of hybrid-weight trust-region optimization
and curriculum learning (IRL-HC), supported by a mediated-
perception module that provides context-aware multi-sensor
perception, as shown in Fig. 1. It offers several advantages:

• Hybrid-weight trust-region optimization improves upon
IRL [2] by imposing non-uniform priors on task-critical
features, e.g., collision avoidance and goal-seeking,
incorporating both expert demonstration and domain
knowledge to automate weight tuning effectively;

• Curriculum learning retains important lessons through
increasingly difficult RL to task learning, thus improv-
ing overall training efficiency and performance;

• Curriculum learning also utilizes the hybrid-weight
trust-region optimization to assess curriculum difficulty;

• IRL-HC is further compatible with domain-dependent
techniques, such as learn-from-accident [5], which gen-
erate safe trajectories, further boosting the overall per-
formance in autonomous driving.

https://gamma.umd.edu/researchdirections/autonomousdriving/eirl/


Fig. 1. System Pipeline (LEFT). At each time step, the vehicle/simulator generates unstructured data such as images and point clouds. These data
are processed by the perception module to produce structured data, which are then used by the IRL-HC module to learn a control policy for autonomous
driving. IRL-HC training process (RIGHT). We compute the expert trajectories offline. Next we use hybrid-weight trust-region optimization to obtain
a new reward function, which is then used to compute the feature expectation of a learned policy online. The curriculum difficulty will also be updated
progressively, according to the trust-region updating rules that assess the learned task difficulty.

The effectiveness and efficiency of IRL-HC are demon-
strated in a variety of experiments. To show IRL-HC can
work without perfect perception (i.e., use ground-truth data),
we run IRL-HC in the autonomous system described in
Sec. III-A. Overall, our method can enable the vehicle to
drive safely up to 10x further than existing SOTA methods,
assist in reducing the number of collisions up to 48%, and
2.8x faster training. In addition to the statistical results, we
show that IRL-HC can steer the vehicle to avoid both static
and dynamic obstacles, even in the presence of a narrow
passage (see project website).

II. RELATED WORK

Various methods [6], [7] have been proposed to address the
perception, planning, and control of an autonomous vehicle
(AV). Examples of the end-to-end approach include end-
to-end reinforcement learning [8] and end-to-end imitation
learning [5], [9], [10], [11], [12]. These approaches usually
require a large amount of training data in order to be robust
in rare cases, such as pre-accident scenarios. In addition, the
use of deep neural networks in these approaches to directly
map raw sensor data to control commands can lead to low
model interpretability.

Examples of the mediated-perception approach include
perception plus motion planning [13] and perception plus
learning-based planning [9]. Because of the decomposition
of perception and navigation, these approaches enjoy better
model interpretability, hence improved driving safety. Re-
cently, Li et al. propose ADAPS [5], an end-to-end imita-
tion learning framework that enables an AV to learn from
accidents. Compared to ADAPS, our work proposes a new
architecture that can generalize better as it is based on RL
rather than supervised learning for imitating the expert.

As an effective technique for imitation learning, IRL in-
volves two steps: 1) learning a reward function from experts’
demonstrations and 2) using the acquired reward function for
RL to learn a control policy [2]. To provide some examples,
Sharifzadeh et al. [14] apply Deep Q-Networks to extract a
reward function in large state space. You et al. [15] use deep
neural networks to approximate the latent reward function

of the expert and then apply deep Q-learning to obtain the
control policy.

Maximum entropy IRL [16] provides a probabilistic ap-
proach based on the entropy concept. Hierarchical guid-
ance [17] leverages the hierarchical structure of the un-
derlying problem to integrate different modes of expert
interactions. Guided Cost Learning [18] uses a nonlinear
cost function and guided sampling strategy. GAIL [19]
draws the analogy between imitation learning and generative
adversarial networks and develops an effective model-free
imitation learning for complex, high-dimensional tasks. Max-
imum entropy deep IRL [20] combines neural networks and
traditional IRL. Another work [21] proposes a scalable IRL
algorithm based on an adversarial reward learning process.
Brown et al. [22] study the suboptimal demonstrations in
IRL. Some recent studies [3], [23] explore the feature design
in IRL to better meet human’s intention. Compared to other
IRL-based methods, our approach incorporates both expert
demonstrations and domain knowledge to design an effective
initial reward function for obtaining an effective policy
via hybrid-weight trust-region optimization and curriculum
learning. Our framework can also be used with feature
design [3], [23] at ease.

Curriculum learning for RL has gained much attention
recently [4], [24]. Early studies use curricula for tasks such
as grammar learning [25] and robotics control problems [26].
Some well-known work such as AlphaGo [27] implicitly use
curricula to guide training. Narvekar et al. [28] propose a
meta-MDP to select tasks for the learning agent. Recently
Song et al. [29] propose a three-stage curriculum RL to train
an autonomous racing agent.

III. APPROACH

A. Framework Overview

Our framework combines context-aware multi-sensor per-
ception and inverse reinforcement learning with hybrid-
weight trust-region optimization and curriculum learning
(IRL-HC). The perception module takes multiple sensors
input and produces structured data, which are then used by
IRL-HC to learn a control policy, see Fig. 1 (LEFT).



We assume that the AV can obtain a global map from an
external service, and compute its position and rotation with
on-board GPS and Inertial Measurement Unit (IMU). We
further assume that the AV knows beforehand a few sparse
waypoints on its path to the goal, and the task of the AV is
converted to reach the waypoints consecutively.

Our perception module can produce semantic-rich struc-
tured data to learn a reward function by utilizing the context-
aware semantic information. Features with clear semantic
interpretations can help construct non-linear features such as
“whether there is a car in front within 3 meters”, resulting
in more flexible decision-making. This is particularly useful
considering that IRL restricts the reward function to be a
linear combination of the features.

The IRL-HC training process, shown on the right of Fig. 1,
consists of an offline step and an online step. In the offline
step, we use a planning algorithm as the expert to generate
driving trajectories. In the online step, we learn the feature
weights with hybrid-weight trust-region optimization given
the expert’s policy and the learned policy at the current
iteration and non-uniform prior. Then, we construct a reward
function using the learned feature weights. The difficulty
of curriculum will be updated according to the trust-region
updating rule. By further adopting the notion of learn from
accidents [5], we use the resulting (additional) training data
along with the newly constructed reward function for RL to
update the learned policy. Inspired by transfer learning [30],
the model parameters from the previous iteration are used as
a starting point in continue training.

B. Context-aware Multi-sensor 3D Perception

We simulate three RGB cameras for the front-view, left-
view, and right-view, respectively, as well as a 360-degree
Lidar of the AV. We combine one RGB image and the point
cloud on each side to detect nearby vehicles. Then, we merge
the results from all sides to obtain an overall view. The
module works as follows.

First, it generates the front-view data, which contain
segmentation and depth maps, and bird’s-eye-view image
from the point cloud. By having the calibration data between
the Lidar and camera, we can then align the front-view
data with the RGB images. Next, we combine and feed the
aligned front-view data with the RGB images into the feature
extractor to obtain the front-view feature map. We apply
the same procedure for the bird’s-eye-view image to obtain
the bird’s-eye-view feature map. We use the region proposal
network (RPN) [31] and detection network from AVOD [32]
to obtain the perception results for the front-view. Similarly,
we obtain the perception results for the left-view and right-
view. Finally, we merge all perception results together using
the extrinsic calibration data of the three cameras. The output
of the perception module contains 3D bounding boxes and
types of nearby dynamic obstacles. Our approach can also be
extended to detect static obstacles when needed. The context-
aware, multi-sensor 3D perception detects different types of
information to produce features used by IRL.

C. IRL with Hybrid-weight Trust-region Optimization

We first review original IRL, point out some issues with
IRL, then present our solution by extending the trust-region
optimization to our scenario. To the best of knowledge, our
method is the first one that can take advantages of both
demo (expert data) and domain knowledge (reward function),
leading to overall better performance.

The original IRL achieves imitation learning
by first computing the expert’s feature expectation
�̂(�E) = 1

m

Pm
i=1

P∞
t=0 


t�(s
(i)
t ), given m trajectories

fs(i)
0 ; s

(i)
1 ; : : : gmi=1 from the expert’s policy �E , the discount

factor 
, and the feature vector �(�). Then, IRL learns w
(w 2 Rk and kwk1 � 1) given � at the current iteration
and �E , and synthesizes a reward function R(s) = w � �(s),
where s is the state of the environment. Next, the policy �
is re-learned using RL. This iterative process continues until
k�(�) � �̂(�E)k2 � �. The final policy is selected among
all learned policies from all iterations.

The features used by IRL-HC are based on structured
data from the perception module, which include bounding
boxes of nearby vehicles and static obstacles in the scene.
See detailed feature list in Sec. IV.

One fundamental limitation of IRL is that it imposes a
uniform prior on all features, causing small weights to be
possibly assigned to some crucial features during the learning
process. For example, in the context of driving, we find that
the feature collision can receive a small weight as a result of
any collision behavior of the AV will terminate a training
episode. This limitation of IRL can lead to subpar task
performance (see Sec. IV-C). To give an example, the expert
can drive the car safely (without any collision), while a ran-
domly initialized policy can hardly drive the car far without
collision. In this case, the feature expectation of the expert
is calculated using extended, “global” trajectories, while the
feature expectation of the learned policy is calculated using
short, “local” trajectories. This discrepancy is likely to cause
some important features to receive small weights during the
minimization process of the feature expectations in IRL. A
concrete example of this phenomenon from our experiments
is shown in Table I.

TABLE I
Limitations of IRL. IRL LEARNS FEATURE WEIGHTS w BY MINIMIZING

THE DIFFERENCE OF FEATURE EXPECTATION BETWEEN THE EXPERT’S

POLICY �(�E) AND A RANDOM POLICY �(�0). WHILE BOTH POLICIES

HAVE SMALL EXPECTATIONS FOR THE FEATURE collision, THE ACTUAL

TRAJECTORY FROM THE EXPERT’S POLICY CAN BE MUCH LONGER THAN

THE TRAJECTORY FROM A RANDOM POLICY. AS A RESULT, IRL
ASSIGNS A NEGLIGIBLE WEIGHT TO collision (I.E., −5:34e− 06).

feature left dist. front dist. right dist. ... collision
weight 0:113 0:184 −0:124 ... -0.00000534
�(�E) 139:14 369:50 25:84 ... 0
�(�0) 40:31 216:06 142:87 ... 0:005

To alleviate the aforementioned limitation of IRL, we
propose an approach that not only incorporates a non-
uniform prior on the features by allowing users to specify



the weights of certain features for ensuring essential prop-
erties of a task, e.g., collision for driving, but also uses
a hybrid weight tuning to update the policy so that the
vehicle can adapt to different environments while maintain-
ing desired behaviors. Formally, the overall weights w =
[wm; wl] consist of empirically-initialized weights wm =
[w1; : : : ; wk] and the weights to be learned from scratch wl =
[wk+1; wk+2; : : : ; wn], where n is the total number of fea-
tures. To achieve an optimal policy in diverse environments,
we use trust-region optimization [33] to automatically tune
wm by avoiding violent exploratory behaviors. Specifically,
in the ith iteration, we first try to update � and w by solving
the following quasi-convex optimization program:

�(i) = max
w(i+1):‖w(i+1)‖2≤1

‖w(i+1)
m −w(i)

m ‖2≤�

f min
j∈{0;:::;i}

(w(i+1))T (�(�E)��(�(j)))g;

(1)
where � is the trust-region radius (� = �(i)). The ratio
�(i)=�(i−1) is used to determine the acceptance of the newly
updated w. Since the predicted upper bound of �(i)=�(i−1) is

np
n2+(1−
)2�2

[2], we set the acceptance condition to

�(i)

�(i−1)
� � np

n2 + (1� 
)2�∗2
; (2)

where � < 1 is the threshold parameter. If the condition is
failed, we drop the newly found w, and update � and w by
solving Eq. 1 with � = 0. As the last step of one iteration,
we update � as follows:

�(i+1) =

8<:
min(cu�(i); bu) Eq: 2 met
max(cl�

(i); bl) Eq: 2 failed p times
�(i) otherwise

(3)

where bu and bl are the upper- and lower-bound of the trust-
region radius, and cu > 1 and cl < 1 are the coefficients.

Additionally, IRL retrains � at each iteration, such a
process can be inefficient. In IRL-HC, we improve the
training efficiency by using the learned model parameters
�(i) of �(i) at the ith iteration as the initial parameters for
training �(i+1) at the (i+ 1)th iteration. The whole learning
process stops when k�(�)� �̂(�E)k2 < �.

In many cases, we can design a reward function to incorpo-
rate domain knowledge. For example, in autonomous driving
we want the vehicle to reach the goal without collision; an
example reward function could be r = w1g�w2c, where g is
the “goal-reaching” flag, c is the collision flag, and w1 and
w2 are positive coefficients. In complex scenarios such as
our city environment, however, such a naive reward function
does not work well: sometimes learned policy will let the
car stop there forever to avoid collision, or run in a circle in
a very small area (keep running without collision but cannot
achieve the goal). In this case, we can learn from expert
demonstrations to complete the task.

We can represent any reward function as a sum of its lin-
ear/nonlinear components. To set the initial reward function
for IRL-HC, we add each component of the reward function
into the feature vector �(�) and add the corresponding

Algorithm 1: Inverse Reinforcement Learning with
Hybrid-weight Trust-region Optimization and Cur-
riculum Learning (IRL-HC)

Result: policy �(i)

Initialization: Calculate �(�E) with expert
trajectories;

Set i = 0, set �; 
; �; bu; bl; cu; cl; p; eu; Nu;
Randomly set the model parameters �(0) for �(0);
Compute �(�(0));
Set w(0)

m such that kw(0)
m k2 < 1 (initial reward

weights), w(0)
l = 0;

Compute �(0) = (w(0))T (�(�E)� �(�(0))), where
w(0) = [w

(0)
m w

(0)
l ];

Set �(0); n
(0)
s ;

while �(i) > � do
Set i = i+ 1;
Compute the reward function R = ((w(i−1))T�);
Using R, �(i−1), and n(i−1)

s in RL to compute an
optimal policy �(i);

Compute �(�(i));
Solve Optimization 1 with � = �(i−1), and get
solution �(i) at w(i);

if Eq. 2 is True then
Accept �(i) and w(i);

else
Reject, solve Eq. 1 with � = 0, and update
�(i) and w(i);

end
Set �(i) with Eq. 3 (trust-region update);
Set n(i)

s with Eq. 5 (curriculum difficulty update);
end

coefficient into empirically-initialized weights wm. For these
components, since they already contain prior information,
we do not want to aggressively update them (in fact in the
beginning of IRL, aggressively updating feature components
can deteriorate the learning performance because the initial
policy is unstable)—this is achieved via hybrid-weight trust-
region optimization.

Key Insight: Our method is different from manually set-
ting initial weights for IRL. Notice the IRL update the feature
weights by solving an optimization without the previous
feature weights (although the previous feature weights will
influence the feature expectation of the learned policy in
the optimization implicitly, the uncertainty of RL process
will reduce such relation). This means the updated weights
can be quite different from the previous weights. Adding
the trust-region mechanism can bound the weights during
the entire IRL process while allowing tuning within a safe
region. In addition, our method is different from simple re-
weighting mechanism since ours contains an optimization
under different constraints for two sets of parameters.



D. Curriculum Learning with Trust-region

Another problem of IRL is efficiency, since IRL contains
multiple RL training process. We use Sequence Curricu-
lum [4] in IRL-HC to help train IRL, aiming to improve
the performance as well as the efficiency. Observing that the
trust-region implicitly reflects the current learning progress,
we use the trust-region updating criteria (Eq. 2) to determine
when to increase the curriculum difficulty. Specifically, we
use the maximum step number of each trajectory ns as an
curriculum difficulty variable (large ns leads to an increase
of the state space, thus increasing the learning difficulty).
Meanwhile, we also monitor the safe step number of learned
policy at each iteration to show the effectiveness of the policy
learned so far:

nlp � � min(n(i)
s ; nE) (4)

where � < 1 is the threshold parameter, nlp is the safe step
number of the trajectory generated by the learned policy,
nE is the safe step number of the trajectory generated by
the expert. ns will be initialized with a small number and
then increased with the following formula after each round
of hybrid-weight trust-region optimization:

n(i+1)
s =

(
min(eun

(i)
s ; Nu) Eq: 2 and Eq: 4 met

n
(i)
s otherwise

(5)
where eu > 1 is the coefficient and Nu is the upper-bound
of the ns. Notice the curriculum is designed to be gradually
harder, so ns will not decrease, which is different than the
trust-region radius. After the update of ns, the RL process
will use ns and the new reward function given by hybrid-
weight trust-region optimization to update the control policy.
The IRL-HC algorithm is shown in Algorithm 1. In addition,
as the task difficulty gradually increases, we reuse learned
parameters in continue training. This approach enables the
transfer learning between tasks in curriculum learning and
improves the performance of the learning agent.

E. Learn from Accidents

IRL-HC is also compatible with other domain-dependent
techniques. Inspired by ADAPS [5], we adopt learn from
accident to improve the training efficiency. Specifically,
when the car crashes during the online training process,
we will backtrack for certain frames and let the expert
drive for certain frames to avoid collision. Both the crash
and collision-free data will be (re-)used to train the policy.
Essentially, by imposing a non-uniform prior on extracted
features, we can introduce certain expert experience to the
learning process directly. Lastly, the process of learn from
accident can result in both negative examples and positive
examples in learning, leading to better performance and
faster convergence.

F. Framework Design

We have introduced the key components of our frame-
work and here we provide an integrated interpretation as

well as module relation (see Fig. 2). Context-aware multi-
sensor perception converts raw sensor data to structured
information, providing flexibility in choosing features to be
used in the hybrid-weight trust-region optimization. Next,
domain experience (via non-uniform prior) is incorporated
by the optimization program into IRL for improving learning
performance, and provides difficulty measurements for cur-
riculum development. Curriculum learning then generates
tasks with increasing difficulty to further accelerate the
convergence rate of the learning agent. Lastly, learn from
accident provides data for corner cases, balancing the overall
training data distribution.

Fig. 2. Module relation of our framework. The perception module
converts sensor data to various features, which serve as input to the
hybrid-weight trust-region optimization. Subsequently, curriculum learning
is adopted to generate tasks with increased difficulty to train the learning
agent. The learn from accident process further provides training data of
corner cases to balance the data distribution, leading to overall better
performance.

IV. EXPERIMENTS AND RESULTS

In this section, we detail our experiments and results. All
experiments are conducted using Intel(R) Xeon(TM) W-2123
CPU, Nvidia GTX 1080 GPU, and 32G RAM.

A. Overall Performance

We compare IRL-HC to the original IRL, Generative Ad-
versarial Imitation Learning (GAIL) [19], adversarial inverse
reinforcement learning (AIRL) [21], and end-to-end imitation
learning (IM) [34]. We use deep Q-learning with [164,150]
hidden units in each of the 2 dense layers and 20% dropout
rate in all RL-based methods except for GAIL, where we
use TRPO [35] as proposed in the original paper. We also
experiment with Q-learning using more complex network
architectures up to 6 hidden layers, but found [164,150] with
2 hidden layers works the best. The features used in IRL-
based methods are listed in Fig. 3.

The action space contains 25 discrete frotational speed,
accelerationg action pairs using 5 levels of rotational speed
(steering angle) and 5 levels of acceleration (throttle value
and break value). We set policy similarity threshold � = 0:1
and discount factor 
 = 0:99 for both IRL and IRL-HC.
We collect 20,000 steps of the expert trajectory and train




	Introduction
	Related Work
	Approach
	Framework Overview
	Context-aware Multi-sensor 3D Perception
	IRL with Hybrid-weight Trust-region Optimization
	Curriculum Learning with Trust-region
	Learn from Accidents
	Framework Design

	Experiments and Results
	Overall Performance
	Comparison with Other SOTA Methods
	Ablation Study
	Demo Driving Cases

	Conclusion and Future Work
	References

