Gradient-Free Adversarial Training Against Image Corruption for Learning-based Steering

Paper ID: 3594

Motivation

- For safety, autonomous vehicles (AVs) need to drive under varying lighting, weather, and visibility conditions in different environments
- Internal (e.g. sensors) and external (e.g. environments) factors can pose significant challenges to perceptual data processing and affect control and decision-making of AVs
- To harden neural network systems against image degradation and improve robustness of learning algorithms

Target Task

- Learn to steer in end-to-end autonomous driving
 - perception and control

Key Contributions

A scalable training scheme to improve robustness of autonomous driving against image corruption, while increasing overall accuracy of learning-based steering with adversarial data augmentation

- Among the first to train on single image perturbations, while improving overall performance on <u>functional combination</u> of perturbations or <u>previously unseen</u> perturbations
- A systematic approach for analyzing, predicting, and quantifying impact of an image degradation on network using <u>sensitivity analysis</u> and <u>Fréchet Inception Distance</u> (FID)
- A benchmark that contains autonomous driving datasets with different perturbations and comparison on performance of recent methods on different datasets and backbones

Pipeline of Our System

- Data generation: perturbed datasets of each factor at multiple levels based on the FID-parameterized sensitivity analysis results.
- Training process: (1) augment the training dataset with "adversarial images" given each perturbation, then combine the base and perturbed datasets to maximize overall performance iteratively; (2) fine-tune the model in post learning.

Experiments: Training Data

• Clean Driving Data

-- Audi 2020, Honda 2018, SullyChen 2018, and Waymo 2020

• Single Perturbation:

-- blur, noise, distortion, R, G, B, H, S, V channels

Examples of Clean Driving Video

Audi 2020Honda 2018SullyChen 2018Waymo 2020

Images with Single Perturbation

• Blur, noise, and distortion: most commonly used and directly affect image quality

Images with Single Perturbation

• Red, Green, and Blue (RGB): 3 basic color representation of an image

Images with Single Perturbation

• Hue, Saturation and Brightness Value (HSV): 3 common metrics of an image

Single-Perturbation Videos: Blur, Noise, Distortion

Blur Clean Noise Distortion

Single-Perturbation Videos: RGB

Single-Perturbation Videos: HSV

Experiments: Test Scenarios

- Clean Driving Data
- Single Perturbation
- **Combined Perturbation:** combinations of all seen factors w/ random severity
- **Unseen Perturbation:** motion blur, zoom blur, pixelate, jpeg compression, snow, frost, fog, etc. from ImageNet-C

Combined Perturbation Test Data Samples

Unseen Perturbation Test Data Samples

left to right (top; bottom): snow, frost, fog; motion blur, zoom blur, pixelate, jpg compression

Analysis: FID-based Parameterization

- *Fréchet Inception Distance* (FID): a distance metric considering image pixels & features, mean and covariance
- FID vs. Mean Accuracy Difference
 - More sensitive to the channel-level perturbations (i.e., R, G, B, H, S, V channels) than the image-level perturbations (i.e., from blur, noise, distortion).
 - least sensitive to blur and noise but most sensitive to the *intensity value* in V channel.

Experiments – Comparison with 5 different methods

Our method outperforms other SOTA methods

- Highest maximum & average MA improvements (MMAI & AMMI in %)
- Lowest mean corruption errors (mCE in %)

	Scenarios										
	Clean	Single Perturbation			Combi	ned Perturb	oation	Unseen Perturbation			
Method	AMAI↑	MMAI↑	AMAI↑	mCE↓	MMAI↑	AMAI↑	mCE↓	MMAI↑	AMAI↑	mCE↓	
Data Augmentation	-0.44	46.88	19.97	51.34	36.1	11.97	75.84	27.5	7.92	81.51	
Adversarial Training	-0.65	30.06	10.61	74.42	17.89	6.99	86.82	16.9	8.17	89.91	
MaxUp	-7.79	38.30	12.83	66.56	26.94	16.01	72.60	23.43	5.54	81.75	
AugMix	-5.23	40.27	15.01	67.49	26.81	15.45	68.38	28.70	8.85	87.79	
Ours w/o FS	0.93	48.57	20.74	49.47	33.24	17.74	63.81	29.32	9.06	76.20	
Ours	2.12	49.97	23.92	37.30	33.15	22.12	54.38	33.16	13.81	61.61	

Experiments – Comparison on 3 backbone networks

Our method outperforms AugMix on 3 networks

- Highest maximum & average MA improvements (MMAI & AMMI in %)
- Lowest mean corruption errors (mCE in %)

	Scenarios									
	Clean	Single Perturbation			Combi	ned Pertur	bation	Unseen Perturbation		
Method	AMAI↑	MMAI↑	AMAI↑	mCE↓	MMAI↑	AMAI↑	mCE↓	MMAI↑	AMAI↑	mCE↓
AugMix+Nvidia	-0.12	40.64	10.94	76.48	25.97	16.79	64.41	22.23	5.99	84.95
Ours+Nvidia	2.48	43.51	13.51	67.78	28.13	17.98	61.12	16.93	6.70	80.92
AugMix+Comma.ai	-5.25	55.59	9.56	86.31	31.32	0.77	106.1	37.91	7.97	89.99
Ours+Comma.ai	0.36	62.07	15.68	70.84	38.01	0.74	108.32	42.54		77.08
AugMix+ResNet152	-4.23	20.84	1.45	96.24	12.21	6.71	80.19	15.40	2.87	97.62
Ours+ResNet152	-0.96	24.29	5.19	79.76	16.05	8.02	75.16	16.58	5.33	85.68

Experiments – Comparison on 4 driving datasets

Our method outperforms AugMix on 4(+1) datasets

- Highest maximum & average MA improvements (MMAI & AMMI in %)
- Lowest mean corruption errors (mCE in %)

	Scenarios									
	Clean	Single Perturbation			Combined Perturbation			Unseen Perturbation		
Method	AMAI↑	MMAI↑	AMAI↑	mCE↓	MMAI↑	AMAI↑	mCE↓	MMAI↑	AMAI↑	mCE↓
AugMix on SullyChen	-5.23	40.27	15.01	67.49	26.81	15.45	68.38	28.70	8.85	87.79
Ours on SullyChen	1.46	49.76	22.87	40.84	33.15	22.12	54.38	33.87	13.51	62.50
AugMix on Audi	-8.24	81.89	32.22	55.27	75.49	50.23	41.98	73.06	27.39	77.51
Ours on Audi	5.98	97.57	48.50	10.27	87.56	62.38	25.80		32.71	39.14
AugMix on Honda10k	-0.12	40.64	10.94	76.48	25.97	16.79	64.41	22.23 16.93	5.99	84.95
Ours on Honda10k	2.48	43.51	13.51	67.78	28.13	17.98	61.12		6.70	80.92
AugMix on Honda100k	-11.41	63.85	14.08	70.64	68.95	47.69	40.12	61.68	16.32	88.36
Ours on Honda100k	-2.55	67.35	19.88	53.26	65.10	48.60	36.94	51.90	18.29	72.84
AugMix on Waymo	18.27	45.40	23.30	59.31	22.95 21.34	16.92	66.36	57.65	29.10	55.63
Ours on Waymo	20.34	46.85	26.76	52.84		18.24	64.58	56.98	31.12	53.18

Experiments – Comparison on CIFAR-100 (Classification)

Our method outperforms 7 other methods on 4 different backbones

• Achieving *lowest mean corruption errors* (mCE in %)

	Standard	Cutout	Mixup	CutMix	AutoAugment*	Adv Training	AUGMIX	Ours
AllConvNet	56.4	56.8	53.4	56.0	55.1	56.0	42.7	25.6
DenseNet	59.3	59.6	55.4	59.2	53.9	55.2	39.6	26.3
WideResNet	53.3	53.5	50.4	52.9	49.6	55.1	35.9	20.5
ResNeXt	53.4	54.6	51.4	54.1	51.3	54.4	34.9	15.4
Mean	55.6	56.1	52.6	55.5	52.5	55.2	38.3	22.0

Experiments – Visualization

Saliency map for baseline vs. ours. With ours, the network can better focus on important areas (e.g., road in front) instead of random areas in baseline

Summary

- Leverage sensitivity analysis & FID-based parameterization
- Use adversarial data augmentation on single basis perturbations for training, improve performance on complex (combination or previously unseen) perturbations
- Improve accuracy & robustness for autonomous steering
- Achieve significant performance improvement
 - Up to **97%** on a *single* source of image degradation
 - Up to **87%** on combinations of *multiple* perturbations
 - Up to **77%** on previously *unseen* image corruption

Thank you!