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Today

• Rendering pipeline

• Projections

• View volumes, clipping

• Viewport transformation
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Rendering pipeline

Scene data

Image

• Hardware & software that 
draws 3D scenes on the 
screen

• Most operations performed 
by specialized hardware 
(graphics processing unit, 
GPU, http://en.wikipedia.org/wiki/Graphics_processing_unit)

• Access to hardware through 
low-level 3D API (DirectX, 
OpenGL)

– jogl is a Java binding to 
OpenGL, used in our projects
http://jogamp.org/jogl/www/

• All scene data flows 
through the pipeline at 
least once for each frame 
(i.e., image)

Rendering

pipeline

http://en.wikipedia.org/wiki/Graphics_pipeline
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Rendering pipeline

• Rendering pipeline implements object 

order algorithm

– Loop over all objects

– Draw triangles one by one (rasterization)

• Alternatives?

• Advantages, disadvantages?
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Object vs. image order
Object order: loop over all triangles

• Rasterization type algorithms

• Desirable memory access pattern („streaming“ 
scene data one-by-one, data locality, avoid 
random scene access)
http://en.wikipedia.org/wiki/Locality_of_reference

• Suitable for real time rendering (OpenGL, DirectX)

• Popular for production rendering (Pixar 
RenderMan), where scenes often do not fit in RAM

• No global illumination (light transport simulation) 
with purely object order algorithm
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Object vs. image order
Image order: loop over all pixels

• Ray tracing type algorithms

• Undesirable memory access pattern 
(random scene access)

• Requires sophisticated data structures for 
fast scene access

• Full global illumination possible

• Most popular for photo-realistic image 
synthesis
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Rendering engine

Scene data

Image

• Additional software layer 
(“middle-ware”) 
encapsulating low-level 
API (OpenGL, DirectX, …)

• Additional functionality 
(file I/O, scene 
management, …)

• Layered software 
architecture common in 
industry

– Game engines
http://en.wikipedia.org/wiki/G
ame_engine

Rendering

pipeline

Rendering engine (jrtr)
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Rendering pipeline stages (simplified)

• Geometry

– Vertices and how they are 

connected

– Triangles, lines, point 

sprites, triangle strips

– Attributes such as color

• Specified in object 

coordinates

• Processed by the rendering 

pipeline one-by-one

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image
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Rendering pipeline stages (simplified)

• Transform object to 

camera coordinates

• Additional processing on 

per-vertex basis

– Shading, i.e., computing 

per-vertex colors

– Deformation, animation

– Etc.

MODELVIEW

matrix

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image
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Rendering pipeline stages (simplified)

• Project 3D vertices to 2D 

image positions

• This lecture

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image
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Rendering pipeline stages (simplified)

• Draw primitives pixel by 
pixel on 2D image 
(triangles, lines, point 
sprites, etc.)

• Compute per fragment 
(i.e., pixel) color

• Determine what is visible

• Next lecture

Rasterization

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image
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Rendering pipeline stages (simplified)

• Grid (2D array) of RGB 

pixel colors

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image
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Today

• Rendering pipeline

• Projections

• View volumes, clipping

• Viewport transformation
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Object, world, camera coords.

World coordinates

Object

coordinates

Camera

coordinates
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Objects in camera coordinates

• We have things lined up the way we like 

them on screen

– x to the right

– y up

– -z going into the screen

– Objects to look at are in 

front of us, i.e. have 

negative z values

• But objects are still in 3D

• Today: how to project them into 2D

Camera

coordinates
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Projections

• Given 3D points (vertices) in camera 

coordinates, determine corresponding 2D 

image coordinates

Orthographic projection

• Simply ignore z-coordinate

• Use camera space xy coordinates as image 

coordinates

• What we want, or not?
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Orthographic projection

• Project points to x-y plane along parallel 

lines

• Graphical illustrations, architecture
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Perspective projection

• Most common for computer graphics

• Simplified model of human eye, or camera 

lens (pinhole camera)

• Things farther 

away seem smaller

• Discovery/formalization attributed to

Filippo Brunelleschi in the early 1400’s

http://en.wikipedia.org/wiki/Pinhole_camera
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Perspective projection

• Project along rays that converge in center 

of projection

2D image plane

Center of

projection

3D scene
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Perspective projection

Parallel lines 

no longer parallel,

converge at one point

Earliest example

La Trinitá (1427) by Masaccio
http://en.wikipedia.org/wiki/Holy_Trinity_(Masaccio)
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Perspective projection

The math: simplified case

Image plane

Center of

projection
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Perspective projection

The math: simplified case

• Can express this using homogeneous 

coordinates, 4x4 matrices

Image plane

Center of

projection
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The math: simplified case

Perspective projection

Homogeneous coord. != 1!

Homogeneous division
Projection matrix
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Perspective projection

• Using projection matrix and homogeneous 

division seems more complicated than just 

multiplying all coordinates by d/z, so why do it?

• Will allow us to 

– handle different types of projections in a unified way

– define arbitrary view volumes

Homogeneous divisionProjection matrix
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Detour: projective space
http://en.wikipedia.org/wiki/Projective_space

• Projective space: the space of one-

dimensional vector subspaces of a given 

vector space

– Elements of projective spaces are 1D vector 

subspaces

– Each element of 1D subspace is equivalent

(represents same element of projective space)
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Intuitive example
• All points that lie on one projection line (i.e., a 

"line-of-sight", intersecting with center of 
projection of camera) are projected onto
same image point

• All 3D points on one projection line are equivalent

• Projection lines form 2D projective space, or
2D projective plane
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3D Projective space

• Projective space P3 represented using R4

and homogeneous coordinates

– Each point along 4D ray is equivalent to same 

3D point at w=1

2
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x

y

z

w
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¸y
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x=w

y=w

z=w

1

3
7777775

„equivalent“

1D vector subspace,

arbitrary scalar value l

Equivalent element, 

for any l
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3D Projective space
• Projective mapping (transformation): 

any non-singular linear mapping on homogeneous 
coordinates, for example,

• Generalization of affine mappings

– 4th row of matrix is arbitrary (not restricted to [0 0 0 1])

• Projective mappings are collineations
http://en.wikipedia.org/wiki/Projective_linear_transformation
http://en.wikipedia.org/wiki/Collineation

– Preserve straight lines, but not parallel lines

• Much more theory
http://www.math.toronto.edu/mathnet/questionCorner/projective.html
http://en.wikipedia.org/wiki/Projective_space
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3D Projective space

• P3 can be interpreted as consisting of R3 

and its „points at infinity“

• Points are said to be at infinity if 

homogeneous coordinate w = 0

– Represented by direction vector

– Can actually perform computations with points 
at infinity (not possible with 1 sign!)
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Points at infinity

(2,1,0,1)

(2,1,0,0.5) ~ (4,2,0,1)

(2,1,0,0.33333) ~ (6,3,0,1)

Point at infinity,

direction vector

(2,1,0,0)
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2D line intersection

• Do parallel lines intersect at infinity?

In projective geometry, yes.
http://www.math.toronto.edu/mathnet/questionCorner/infinity.html
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• Two line equations

• Intersection: solve two equations in two
unknowns

• If lines are parallel: division by zero

2D line intersection

Determinant
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• Note: can multiply each of the equations 

by arbitrary scalar number w, still 

describes the same line!

• Using homogeneous coordinates 

x=wx‘,y=wy‘,w

2D line intersection

Same line
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• Line equations

Using homogeneous coordinates

h
a0 b0 c0

i
2
6664

x

y

w

3
7775 = 0

h
a1 b1 c1

i
2
6664

x

y

w

3
7775 = 0

a0x+ b0y+wc0 = 0

a1x+ b1y+wc1 = 0
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• Line equations

• Intersection: any scalar multiple of

• Lines not parallel: intersection is

• Lines parallel: wi=0, intersection at infinity!

Using homogeneous coordinates

a0x+ b0y+wc0 = 0

a1x+ b1y+wc1 = 0
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Projective space
Projective space
http://en.wikipedia.org/wiki/Projective_space

• [xyzw] homogeneous coordinates

• includes points at infinity (w=0)

• projective mappings (perspective projection)

Vector space

• [xyz] coordinates

• represents vectors

• linear mappings

(rotation around origin,

scaling, shear)

Affine space

• [xyz1], [xyz0]

homogeneous coords.

• distinguishes points 

and vectors

• affine mappings

(translation)
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In practice
• Use 4x4 homogeneous matrices like other 4x4 matrices

• Modeling & viewing transformations are affine mappings

– points keep w=1

– no need to divide by w when doing modeling operations or 
transforming into camera space

• 3D-to-2D projection is a projective transform

– Resulting w coordinate not always 1

• Divide by w (perspective division, homogeneous division) 
after multiplying with projection matrix

– OpenGL rendering pipeline (graphics hardware) 
does this automatically

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image
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Realistic image formation

• More than perspective projection

• Lens distortions, artifacts
http://en.wikipedia.org/wiki/Distortion_%28optics%29

Barrel distortion 38
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Realistic image formation

• More than perspective projection

• Lens distortions, artifacts
http://en.wikipedia.org/wiki/Distortion_%28optics%29

Focus, depth of field Fish-eye lens

http://en.wikipedia.org/wiki/Depth_of_field
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Realistic image formation

• Often too complicated for hardware 

rendering pipeline/interactive rendering

Chromatic aberration Motion blur

http://en.wikipedia.org/wiki/Chromatic_aberration

http://en.wikipedia.org/wiki/Motion_blur
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Today

• Rendering pipeline

• Projections

• View volumes, clipping

• Viewport transformation
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View volumes

• View volume is 3D volume seen by camera

World coordinates

Camera coordinates

World coordinates

Camera coordinates

Perspective view volume Orthographic view volume
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Perspective view volume
General view volume

• Defined by 6 parameters, in camera coordinates 

– Left, right, top, bottom boundaries

– Near, far clipping planes

• Clipping planes to avoid numerical problems

– Divide by zero

– Low precision for distant objects

• Often symmetric, i.e., left=-right, top=-bottom

Camera

coordinates
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Perspective view volume
Symmetric view volume

• Only 4 parameters

– Vertical field of view (FOV)

– Image aspect ratio (width/height)

– Near, far clipping planes

-z

FOV

y

z=-near

z=-far

y=top

aspect ratio=
right  left

top  bottom

right

top
 

tan(FOV / 2) 
top

near
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Orthographic view volume

• Parametrized by 6 parameters

– Right, left, top, bottom, near, far

• If symmetric

– Width, height, near, far

Camera

coordinates
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Clipping
• Need to identify objects outside view volume

– Avoid division by zero

– Efficiency, don’t draw 
objects outside view 
volume

• Performed by OpenGL 
rendering pipeline

• Clipping always to 
canonic view volume

– Cube [-1..1]x[-1..1]x[-1..1] centered at origin

• Need to transform desired view frustum to 
canonic view frustum
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Canonic view volume

• Projection matrix is set such that

– User defined view volume is transformed into canonic 

view volume, i.e., unit cube [-1,1]x[-1,1]x[-1,1]

“Multiplying vertices of view volume by projection 

matrix and performing homogeneous divide yields 

canonic view volume, i.e., cube [-1,1]x[-1,1]x[-1,1]“

• Perspective and orthographic projection are 

treated exactly the same way
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Projection matrix

Camera coordinates

Projection matrix

Canonic view volume

Viewport transformation

(later)
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Perspective projection matrix

• General view frustum

Camera

coordinates
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Perspective projection matrix

• Compare to simple projection matrix from 

before

Simple projection General view frustum
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Perspective projection matrix
• Symmetric view frustum with field of view, 

aspect ratio, near and far clip planes

Ppersp (FOV ,aspect,near, far) 

1

aspect  tan(FOV / 2)
0 0 0

0
1

tan(FOV / 2)
0 0

0 0
near  far

near  far

2 near  far

near  far

0 0 1 0





























-z

FOV

y

z=-near

z=-far

y=top

Camera

coordinates
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Orthographic projection matrix

Portho(right, left, top,bottom,near, far) 

2

right  left
0 0 

right  left

right  left

0
2

top  bottom
0 

top  bottom

top  bottom

0 0
2
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Portho(width,height,near, far) 

2

width
0 0 0

0
2
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0 0
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far  near
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0 0 0 1
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

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






Camera

coordinates

w = 1 after mult.

with orthographic

projection matrix
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Today

• Rendering pipeline

• Projections

• View volumes

• Viewport transformation
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Viewport transformation
• After applying projection matrix, image 

points are in normalized view coordinates

– Per definition range [-1..1] x [-1..1]

• Map points to image (i.e., pixel) coordinates

– User defined range [x0…x1] x [y0…y1]

– E.g., position of rendering window on screen

x0 x1
y0

y1

Screen 
Rendering window
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Viewport transformation

• Scale and translation

D x0 , x1, y0 , y1 

x1  x0  2 0 0 x0  x1  2

0 y1  y0  2 0 y0  y1  2

0 0 1 2 1 2

0 0 0 1



















x0 x1
y0

y1

Rendering window

Screen 

-1 x1
-1

1

Normalized device

coordinates

D
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The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Object space
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The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Object space

World space
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The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Object space

World space

Camera space
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The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates 

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Object space

World space

Camera space

Canonic view volume
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The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Object space

World space

Camera space

Image space

Canonic view volume

61



The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates 

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Pixel coordinates

62



OpenGL details
• Object-to-world matrix M, camera matrix C, 

projection matrix P, viewport matrix D

• OpenGL rendering pipeline performs these matrix 
multiplications in vertex shader program

– More on shader programs later in class

• User just specifies the model-view and projection 
matrices

• See Java code jrtr.GLRenderContext.draw and default 
vertex shader in file default.vert

Model-view matrix

Projection matrix
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OpenGL details
• Object-to-world matrix M, camera matrix C, 

projection matrix P, viewport matrix D

• Exception: viewport matrix, D

– Specified implicitly via glViewport() 
– No direct access, not used in shader program

Model-view matrix

Projection matrix
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Coming up

Next lecture

• Drawing (rasterization)

• Visibility (z-buffering)

Exercise session

• Project 2, interactive viewing
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