
Gradient-Free Adversarial Training Against
Image Corruption for Learning-based Steering

Yu Shen
University of Maryland

College Park, MD 20742
yushen@umd.edu

Laura Zheng
University of Maryland

College Park, MD 20742
lyzheng@umd.edu

Manli Shu
University of Maryland

College Park, MD 20742
manlis@umd.edu

Weizi Li
University of Memphis
Memphis, TN 38152
wli@memphis.edu

Tom Goldstein
University of Maryland

College Park, MD 20742
tomg@cs.umd.edu

Ming C. Lin
University of Maryland

College Park, MD 20742
lin@cs.umd.edu

Abstract

We introduce a simple yet effective framework for improving the robustness of
learning algorithm against (input) image corruptions for autonomous driving, due
to both internal (e.g., sensor noises and hardware abnormalities) and external fac-
tors (e.g., lighting, weather, visibility, and other environmental effects). Using
sensitivity analysis with FID-based parameterization, we propose a novel algorithm
exploiting basis perturbations to improve the overall performance of autonomous
steering and other image processing tasks, such as classification and detection, for
self-driving cars. Our model not only improves the performance on the original
dataset, but also achieves significant performance improvement on datasets with
multiple and unseen perturbations, up to 87% and 77%, respectively. A compar-
ative study drawn between our approach and other SOTA techniques confirms
the effectiveness of our technique in improving the robustness of neural network
training for learning-based steering and other image processing tasks.

1 Introduction
Autonomous driving is a complex task that requires many software and hardware components to
operate reliably under highly disparate and often unpredictable conditions. In this work, we study
“learning-based steering” as it contains both perception and control (two most critical components)
for autonomous driving. While on the road, vehicles are going to experience day and night, clear
and foggy conditions, sunny and rainy days, as well as bright cityscapes and dark tunnels. All
these external factors in conjunction with internal factors of the camera (e.g., those associated with
hardware) can lead to quality variations in input data for image-based learning algorithms. One
can harden machine learning systems to these degradations by simulating them at training time [6].
However, an algorithmic tool for analyzing the sensitivity of real-world neural network performance
on the properties of training images is lacking. More importantly, a mechanism to leverage such a
sensitivity analysis for improving learning outcomes needs to be developed. In this work, we quantify
the influence of image quality on the task of “learning to steer,” study how training on degraded and
low-quality images can boost robustness to image corruptions, and provide a systematic approach to
improve the performance of the learning algorithm based on quantitative analysis.

Image degradations can be simulated by varying attributes such as blur, noise, distortion, color repre-
sentations (such as RGB or CMY) hues, saturation, and intensity values (HSV). However, identifying
the correct combination of the simulated attribute parameters to obtain optimal performance on
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Figure 1: Pipeline of our method. Data generation. We generate perturbed datasets of each factor at
multiple levels based on the FID-parameterized sensitivity analysis results. Training process. First stage: in
each iteration, we first augment the training dataset with “adversarial images” given each perturbation; we
then combine the base and perturbed datasets to train our model to maximize the overall performance. A
frequency-space branch is added to the backbone when frequency-related perturbations (e.g., blur, noise) need to
be handled. Second stage: in post-learning, the model is fine-tuned solely on clean data to boost accuracy, while
performing special validation with an early break to maintain the performance on the perturbed data.

real data is a difficult—if not impossible—task, as it requires domain transfer and exploring a high
dimensional parameterized space.

We then design a systematic method for measuring the severity of image degradation and predicting
the impact of such degradation on model performance. Inspired by the use of image feature variance
in sensitivity analysis [33], we measure the difference between real-world image distributions and
simulated/degraded image distributions using Fréchet Inception Distance (FID). Our results confirm
that FID can help predict the performance of a model trained using simulated data and deployed in the
real world. Next, we use FID between different simulated datasets as a unified metric to parameterize
the severity of various image degradations due to different factors.

Borrowing concepts from the adversarial attack literature [28, 35, 43], we build a scalable training
scheme for enhancing the robustness of autonomous driving against various combinations of image
degradations, while increasing the overall accuracy of the steering task on clean data. Our proposed
method constructs a dataset of adversarially degraded images by applying optimization within the
space of possible degradations during training. As shown in Fig. 1, the method begins by training
on a set of real and simulated/degraded images using arbitrary degradation parameters. During
each training iteration, the parameters are updated to generate a new degradation set so that the
model performance is (approximately) minimized. The network is then trained on these adversarially
degraded images to promote robustness. A post-training is applied as the last step to further improve
the performance on clean data without weakening robustness. Our proposed algorithm uses our
FID-based parameterization to discretize the search space of degradation parameters and accelerates
the process of finding optimal parameters.

Experiments show that our algorithm improves the performance of “learning to steer” up to 97% in
mean accuracy over baselines, and especially improves the performance on datasets contaminated
with complex combinations of perturbations (up to 87%). It additionally boosts the test performance
on degradations that are not seen during training, including simulated snow, fog, and frost (up to
77%). We also compare our approach with other SOTA techniques (e.g., data augmentation and
adversarial training) on visual processing tasks such as detection and classification. Our method
consistently achieves higher performance. In addition, our method is easy to implement and can be
readily integrated with other frameworks such as object detection, classification, regression, etc.

Furthermore, we propose a comprehensive robustness evaluation standard under four different
scenarios: clean data, single-perturbation data, multi-perturbation data, and previously unseen data.
While state-of-the-art studies usually conduct testing under one or two scenarios (e.g., ImageNet-
C [20]), our work tests and verify results under four meaningful scenarios. We plan to release code
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and datasets for benchmarking “autonomous driving under perturbations” using, unseen factors such
as image corruptions in ImageNet-C [20], totaling 480 datasets and 26M images.

2 Related Work
The influence of noise and distortion on real images for learning tasks has been well explored. For
example, researchers have examined the impact of optical blur on convolutional neural networks and
present a fine-tuning method for recovering lost accuracy using blurred images [41]. This fine-tuning
method resolves lost accuracy when images are distorted instead of blurred [49]. While these fine-
tuning methods are promising, Dodge and Karam [11] find that tuning to one type of image quality
reduction effect would cause poor generalization to other types of effects. The comparison of image
classification between deep neural networks and humans shows similar performance on good-quality
images [12]. However, deep neural networks struggle significantly more than humans on low-quality,
distorted, and noisy images. One study shows that adversarial perturbations are more prevalent in the
Y channel in the YCbCr color space of images than the other two channels, while perturbations in
RGB channels are equally distributed [29]. Wu et al. [42] studies the effect of Instagram filters on
learning tasks, and introduces a lightweight de-stylization module that predicts parameters used for
scaling and shifting feature maps to “undo” the changes incurred by filters.

Researchers have also explored how to improve the robustness of learning algorithms under various
image quality degradations. One recent work provides a novel Bayesian formulation for data
augmentation [39]. Cubuk et al. [9] proposes an approach to automatically search for improved data
augmentation policies. Ghosh et al. [17] analyzes the performance of convolutional neural networks
on quality degradations due to compression loss, noise, blur, and contrast, and introduces a method to
improve the learning outcome. Another work [21] shows that self-supervision techniques can be used
to improve model robustness and exceeds the performance of fully supervised methods. A recent
method, AugMix [22] improves model robustness using data augmentation, where transformation
compositions are used to create a new dataset that is visually and semantically similar to the original
dataset. AugMix is compared to several other augmentation methods, which comprise Cutout [10],
MixUp [45], and CutMix [44]. Gao et al. [14] proposes a technique to re-purpose software testing
methods to augment the training data of DNNs, with the objective to improve model robustness. A
recent work improves model generalizability by first augmenting the training dataset with random
perturbations, and then minimizing worst-case loss over the augmented data [18].

Our work differs from these studies in several regards. First, we simulate adversarial conditions of
image factors instead of using commonplace image conditions. Second, we conduct a systematic
sensitivity analysis for preparing datasets that are representative of image degradations from multiple
factors at various levels. Third, our algorithm can work with the discretized parameter space while
generalizing well to the continuous parameter space. Another advantage of our approach is that we
can augment the training dataset without the derivatives of the factor parameters, which may not exist
or are difficult to compute.

3 Background and Setup
Task. Our target task is end-to-end steering: given a single image as input (e.g. captured by a
front-facing camera on a self-driving car), output a steering angle that drives the car safely on the
road [4]. A steering angle of 0 represents the forward direction. We use mean accuracy (MA) to
evaluate the task since it represents overall performance under a variety of measures (See Sec. 5).

Datasets. We choose four real-world driving corpuses as our datasets: Audi [16], Honda [31],
Waymo [37], and SullyChen [7]. The Audi dataset is the most recent (2020); the Honda dataset has
100+ long-time driving videos; Waymo includes many environmental conditions such as weather and
lightening and is a large dataset (390k frames for perception); and the SullyChen dataset focuses
on the steering task and has the longest continuous driving image sequence without road branching.
The details of these datasets are provided in Appendix A.3. Other datasets, such as CIFAR-100, for
various computer vision tasks are also used to demonstrate the generalizability of our technique.

Basis perturbation. We study nine basis perturbations: blur, noise, distortion, three-color (RGB)
channels, and hues, saturation, and intensity values (HSV). Blur, noise, and distortion are among the
most commonly used perturbations that can directly affect image quality. R, G, B, H, S, V channels
are chosen because they are frequently used to represent image color spaces: RGB represent three
basic color values of an image, while HSV represent three common metrics of an image. Other color
spaces such as HSL or YUV have similar properties, hence are excluded.
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Figure 2: Example images of quality degradation. Left: Five levels of quality reduction using the blur, noise,
and distortion effects (three levels are shown). Right: The original images are shown in the middle row. The
top row shows examples in the lighter direction per channel for R, G, B, H, S, V, while the bottom row shows
examples in the darker direction per channel.

We use Gaussian blur [2] (parameterized by standard deviation), additive white Gaussian noise
(AWGN) (parameterized by standard deviation), and radial distortion [47, 48] (with radial distortion
parameters k1, k2). For representing channel-level perturbations, we use a linear model: denote the
value range of one channel C as [aC , bC ], in the darker direction, we set v′C = αaC + (1− α)vC ,
while in the lighter direction, we set v′C = αbC + (1− α)vC , where α is the severity parameter, vC
is the pixel value on clean image and v′C is the perturbed pixel value. The default values are aC = 0
and bC = 255, with two exceptions. We set aV = 10 to exclude a complete dark image on V channel,
and bH = 179 according to H channel definition. See examples in Fig. 2 and detailed description in
Appendix A.2.

Test scenarios. While other studies usually test in only one or two scenarios [20], we test the
performance of all methods in four scenarios with increasing complexity. Scenario 1: Base dataset.
Test on the base dataset. Scenario 2: Single perturbation. Test on the datasets with perturbations, but
each dataset only experiences one level of one perturbation (within blur, noise, distortion, R, G, ,B,
H, S, V). Scenario 3: Combined perturbations. Test on the datasets with combinations of various
perturbations at different levels, and each dataset has different levels of all perturbations. Scenario 4:
Unseen perturbation. Test on the datasets with unseen perturbations at different levels. Specifically,
we use “motion blur”, “zoom blur”, “pixelate”, “jpeg compression”, “snow”, “frost”, “fog” from
ImageNet-C [20]. We apply the same perturbations/levels to all images within one dataset. (See
details in Appendix A.1).

4 Improving Robustness of Learning-based Steering

In this section, we introduce our gradient-free adversarial training method to improve the robustness
of learning-based steering using Sensitivity Analysis. Our method is among the first to treat complex
unforeseen perturbations as a functional combination of multiple simple “basis perturbations”. As a
result, the robustness of a model to several individual perturbations can lead to robustness against
combined or unseen perturbations. In addition, via discretized sensitivity analysis, our approach is
the first to use FID to enable cross-factor performance comparison, i.e., making task sensitivity w.r.t
different perturbations comparable. Meanwhile, sensitivity analysis helps minimize the discretization
level number, thus speed up the adversarial training process.

4.1 Basis Perturbations
There are various types of image corruptions due to different environmental effects or sensor variations,
and often these corruptions can be approximated using a combination of basis perturbations, e.g.,
snow/frost may be simulated using water drop corruptions, Gaussian blur, and image whitening.
Inspired by the concept of basis function, we explore the possibility of training a model on a few
“basis perturbations” and the resulting model is robust against complex perturbations.

Our basis perturbation contains “basis” representations of the color space in RGB and of image
metrics in HSV, which span color and intensity/brightness spaces, respectively. Blur and noise are
designed to produce low and high frequency corruptions, while distortion captures the 2D positional
transformation that may appear from small vibrations and motions of a camera. See comparison of
different basis perturbations in Appendix. A.2. We also introduce two metrics to evaluate how well a
training method can enable a model to perform on combined perturbations and previously unseen
perturbations when learning only on single perturbations. Using basis perturbations to represent
image corruption, we then design an algorithm to train neural networks to cope with quality-degraded
images as input for autonomous driving.
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Figure 3: The relationship between FID and MA differences. GD/GL denotes G channel in darker/lighter
direction, and VD/VL denotes V channel in darker/lighter direction, respectively. Sensitivity is represented by
the first-order derivative of the curve. Note that the values in the near-zero FID range (i.e., < 50) are more
commonly found in real-world scenarios.

4.2 Sensitivity Analysis
We use an adversarial training process in which we optimize corruption parameters to maximally
disrupt model performance. If this was done using gradient optimization, it would require us to
differentiate through the corruption operator to update the parameters describing the corruption. Not
all gradients of basis perturbations can be easily derived, and corruptions such as distortions may have
parameters with non-differentiable effects. Rather than rely on gradient optimization, we introduce
an simple, discretized gradient-free method. We use Sensitivity Analysis (SA) to evenly discretize
the space of parameters; we choose a discrete subset of values for each parameter that are equally
"far apart" in terms of their impacts on the classifier. This is achieved using the Fréchet Inception
Distance (FID) [23] to perform SA across a range of corruption types.

SA is commonly used to understand how the uncertainty of the model output (numeric or otherwise)
can be apportioned to different sources of uncertainty of the model input [32, 33]. Here, we use SA
to study how distortions to model input (blur, noise, distortion, and RGB/HSV brightness shifts)
can be apportioned to model output. We also use SA to quantify the level of degradation caused by
an corruption, and prepare datasets that are representative of image qualities at various degradation
levels.

We adopt the Fréchet Inception Distance (FID) [23] as a unified metric for our SA (The reasons for
adopting FID and a quantitative comparison between FID and other metrics such as L2 norm can be
found in Appendix A.4). In addition, we focus on the changes in model performance according to the
changes in input and define the sensitivity as the first-order derivative of MA w.r.t FID:

sensitivity =
∂MA∗(R⊕ F (p))
∂FID(R,R⊕ F (p))

,

where MA∗(D) is the MA test result on dataset D with the model trained on the base dataset R;
FID(A,B) is the FID between dataset A and dataset B (where FID is calculated in its standard
formulation using a pretrained InceptionV3 network [23]); F (p) is the perturbation with parameter
p (e.g., the standard deviation of the Gaussian kernel), and D ⊕ F denotes the dataset obtained by
applying perturbation F to D.

Starting from empirically-selected parameters of each factor, we generate perturbed datasets and
compute their corresponding MA using the trained model onR (see numeric results in Appendix A.9).
We then map the MAs and their corresponding parameter values into the FID space. By leveraging
this new MA-FID space, we aim to minimize the number of sampled parameters for each perturbation
for efficient training (see Sec 4.3), while preserving similar parameter curves. At a high level, we
sample points more densely in the value range that has high sensitivity (closer FID values between
sample points), while sampling points sparsely in the value range that has low sensitivity (See
specific equation in Appendix. A.4). Examples of the resulting images are shown in Fig. 2 (more in
Appendix A.1). Detailed descriptions of the final perturbed datasets are provided in Appendix A.2.

The final MA differences in the FID space are visualized in Fig. 3 (for blur, noise, distortion, and G
and V channels; see the entire figure in Appendix A.4). We first observe that learning-based steering
is more sensitive to the channel-level perturbations (i.e., R, G, B, H, S, V) than the image-level
perturbations (i.e., blur, noise, distortion). Second, the task is least sensitive to blur and noise but
most sensitive to the V channel (the intensity value). Third, for the same color channel, darker and
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lighter levels appear to have different MAs at the same FID value. Compared to other “learning
to steer” studies [38, 46], our method is the first to transfer perturbations from multiple parameter
spaces into one space to enable cross-factor comparison.

4.3 Gradient-Free Adversarial Training

Our training process consists of two stages. In the first stage, we use iterative min-max training. At
each iteration, we first choose one dataset from the datasets (with different quality degradations) of
each basis perturbation (i.e., R, G, B, H, S, V, blur, noise, and distortion) to minimize validation MA,
then we merge the nine chosen datasets with the base dataset to train our model while maximizing
MA. The first stage stops when a pre-specified number of iterations is reached or the MA loss is below
a certain threshold. Our method resembles conventional adversarial training: we improve model
robustness by training the model to maximize accuracy using the base dataset plus the perturbed
datasets with the minimum accuracy. The loss function is the following:

max
θ

min
p
MA(θ, Up),

where p represents the union of all parameter levels of all basis perturbations; θ denotes the model
parameters; and Up is the training dataset. Furthermore, we add a branch in the frequency space to
the backbone network to address frequency-related perturbations such as blur and noise (See details
in Appendix. A.5). The effectiveness is demonstrated in our ablation study (see Table 1).

The second stage is to boost “clean” accuracy, where the model is fine-tuned solely on the base
dataset. To maintain the performance on perturbed datasets, we terminate this stage if the overall
validation accuracy start to decrease; otherwise, we continue this stage until it reaches the maximum
number of iterations or the MA loss decreases to our expected threshold. See Algorithm 1. (Detailed
explanations and the ablation study of the second stage are provided in Appendix A.6.)

Algorithm 1: Improve robustness of learning-based steering
Result: a trained model parameterized by θ
Pre-processing:
Conduct sensitivity analysis and discretize the parameters of n factors into their corresponding
li=1,...,n levels (Sec. 4.2)

Generate new datasets for each factor with the discretized values from the base dataset R (Sec. 3
Basis Perturbation): {Di,j}i=1,2,..,n,j=1,2,..li

Initialization:
Initialize t = 0, the maximum number of iterations T , the number of epochs k1 and k2, and
model parameters θ(0)

First stage:
while t ≤ T do

For each factor, select Di,pi that can minimize the validation MA, where
pi = argminjMA(θ(t), Di,j)

Merge all selected datasets Up = (
⋃n
i=1Di,pi)

⋃
R

Train the network for k1 epochs and update θ(t+1) = train(θ(t), Up, k1) to maximize
MA(θ(t+1), Up)

Break if stop conditions are met; otherwise set t = t+ 1
end
Second stage:
Train the network with θ(final) = train(θ(T ), R, k2) and validate the network on Up (for k2

epochs or early break if conditions are met)

Our method offers several advantages: 1) the training data is augmented without re-train the model,
thus improving efficiency; 2) it provides the flexibility to generate datasets at various discretized levels
of the factor parameters; 3) it does not require the derivatives of factor parameters; other methods
that optimize factor parameters in the continuous space require computing derivatives, which can be
difficult (e.g., for distortion); 4) it generalizes to not only unseen parameters of individual factors but
also the composition of unseen parameters of multiple factors; and 5) it is easy to implement and can
be readily integrated with other frameworks such as object detection, classification, and regression.
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5 Experiments and Results

Setups. All experiments are conducted using one Intel(R) Xeon(TM) W-2123 CPU, two Nvidia GTX
1080 GPUs, and 32G RAM. We use the Adam optimizer [24] with learning rate 0.0001 and batch
size 128 for training. The maximum number of epochs is 2,000. The dataset setup is explained in
Sec. 3. We use the maximum MA improvement (MMAI), the average MA improvement (AMAI),
and mean Corruption Errors (mCE) [20] as the evaluation metrics.

Backbone. We choose the model described in [4] as the main backbone. We select this model
as it has been used to steer an autonomous vehicle successfully in both real world [4] and virtual
world [25]. In addition, six other networks are tested to show the generalizability of our method.

Evaluation metrics. We define the accuracy w.r.t a threshold τ as accτ = count(|vpredicted −
vactual| < τ)/n, where n denotes the number of test cases; vpredicted and vactual indicate the
predicted and ground-truth value, respectively. We compute mean accuracy (MA) as

∑
τ accτ∈T /|T |,

where T = {1.5, 3.0, 7.5, 15, 30, 75} contains empirically selected thresholds of steering angles.
Lastly, we use the maximum MA improvement (denoted as MMAI), the average MA improvement
(denoted as AMAI), and mean Corruption Errors (mCE) [20] as the evaluation metrics.

Scenarios

Clean Single Perturbation Combined Perturbation Unseen Perturbation

Method AMAI↑ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓
Data Augmentation -0.44 46.88 19.97 51.34 36.1 11.97 75.84 27.5 7.92 81.51
Adversarial Training -0.65 30.06 10.61 74.42 17.89 6.99 86.82 16.9 8.17 89.91

MaxUp -7.79 38.30 12.83 66.56 26.94 16.01 72.60 23.43 5.54 81.75
AugMix -5.23 40.27 15.01 67.49 26.81 15.45 68.38 28.70 8.85 87.79

Ours w/o FS 0.93 48.57 20.74 49.47 33.24 17.74 63.81 29.32 9.06 76.20
Ours 2.12 49.97 23.92 37.30 33.15 22.12 54.38 33.16 13.81 61.61

Table 1: Performance of different methods against the baseline [4] on SullyChen dataset. We compare the
basic data augmentation method (simply combine all perturbed datasets into training), an adversarial training
method [36], MaxUp [18], and AugMix [22]. Overall, our method outperforms all other methods (i.e., highest
MA improvements and lowest error in mCEs) in practically all scenarios. Notice ours w/o FS (without frequency
space) also outperforms other techniques.

Comparison with different methods. We compare our method with four other methods: an adver-
sarial training method [36], a basic data augmentation method, MaxUp [18], and AugMix [22], to see
the performance improvement over the baseline method [4]. For the basic data augmentation method,
we simply merge all perturbed datasets for model training.

From Table 1, we observe that our method outperforms other methods under all metrics in all
scenarios: not only on the clean dataset but also on perturbed datasets. Notably, our algorithm
improves the performance of “learning to steer” up to 50% in MMAI, while reducing mCE by 60%
over the baseline (Scenario 2). Our method also improves the task performance using the combined
datasets (Scenario 3) up to 33%. Lastly, when tested on unseen factors (Scenario 4), our algorithm
maintains the best performance by 34% in MMAI, while reducing mCE to 62%.

Compared to AugMix [22], our adversarial approach can select the most challenging datasets for
training, thus improving model robustness. MaxUp [18] selects only the worst case among all
augmentation data, which may lead to the loss of data diversity. In contrast, our method selects the
worst cases in all perturbation types (i.e., one dataset per factor), thus improving generalizability.
Compared to [36], which performs an adversarial process on the entire pixel space with only norm
constraints, our method is able to utilize vast prior information generated by sensitivity analysis to
reduce the search space. Lastly, compared to the basic data augmentation method, which uses all
generated data in training, our method selects the most useful data for training, and thus improves
computational efficiency while minimizing data generation.

Comparison with different backbones. We test three backbones: Nvidia network [4], Comma.ai
network [34], and ResNet152 [19], on the Honda dataset. The results shown in Table 2 indicate that
our method outperforms AugMix in most cases. In general, our method achieves better performance
on shallow networks than deep networks. But even on very deep networks such as ResNet152, our
method achieves more than 5% improvement in all cases, except Scenario 1.
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Scenarios

Clean Single Perturbation Combined Perturbation Unseen Perturbation

Method AMAI↑ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓
AugMix+Nvidia -0.12 40.64 10.94 76.48 25.97 16.79 64.41 22.23 5.99 84.95

Ours+Nvidia 2.48 43.51 13.51 67.78 28.13 17.98 61.12 16.93 6.70 80.92
AugMix+Comma.ai -5.25 55.59 9.56 86.31 31.32 0.77 106.1 37.91 7.97 89.99

Ours+Comma.ai 0.36 62.07 15.68 70.84 38.01 0.74 108.32 42.54 12.15 77.08
AugMix+ResNet152 -4.23 20.84 1.45 96.24 12.21 6.71 80.19 15.40 2.87 97.62

Ours+ResNet152 -0.96 24.29 5.19 79.76 16.05 8.02 75.16 16.58 5.33 85.68

Table 2: Performance improvement of different backbones against the baseline performance using the Honda
dataset. Our method outperforms AugMix in most cases. Notice that the methods with ResNet152 do not
improve as much as the first two networks (since the ResNet152 baseline already has high performance).

Scenarios

Clean Single Perturbation Combined Perturbation Unseen Perturbation

Method AMAI↑ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓
AugMix on SullyChen -5.23 40.27 15.01 67.49 26.81 15.45 68.38 28.70 8.85 87.79

Ours on SullyChen 1.46 49.76 22.87 40.84 33.15 22.12 54.38 33.87 13.51 62.50
AugMix on Audi -8.24 81.89 32.22 55.27 75.49 50.23 41.98 73.06 27.39 77.51

Ours on Audi 5.98 97.57 48.50 10.27 87.56 62.38 25.80 77.22 32.71 39.14
AugMix on Honda10k -0.12 40.64 10.94 76.48 25.97 16.79 64.41 22.23 5.99 84.95

Ours on Honda10k 2.48 43.51 13.51 67.78 28.13 17.98 61.12 16.93 6.70 80.92
AugMix on Honda100k -11.41 63.85 14.08 70.64 68.95 47.69 40.12 61.68 16.32 88.36

Ours on Honda100k -2.55 67.35 19.88 53.26 65.10 48.60 36.94 51.90 18.29 72.84
AugMix on Waymo 18.27 45.40 23.30 59.31 22.95 16.92 66.36 57.65 29.10 55.63

Ours on Waymo 20.34 46.85 26.76 52.84 21.34 18.24 64.58 56.98 31.12 53.18

Table 3: Performance improvement of different datasets with different sizes against the baseline using the
Nvidia backbone. Our method outperforms AugMix considerably in most cases.

Comparison on different datasets. To demonstrate that our method does not overfit a particular
dataset, we experiment four independent datasets: Audi [16], Honda [31], SullyChen [7], and
Waymo [37]. We use the Nvidia network as the backbone for these experiments. Table 3 shows
that our method achieves consistently better performance across all four datasets. Furthermore, our
method obtains up to 97%, 87%, 77% accuracy improvement on the single, combined, unseen
perturbations, while achieving 90%, 74%, 61% relative error reduction in some cases, respectively.
Performance on other image processing tasks. To show the generalizability of our method, we test
it on classification using CIFAR-100. For a fair comparison, we use the same setting as of AugMix
(i.e., same perturbations, training and testing data, backbone, and code). As shown in Table 4, our
method consistently outperforms all backbones, reducing 16.3% to 34.1% in mean errors. The data
for other methods come from the AugMix paper [22]. We also test our method on detection in driving.
Specifically, we use the Audi dataset [16] and the Yolov4 network [3] as base settings, and implement
ours based on Yolov4. The result shows that our algorithm improves robustness in most scenarios
(about 3%-5% mAP on average). See Appendix A.7.

Decoupling Ratio and Generalization Ratio. We propose two new metrics to evaluate how well a
training method can allow a model to perform on combined perturbations and unseen perturbations
respectively, while only learning on single perturbations one at a time.

Definition 5.1 (Decoupling Ratio) Let MA(D1, D2) be the mean accuracy (MA) result of a model
trained on dataset D1 and test on dataset D2. Let P ∗i (D) be the ith (i = 1, ..., n) perturbation taking
dataset D as input and producing a perturbed dataset. Let NP ∗(D) = P ∗n(P

∗
n−1(...P

∗
1 (D))...)

(datasets with combined/nested perturbations), UP ∗(D) =
⋃n
i=1 P

∗
i (D) (the union of datasets with

single perturbations), Dtr be the training set, and Dte be the test set, then the decoupling ratio is

rd =
MA(UP ∗(Dtr), NP

∗(Dte))

MA(UP ∗(Dtr), UP ∗(Dte))
.

rd = 1 means when the model is trained using the union of single-perturbation images, the test
performance on combined-perturbation images (not training domain) can be as good as the test
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Standard Cutout Mixup CutMix AutoAugment* Adv Training AUGMIX Ours

AllConvNet 56.4 56.8 53.4 56.0 55.1 56.0 42.7 25.6
DenseNet 59.3 59.6 55.4 59.2 53.9 55.2 39.6 26.3

WideResNet 53.3 53.5 50.4 52.9 49.6 55.1 35.9 20.5
ResNeXt 53.4 54.6 51.4 54.1 51.3 54.4 34.9 15.4

Mean 55.6 56.1 52.6 55.5 52.5 55.2 38.3 22.0

Table 4: Average classification error (in %) across several architectures. Our method is able to reduce mean
corruption errors than the previous SOTA methods by 16.3%-34.1% on CIFAR-100-C data.

performance on the union of single-perturbation images (training domain). Note that different models
and training methods may influence the MA function, thus potentially affecting the decoupling ratio.

Definition 5.2 (Generalization Ratio) Keeping the definitions of MA(D1, D2), P ∗i (D), Dtr, Dte,
and UP ∗(D) as of Decoupling Ratio, let Q∗j (D) be the jth (j = 1, ...,m) perturbation where
P ∗i 6= Q∗j , and UQ∗(D) =

⋃m
j=1Q

∗
j (D) (the union of datasets with unseen single perturbations),

then the generalization ratio is

rg =
MA(UP ∗(Dtr), UQ

∗(Dte))

MA(UP ∗(Dtr), UP ∗(Dte))
.

rg = 1 means when the model is trained using the union of single-perturbation images, the test perfor-
mance on unseen-perturbation images (not training domain) can be as good as the test performance
on the union of known single-perturbation images (training domain). Similarly, different models and
training methods may influence the MA function, thus potentially affecting the generalization ratio.

Tested on our dataset (UP ∗(Dtr) is the training set with our basis perturbations, NP ∗(Dte) is
the data in Scenario 3, and UQ∗(Dte) is the data in Scenario 4), our method can achieve a high
decoupling ratio rd = 0.7463

0.8836 = 0.84 and a high generalization ratio rd = 0.8291
0.8836 = 0.94. We exclude

these two ratios for other methods because they did not trained on only single perturbations.
Effectiveness visualization. Using the salience map on several combined samples in Fig. 7 shown
in Appendix A.8, we demonstrate that our method can help the network to focus on important areas
(e.g., the road in front) instead of random areas on perturbed images. We also show t-SNE [26] of
feature embeddings from the baseline and our method in Fig. 8 shown in Appendix A.8. As a result,
features from our method are more uniformly distributed, indicating the reduction of the domain gaps
created by the perturbations, thus improving robustness.
Benchmarking datasets. We plan to release our perturbed datasets for benchmarking, which will
contain augmented datasets from Audi [16], Honda [31], Waymo [37], and SullyChen dataset [7].
Each will include a base dataset and datasets with five levels of perturbation in blur, noise, and
distortion, ten levels of variations in the channels R, G, B, H, S, V, multiple combined perturbations
over all nine factors using our implementation, and five levels of each unseen simulated factor,
including snow, fog, frost, motion blur, zoom blur, pixelate, and jpeg compression using ImageNet-C.
In total, there are 480 datasets and about 26M images. The ground-truth steering angles (or angular
velocity of the vehicle) for all images will also be provided for validation, along with the code to
generate the perturbed datasets. The parameters for data generation can be found in Appendix A.2.

6 Conclusion and Future Work
In this paper, we first analyze the influence of different image-quality attributes on the performance
of the task “learning to steer”. We study nine image attributes and find that image degradations due
to perturbation on these 9 attributes can impact task performance at various degrees. By using FID as
a unified metric, we conduct sensitivity analysis in the MA-FID space. Leveraging the sensitivity
analysis results, we propose an effective and efficient training method to improve the generalization
of learning-based steering under various image perturbations. Our model not only improves the task
performance on the base dataset, but also achieves significant performance improvement on datasets
with a mixture of perturbations (up to 87%), as well as unseen adversarial examples including snow,
fog, and frost (up to 77%).

Our method can be easily extended and applied beyond the set of factors and the learning algorithms
analyzed in this study. It can also generalize to analyzing any arbitrarily high number of image/input
factors, other learning algorithms, and multimodal sensor data. Lastly, other autonomous systems
where the perception-to-control functionality plays a key role can possibly benefit from our technique
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as well. We will release the generated datasets for benchmarking the robustness study of learning
algorithms for autonomous driving, as well as the code. Our method currently uses discretization to
achieve efficient training, but further optimization for our implementation is possible. Our framework
is generalizable to other image factors, learning algorithms, multimodal sensor data, and other
perception-to-control tasks.
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A Appendix

A.1 Dataset Samples

We show different kinds of perturbations in our benchmarks in Fig.4. Specifically, our benchmarks
include 9 basic types of perturbations, including Gaussian blur, Gaussian noise, radial distortion, and
RGB and HSV channels. Another type of datasets include multiple perturbations, where we create
multiple random combinations of the basic perturbations. We also include 7 types of previously
unseen perturbations (during training) from ImageNet-C [20], which are snow, fog, frost, motion blur,
zoom blur, pixelate, and jpeg compression. For each type of perturbation, we generate 5 or 10 levels
of varying intensity based on sensitivity analysis in the FID-MA space.

Figure 4: Sample images of our benchmark. We show our benchmark has 22 different types of
perturbations. Also, we have 10 levels for R, G, B, H, S, V (5 levels in darker and 5 levels in lighter
shades), and 5 levels for each of the other types of perturbations.

We show more image samples of unseen perturbations in Fig. 5.

Figure 5: Unseen perturbation examples in our experiments. We use “snow”, “frost”, “fog” (left to
right; first row), and “motion blur”, “zoom blur”, “pixelate”, “jpeg compression” (left to right; second
row) from the corruptions in ImageNet-C [20].

A.2 Perturbed Datasets

We use Gaussian blur [2] (w.r.t standard deviation), additive white Gaussian noise (AWGN) (w.r.t
standard deviation), and radial distortion [48] (w.r.t radial distortion parameter k1, k2), respectively.
For representing channel-level perturbations, we use a linear model: denote the value range of one
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channel as [a, b], in the darker direction, we set vnew = αa+ (1− α)v; in the lighter direction, we
set vnew = αb+ (1− α)v. The default values are aC = 0 and bC = 255, where C represents one
channel. To exclude a complete dark image, we set aV = 10 and bH = 179.

In our sensitivity analysis experiments, we first select 10 samples for each of blur, noise, distortion,
channel (R, G, B, H, S, V) darker, and channel lighter, then reduce to n = 5. We set n = 5 since a
smaller number like n = 2 will decrease the algorithm performance greatly, while a larger number
like n = 8 will decrease the efficiency dramatically.

The final representative datasets from the sensitivity analysis and used for improving the generalization
of the learning task are introduced in the following.

• R: the base dataset, Audi [16], Honda [31], or SullyChen [7] dataset;
• B1, B2, B3, B4, B5: add Gaussian blur to R with standard deviation σ = 1.4, σ = 2.9,
σ = 5.9, σ = 10.4, σ = 16.4, which are equivalent to using the kernel (7, 7), (17, 17), (37,
37), (67, 67), (107, 107), respectively;

• N1, N2, N3, N4, N5: add Gaussian noise to R with (µ = 0, σ = 20), (µ = 0, σ = 50),
(µ = 0, σ = 100), (µ = 0, σ = 150), (µ = 0, σ = 200), respectively;

• D1, D2, D3, D4, D5: distort R with the radial distortion (k1 = 1, k2 = 1), (k1 = 10, k2 =
10), (k1 = 50, k2 = 50), (k1 = 200, k2 = 200), (k1 = 500, k2 = 500), respectively. k1
and k2 are radial distortion parameters, the focal length is 1000, and the principle point is
the center of the image.

• RD1/RL1, RD2/RL2, RD3/RL3, RD4/RL4, RD5/RL5: modify the red channel of
R to darker (D) / lighter (L) values with α = 0.02, α = 0.2, α = 0.5, α = 0.65, α = 1.

• GD1/GL1, GD2/GL2, GD3/GL3, GD4/GL4, GD5/GL5: modify the green channel
of R to darker (D) / lighter (L) values with α = 0.02, α = 0.2, α = 0.5, α = 0.65, α = 1.

• For B, H, S, V channels, we use similar naming conventions for notation as for the red and
green channels.

• Comb1: Rα = −0.1180, Gα = 0.4343, Bα = 0.1445, Hα = 0.3040, Sα = −0.2600,
Vα = 0.1816, Blurσ = 3, Noiseσ = 10, Distortk = 17

• Comb2: Rα = 0.0420, Gα = −0.5085, Bα = 0.3695, Hα = −0.0570, Sα = −0.1978,
Vα = −0.4526, Blurσ = 27, Noiseσ = 7, Distortk = 68

• Comb3: Rα = 0.1774, Gα = −0.1150, Bα = 0.1299, Hα = −0.0022, Sα = −0.2119,
Vα = −0.0747, Blurσ = 1, Noiseσ = 6, Distortk = 86

• Comb4: Rα = −0.2599, Gα = −0.0166, Bα = −0.2702, Hα = −0.4273, Sα = 0.0238,
Vα = −0.2321, Blurσ = 5, Noiseσ = 8, Distortk = 8

• Comb5: Rα = −0.2047, Gα = 0.0333, Bα = 0.3342, Hα = −0.4400, Sα = 0.2513,
Vα = 0.0013, Blurσ = 35, Noiseσ = 6, Distortk = 1

• Comb6: Rα = −0.6613, Gα = −0.0191, Bα = 0.3842, Hα = 0.3568, Sα = 0.5522,
Vα = 0.0998, Blurσ = 21, Noiseσ = 3, Distortk = 37

The datasets Comb1 through Comb6 are generated by randomly sampling parameters of each type
of perturbation, e.g. blur, noise, distortion, and RGB and HSV channels, and combining these
perturbations together. The parameters listed here are the parameters for the corresponding examples
used in the experiment.

We also show the comparison when choosing different basis perturbations in Table. 5. The final
set we used are better than other sets (e.g., V channel only, or V channel + B channel + Blur) on
clean and unseen perturbation scenarios. Notice we don’t compare them on single perturbation and
combined perturbation scenarios, as the basis perturbations are different.

A.3 Dataset details

We use Audi dataset [16], Honda dataset [31], Waymo dataset [37], and SullyChen dataset [7].
Among the autonomous driving datasets, Audi dataset is one of the latest dataset (2020), Honda
dataset is one of the datasets that have a large amount of driving videos (over 100+ videos), Waymo
dataset includes many environmental conditions such as weather and lightening and is a large dataset
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Scenarios

Clean Unseen Perturbation

Basis Perturbations AMAI↑ MMAI↑ AMAI↑ mCE↓
V channel -3.33 14.61 1.64 98.54

V channel, B channel, Blur -0.83 15.77 2.79 95.64
Ours 2.12 33.16 13.81 61.61

Table 5: Performance of different basis perturbations. The set used is better than other sets on clean and unseen
perturbation scenarios. We do not compare them on single perturbation and combined perturbation scenarios, as
the basis perturbations are different.

(390k frames for perception), and SullyChen dataset is collected specifically for steering task and has
a relatively long continuous driving image sequence on a road without branches and has relatively
high turning cases.

For Audi dataset [16], we use the "Gaimersheim" package which contains about 15,000 images with
about 30 FPS. For efficiency, we adopt a similar approach as in [4] by further downsampling the
dataset to 15 FPS to reduce similarities between adjacent frames, keep about 7,500 images and align
them with steering labels. For Honda dataset [31], which contains more than 100 videos, we first
select 30 videos that are most suitable for learning to steer task, then we extract 11,000 images for
Honda10K and 110,000 images for Honda100K from them at 1 FPS, and align them with the steering
labels. For SullyChen dataset [7], images are sampled from videos at 30 frames per second (FPS).
We then downsample the dataset to 5 FPS. The resulting dataset contains approximately 10,000
images. All of them are then randomly split into training/validation/test data with an approximate
ratio 20:1:2. For Waymo dataset [37], we use the data from the perception part directly, which is
already split into train/validation/test folders (exclude the domain adaptation data). The training set
is about 163k frames, while the test set is about 33k frames. The Waymo dataset doesn’t contain
steering labels directly, but it contains angular velocity data from IMU. Instead of predicting steering
angle, we predict the angular velocity w.r.t. the gravity axis. The only modification is we scale up
the angular velocity to meet the range of steering angle, to make it a similar regression problem as
steering regression.

There are several good autonomous driving datasets, but not all of them are suitable for the end-
to-end learning to steer task. For example, KITTI [15], Cityscapes [8], OxfordRoboCar [27],
Raincouver [40], etc., do not contain steering angle labels. Some well-known simulators like
CARLA [13] can generate synthetic datasets, but our work focuses on real-world driving using real
images. There are also several other datasets that contain steering angle labels (e.g., nuScenes [5],
Ford AV [1], Canadian Adverse Driving Conditions [30], etc), but we didn’t use them all because the
results on the three datasets we chose can already show the effectiveness of our method.

A.4 FID-MA and L2D-MA

We adopt the Fréchet Inception Distance (FID) [23] as a unified metric for our sensitivity analysis
(instead of using the parameter values of each image factor) for three reasons. First, given the
autonomous driving system is nonlinear, variance-based measures would be more effective for
sensitivity analysis of the network. FID can better capture different levels of image qualities than the
parameter values of each factor, because the correspondence between the parameter values and image
quality of each factor is not linear. Second, using FID, we can map the parameter spaces of all factors
into one space to facilitate the sensitivity analysis. Lastly, FID serves as a comprehensive metric
to evaluate the distance between two image datasets: image pixels and features, and correlations
among images—these meaningful factors to interpret the performance of a learning-based task—are
all taken into consideration.

We first empirically select m parameter values for blur, noise and distortion perturbation severity,
and 2m parameter values for R, G, B, H, S, V (m in the darker direction and m in the lighter
direction), generate perturbed datasets using these parameter values, and compute their corresponding
MA using the trained model on R (see numeric results in Appendix A.9). At this point, we can
obtain the relationship between MA and parameter values for each factor, but the parameter values
for each factor are not directly comparable to each other. Notice for each perturbation, one
parameter value can generate one perturbed dataset. Thus, we can calculate the FID between this
new dataset and clean dataset. In this way, we map the correspondences between the MAs and the
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Figure 6: The relationship between L2 norm distance and MA difference (top), and the relationship
between FID and MA difference (bottom). The FID space can better capture the difference among
various factors affecting image quality better than the L2D space, i.e., the range of the curves’
first-order derivative is larger in FID space than in L2D space (see the angle between the two dot
lines).

parameter values into the FID space, i.e., FID-MA relationship. By leveraging this new FID-MA
space, we can minimize the number of parameter samples for each perturbation, while maintaining a
similar FID-MA curve between the sampled dataset and the original one to improve the computational
efficiency of training (see Sec 4.3). A high-level guideline is, in the range that has high sensitivity
(See definition in Sec. 4.2) there are denser sample points (closer FID values between sample
points), while in the range that has low sensitivity there are sparser sample points. Specifically,
we retain the min and max parameter values, and pick n− 2 other parameter values to maximize the
minimum ’MA and normalized FID difference’ between adjacent sample points (here we assume the
FID-MA curve is approximately monotonic):

max
Q={pq1 ,pq2 ,...,pqn}⊆P

pq1<pq2<...<pqn

min
i
|MA(pqi+1

)−MA(pqi)|+ α|FID(pqi+1
)− FID(pqi)|

where P = {p1, p2, ..., pm} is the m parameter values we chose in the beginning, Q =
{pq1 , pq2 , ..., pqn} ⊆ P is the n parameter values we want to keep, MA(pj) and FID(pj) are
the mean accuracy value and FID value related to the parameter value pj , and α is the normalization
parameter which equals to the reciprocal of the largest FID (within the FID values related to the
chosen parameter values). Notice this is not the only criterion to achieve the goal of "sample denser
points in high sensitivity range and sample sparser points in low sensitivity range". We also experi-
mented with other criteria, like replacing |MA(pqi+1

)−MA(pqi)|+ α|FID(pqi+1
)− FID(pqi)|

with |MA(pqi+1
)−MA(pqi)| (MA difference only), which achieves slightly worse results but still

works.

We set m = 10, try n = 3, 5, 8, and find n = 5 is the best one (n = 5 can lead to similar robustness
of the model as n = 8 while taking less time, and more robust than n = 3). Examples of the resulting
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images are shown in Fig. 2 (more in Appendix A.1). Detailed descriptions of the final perturbed
datasets are provided in Appendix A.2. We also provide a detailed analysis of MA differences in FID
space in Appendix A.4.

The final MA differences in the FID space are visualized in Fig. 6. Since FID aligns different
factors into the same space, we can compare the performance loss of all factors at various levels.
Notice that the values in the near-zero FID range (i.e., FID< 50) are more commonly found in
real-world applications. We first observe that the learning-based steering task is more sensitive to the
channel-level perturbations (i.e., R, G, B, H, S, V) than the image-level perturbations (i.e., blur, noise,
distortion). Second, the task is least sensitive to blur and noise but most sensitive to the V channel, the
intensity value. Third, for the same color channel, darker and lighter levels appear to have different
MAs at the same FID values. Compared with other analysis studies on the “learning to steer” task,
e.g., [38] and [46], our method is the first to transfer perturbations from multiple parameter spaces
into one unified space to enable the cross-factor comparison, e.g., the task is more sensitive to the
V-channel perturbation than perturbations in other attributes.

We illustrate the relationship between FID and Mean Accuracy (MA) Difference, and the relationship
between L2 norm distance (L2D) and Mean Accuracy (MA) Difference in Fig. 6. As shown in the
figure, the FID space can better capture the difference among various factors affecting image quality
better than the L2D space, i.e., the range of the curves’ first-order derivative is larger in FID space
than in L2D space (see the angle between the two dot lines).

A.5 Frequency Branch of Our Method

When there are frequency-related perturbations (e.g., using Gaussian noise is increasing high fre-
quency component of the image, while using blur operation will reduce high frequency component), a
frequency branch can be added to our architecture. Formally, we do a standard 2-D Fourier Transform,
and using the absolute value of each complex number and form another channel of the image, thus
the input image of the network has 4 channels. The transform equation is:

Yp,q =

m−1∑
j=0

n−1∑
k=0

ωjpmω
kq
n Xj,k

where ωm and ωn are complex roots of unity:

ωm = e−2πi/m

ωn = e−2πi/n

i is the imaginary unit. p and j are indices that run from 0 to m− 1, and q and k are indices that run
from 0 to n− 1.

Notice this frequency branch is optional, our method can already outperform others without this
branch. It can help improve the accuracy, but also has limitation: about 1.5x training time. Thus this
is an option depends on whether users want the model to be more accurate or more efficient.

A.6 Second Stage of Our Method

As introduced in Sec. 4.3, the second stage is designed to boost clean accuracy, where the model
is fine-tuned solely on clean data. To meanwhile maintain the performance on the perturbed data,
we terminate this stage if the overall validation accuracy on clean and perturbed data decreases.
Otherwise, this stage continues until it reaches the maximum number of iteration or the MA loss
decreases to our expected threshold. In most cases, the network can already learn well the first stage
on both clean and perturbed data, thus it will converge very fast in the second stage and do early
break without influencing the performance or increasing the training time, as shown in the first row
of Table. 6. But we found in some cases, the first stage can make the network learn well on perturbed
data, but can not perform on clean data as well as a network trained on only clean data. In this case,
adding the second stage can help the network perform better, while doesn’t reduce the performance
on perturbed data too much. Moreover, our method can perform better than AugMix even without
the second stage. See Table. 6 for details.
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Scenarios

Clean Single Perturbation Combined Perturbation Unseen Perturbation

Method AMAI↑ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓ MMAI↑ AMAI↑ mCE↓
AugMix on Audi -8.24 81.89 32.22 55.27 75.49 50.23 41.98 73.06 27.39 77.51

Ours on Audi w/o 2 5.86 94.95 47.78 11.83 88.42 60.31 27.18 75.16 32.91 39.04
Ours on Audi 5.98 97.57 48.50 10.27 87.56 62.38 25.80 77.22 32.71 39.14

AugMix on Honda100k -11.41 63.85 14.08 70.64 68.95 47.69 40.12 61.68 16.32 88.36
Ours on Honda100k w/o 2 -7.40 66.69 17.77 58.31 69.98 47.43 37.88 58.27 17.64 80.50

Ours on Honda100k -2.55 67.35 19.88 53.26 65.10 48.60 36.94 51.90 18.29 72.84

Table 6: Ablation study for the second stage. “w/o 2” stands for “without the second stage training”.
On Audi dataset, the network is already well trained on both clean and perturbed data, thus the second
stage won’t make great differences. But on Honda100k dataset, the performance on the clean dataset
for the first stage is not well, and adding the second stage can improve the performance on clean data
while doesn’t influence performance on perturbed data too much. But even without the second stage,
our method can perform better than AugMix.

Scenarios

Clean Single Perturbation Combined Perturbation Unseen Perturbation

Method AmAPI↑ MmAPI↑ AmAPI↑ mCE↓ MmAPI↑ AmAPI↑ mCE↓ MmAPI↑ AmAPI↑ mCE↓
AugMix -2.23 10.63 1.54 97.35 3.84 1.12 96.18 3.06 1.95 98.74

Our method -1.12 16.21 3.40 95.72 7.53 4.94 94.92 5.88 2.93 96.86

Table 7: Performance comparison for detection task against the baseline performance [3]. Our
method outperforms the AugMix in all cases, with about 1%-3% mAP improvement on average,
while reducing the mCE by 1%-2%.

A.7 Performance on Detection

We also test our algorithm on the detection task in autonomous driving. We use the Audi dataset [16]
(3D Bounding Boxes) and the Yolov4 network [3] as base settings, and then implement our algorithm
based on Yolov4. Table 7 shows that our algorithm also improves the model robustness in most
scenarios (about 3%-5% mAP improvement on average), and is consistently better than AugMix
(about 1%-3% mAP improvement on average).

A.8 Visualization

We show the saliency map visualization in Fig. 7. Our method can help the network to focus on
important areas (e.g., the road in front) instead of random areas on perturbed images.

Figure 7: Saliency map samples using the baseline method and our method, where the model is tested
on different combinations of perturbations shown as columns. We show the original image, perturbed
image with a chosen effect, saliency map of the baseline model, and saliency map of our method
from top to bottom rows. Using our method, the network focuses more on the important areas (e.g.,
road in front) instead of random areas on the perturbed images.
We also show the t-SNE [26] visualization of feature embeddings for the baseline method and our
method in Fig. 8. The features from the baseline method are more clustered by color (e.g., the left
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Figure 8: t-SNE [26] visualization for features achieved from networks trained by baseline method
(left) and our method (right). The features from the baseline method are more clustered by color (e.g.,
the left circle in the left image mainly contains red dots, and the right circle in the left image mainly
contains yellow dots), indicating there are domain gaps between the perturbed data and original data,
while the features from our method are more uniformly distributed, suggesting that our method is
able to reduce the domain gaps due to perturbations, i.e., improving the robustness.

circle in the left image mainly contains red dots, and the right circle in the left image mainly contains
yellow dots), indicating there are domain gaps between the perturbed data and original data; while
the features from our method are more uniformly distributed, suggesting that our method is able to
reduce the domain gaps from perturbations, i.e., improve the robustness.

A.9 Experiment data

To quantify our results, we collected mean accuracy (MA) measurements from each experiment, for
each pairwise factor and level across methods. Table 8 shows the mean accuracy measurements for
blur, noise, and distortion factors. The same is of table 9, where mean accuracy is measured across
levels of RGB or HSV color channels, where each channel serves as a single corruption factor. Table
10 presents the MA measurements for scenarios with a combination of factors, and Table 11 presents
the MA measurements for scenes with previously unseen factors.

Method Factor L1 L2 L3 L4 L5

blur 88.2 88.1 86.1 81.2 73.3
baseline noise 88.3 86.0 81.4 76.4 73.2

distortion 88.6 75.0 57.7 48.8 49.2

blur 90.6 90.6 90.3 90.7 88.6
ours noise 89.7 89.2 86.1 84.2 79.4

distortion 90.3 89.8 87.0 84.2 83.3

Table 8: Mean Accuracy of training (in %) using the baseline model and ours, tested on datasets with
different levels of blur, noise, and distortion. Levels range from L1 to L5. We achieve up to 35.4% in
performance gain (see bold number pair).
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Method Factor DL5 DL4 DL3 DL2 DL1 LL1 LL2 LL3 LL4 LL5

R 53.2 55.4 57.9 65.1 87.8 87.7 61.4 52.1 47.4 45.1
G 44.2 48.2 53.5 73.0 88.5 87.9 69.6 51.2 43.7 40.0

baseline B 43.0 46.8 54.3 69.7 88.2 87.7 66.2 52.5 47.1 42.6
H 51.3 52.1 63.1 82.8 88.1 88.2 69.3 51.5 51.3 51.2
S 58.4 63.8 72.6 83.9 88.1 88.3 74.5 61.6 56.5 53.2
V 52.6 53.2 54.6 69.4 88.5 88.4 70.4 49.1 43.2 39.4

R 88.6 90.1 90.6 90.5 90.5 90.4 90.6 90.6 90.2 89.4
G 90.0 90.6 90.6 90.5 90.5 90.4 90.5 90.6 90.3 89.9

ours B 89.1 90.0 90.5 90.4 90.3 90.4 90.4 90.6 90.0 89.3
H 89.7 90.2 90.2 90.4 90.4 90.7 90.5 90.0 89.2 89.7
S 88.9 90.0 90.4 90.5 90.6 90.6 90.7 90.7 89.7 86.9
V 87.8 89.5 90.7 90.8 90.7 90.5 90.6 90.0 84.4 76.4

Table 9: Mean accuracy (MA) of training (in %) using the baseline model and ours, tested on datasets
with different levels of R, G, B, and H, S, V channel values. DL denotes "darker level", which
indicates a level in the darker direction of the channel, while LL indicates "lighter level", which
indicates the lighter direction, on levels 1 to 5. We achieve up to 49.9% in performance gain (see
bold number pair).

Method Comb1 Comb2 Comb3 Comb4 Comb5 Comb6

baseline 59.7 54.0 40.9 50.0 54.0 56.3
ours 73.4 68.6 70.9 83.3 86.2 65.3

Table 10: Mean accuracy (MA) of training (in %) using the baseline model and ours, tested on
datasets with several perturbations combined together, including blur, noise, distortion, RGB, and
HSV. We achieve up to 33.3% in performance gain (see bold number pair).

Method Unseen Factors L1 L2 L3 L4 L5

motion_blur 76.4 69.7 62.6 61.1 60.3
zoom_blur 85.6 83.7 81.8 80.0 78.2

pixelate 88.2 88.2 88.0 88.3 88.1
baseline jpeg_comp 88.4 88.0 87.4 85.4 82.2

snow 62.8 50.7 54.9 55.5 55.3
frost 55.8 52.1 51.7 51.7 51.2
fog 58.7 55.0 52.4 50.8 48.1

motion_blur 88.0 86.9 84.7 81.4 78.5
zoom_blur 88.3 86.9 85.5 84.1 82.5

pixelate 90.3 90.3 89.9 90.5 90.6
ours jpeg_comp 90.1 90.2 90.0 89.5 90.0

snow 87.1 83.8 82.0 77.4 76.7
frost 86.0 83.9 81.1 81.7 80.1
fog 77.4 71.6 65.6 61.5 56.1

Table 11: Mean accuracy (MA) of training (in %) using the baseline model and ours, tested on datasets
with previously unseen perturbations at 5 different levels. These types of unseen perturbations do
not appear in the training data, and include motion blur, zoom blur, pixelate, jpeg compression loss,
snow, frost, and fog, on intensity levels L1 to L5. We achieve up to 33.1% in performance gain (see
bold number pair).
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