Computergrafik

Matthias Zwicker Universität Bern Herbst 2016

Today

- Rendering pipeline
- Projections
- View volumes, clipping
- Viewport transformation

Rendering pipeline

- Hardware & software that draws 3D scenes on the screen
- Most operations performed by specialized hardware (graphics processing unit, GPU, http://en.wikipedia.org/wiki/Graphics_processing_unit)
- Access to hardware through low-level 3D API (DirectX, OpenGL)
 - jogl is a Java binding to OpenGL, used in our projects http://jogamp.org/jogl/www/
- All scene data flows through the pipeline at least once for each frame (i.e., image)

Rendering pipeline

- Rendering pipeline implements object order algorithm
 - Loop over all objects
 - Draw triangles one by one (rasterization)
- Alternatives?
- Advantages, disadvantages?

Object vs. image order

Object order: loop over all triangles

- Rasterization type algorithms
- Desirable memory access pattern ("streaming" scene data one-by-one, data locality, avoid random scene access)
 http://en.wikipedia.org/wiki/Locality_of_reference
- Suitable for real time rendering (OpenGL, DirectX)
- Popular for production rendering (Pixar RenderMan), where scenes often do not fit in RAM
- No global illumination (light transport simulation) with purely object order algorithm

Object vs. image order

Image order: loop over all pixels

- Ray tracing type algorithms
- Undesirable memory access pattern (random scene access)
- Requires sophisticated data structures for fast scene access
- Full global illumination possible
- Most popular for photo-realistic image synthesis

Rendering engine

- Additional software layer ("middle-ware") encapsulating low-level API (OpenGL, DirectX, ...)
- Additional functionality (file I/O, scene management, ...)
- Layered software architecture common in industry
 - Game engines <u>http://en.wikipedia.org/wiki/G</u> <u>ame_engine</u>

- Geometry
 - Vertices and how they are connected
 - Triangles, lines, point sprites, triangle strips
 - Attributes such as color

- Specified in object coordinates
- Processed by the rendering pipeline one-by-one

• Transform object to camera coordinates $\mathbf{p}_{camera} = \mathbf{C}^{-1}\mathbf{M}\mathbf{p}_{object}$

MODELVIEW matrix

- Additional processing on per-vertex basis
 - Shading, i.e., computing per-vertex colors
 - Deformation, animation
 - Etc.

- Project 3D vertices to 2D image positions
- This lecture

- Draw primitives pixel by pixel on 2D image (triangles, lines, point sprites, etc.)
- Compute per fragment (i.e., pixel) color
- Determine what is visible
- Next lecture

Today

- Rendering pipeline
- Projections
- View volumes, clipping
- Viewport transformation

Object, world, camera coords.

Objects in camera coordinates

- We have things lined up the way we like them on screen
 - -x to the right
 - -y up
 - -z going into the screen
 - Objects to look at are in front of us, i.e. have negative z values

- But objects are still in 3D
- Today: how to project them into 2D

Projections

 Given 3D points (vertices) in camera coordinates, determine corresponding 2D image coordinates

Orthographic projection

- Simply ignore *z*-coordinate
- Use camera space *xy* coordinates as image coordinates

• What we want, or not?

Orthographic projection

 Project points to x-y plane along parallel lines
 y y

• Graphical illustrations, architecture

- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)
- Things farther away seem smaller

• Discovery/formalization attributed to Filippo Brunelleschi in the early 1400's

 Project along rays that converge in center of projection

The math: simplified case

The math: simplified case

• Can express this using homogeneous coordinates, 4x4 matrices

The math: simplified case

Projection matrix

Homogeneous coord. != 1! Homogeneous division

- Using projection matrix and homogeneous division seems more complicated than just multiplying all coordinates by d/z, so why do it?
- Will allow us to
 - handle different types of projections in a unified way
 - define arbitrary view volumes

Detour: projective space

http://en.wikipedia.org/wiki/Projective_space

- Projective space: the space of onedimensional vector subspaces of a given vector space
 - Elements of projective spaces are 1D vector subspaces
 - Each element of 1D subspace is equivalent (represents same element of projective space)

Intuitive example

- All points that lie on one projection line (i.e., a "line-of-sight", intersecting with center of projection of camera) are projected onto same image point
- All 3D points on one projection line are equivalent
- Projection lines form 2D projective space, or 2D projective plane

3D Projective space

- Projective space P³ represented using R⁴ and homogeneous coordinates
 - Each point along 4D ray is equivalent to same
 3D point at w=1

3D Projective space

• Projective mapping (transformation): any non-singular linear mapping on homogeneous coordinates, for example,

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} \sim \begin{bmatrix} xd/z \\ yd/z \\ d \\ 1 \end{bmatrix}$$

- Generalization of affine mappings
 - 4th row of matrix is arbitrary (not restricted to [0 0 0 1])
- Projective mappings are collineations <u>http://en.wikipedia.org/wiki/Projective_linear_transformation</u> <u>http://en.wikipedia.org/wiki/Collineation</u>
 - Preserve straight lines, but not parallel lines
- Much more theory

http://www.math.toronto.edu/mathnet/questionCorner/projective.html http://en.wikipedia.org/wiki/Projective_space

3D Projective space

- **P**³ can be interpreted as consisting of **R**³ and its "points at infinity"
- Points are said to be at infinity if homogeneous coordinate w = 0
 - Represented by direction vector
 - Can actually perform computations with points at infinity (not possible with ∞ sign!)

Points at infinity

2D line intersection

• Do parallel lines intersect at infinity? In projective geometry, yes.

http://www.math.toronto.edu/mathnet/questionCorner/infinity.html

2D line intersection

- Two line equations $a_0x' + b_0y' + c_0 = 0$ $a_1x' + b_1y' + c_1 = 0$
- Intersection: solve two equations in two unknowns
 Determinant

$$egin{array}{l} x_i' = egin{array}{c|c} -c_0 & b_0 \ -c_1 & b_1 \end{array} ig| / igg| egin{array}{c|c} a_0 & b_0 \ a_1 & b_1 \end{array} igg| \ y_i' = igg| egin{array}{c|c} a_0 & -c_0 \ a_1 & -c_1 \end{array} igg| / igg| egin{array}{c|c} a_0 & b_0 \ a_1 & b_1 \end{array} igg| \end{array}$$

• If lines are parallel: division by zero

2D line intersection

 Note: can multiply each of the equations by arbitrary scalar number w, still describes the same line!

$$a_0 x' + b_0 y' + c_0 = 0$$

$$a_0 w x' + b_0 w y' + c_0 w = 0$$

Same line

Using homogeneous coordinates
 x=wx ',y=wy ',w

$$a_0x + b_0y + c_0w = 0$$

Using homogeneous coordinates

• Line equations

$$a_0 x + b_0 y + w c_0 = 0$$

$$a_1 x + b_1 y + w c_1 = 0$$

 $\begin{bmatrix} a_0 & b_0 & c_0 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = 0$ Or equivalent: $\begin{bmatrix} a_1 & b_1 & c_1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = 0$

Using homogeneous coordinates

- Line equations $a_0x + b_0y + wc_0 = 0$ $a_1x + b_1y + wc_1 = 0$ Or equivalent: $\begin{bmatrix} a_0 & b_0 & c_0 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = 0$ $\begin{bmatrix} a_1 & b_1 & c_1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = 0$
- Intersection: any scalar multiple of
- $\begin{vmatrix} x_i \\ y_i \\ w_i \end{vmatrix} = \begin{vmatrix} a_0 \\ b_0 \\ c_0 \end{vmatrix} \times \begin{vmatrix} a_1 \\ b_1 \\ c_1 \end{vmatrix}$ Lines not parallel: intersection $\begin{vmatrix} x_i/w_i \\ y_i/w_i \\ 1 \end{vmatrix} = \begin{vmatrix} x'_i \\ y'_i \\ 1 \end{vmatrix}$
- Lines parallel: $w_i = 0$, intersection at infinity!

Projective space

Projective space

http://en.wikipedia.org/wiki/Projective_space

- [xyzw] homogeneous coordinates
- includes points at infinity (w=0)
- projective mappings (perspective projection)

Vector space

- [xyz] coordinates
- represents vectors
- linear mappings (rotation around origin, scaling, shear)

Affine space

- [xyz1], [xyz0] homogeneous coords.
- distinguishes points and vectors
- affine mappings (translation)

In practice

- Use 4x4 homogeneous matrices like other 4x4 matrices
- Modeling & viewing transformations are affine mappings
 - points keep *w*=1
 - no need to divide by *w* when doing modeling operations or transforming into camera space
- 3D-to-2D projection is a projective transform
 - Resulting *w* coordinate not always 1
- Divide by *w* (perspective division, homogeneous division) after multiplying with projection matrix
 - OpenGL rendering pipeline (graphics hardware) does this automatically

Realistic image formation

- More than perspective projection
- Lens distortions, artifacts

http://en.wikipedia.org/wiki/Distortion_%28optics%29

Barrel distortion

Realistic image formation

- More than perspective projection
- Lens distortions, artifacts

http://en.wikipedia.org/wiki/Distortion_%28optics%29

Focus, depth of field

Fish-eye lens

http://en.wikipedia.org/wiki/Depth_of_field

Realistic image formation

Chromatic aberration

Motion blur

http://en.wikipedia.org/wiki/Chromatic_aberration

http://en.wikipedia.org/wiki/Motion_blur

 Often too complicated for hardware rendering pipeline/interactive rendering

Today

- Rendering pipeline
- Projections
- View volumes, clipping
- Viewport transformation

View volumes

• View volume is 3D volume seen by camera

World coordinates

World coordinates

Perspective view volume

General view volume

- Defined by 6 parameters, in camera coordinates
 - Left, right, top, bottom boundaries
 - Near, far clipping planes
- Clipping planes to avoid numerical problems
 - Divide by zero
 - Low precision for distant objects
- Often symmetric, i.e., left=-right, top=-bottom

Perspective view volume

Symmetric view volume

- Only 4 parameters
 - Vertical field of view (FOV)
 - Image aspect ratio (width/height)
 - Near, far clipping planes

aspect ratio=
$$\frac{right - left}{top - bottom} = \frac{right}{top}$$

 $tan(FOV / 2) = \frac{top}{near}$

Orthographic view volume

- Parametrized by 6 parameters
 - Right, left, top, bottom, near, far
- If symmetric
 - Width, height, near, far

Clipping

- Need to identify objects outside view volume
 - Avoid division by zero
 - Efficiency, don't draw objects outside view volume
- Performed by OpenGL rendering pipeline
- Clipping always to canonic view volume

- Cube [-1..1]x[-1..1]x[-1..1] centered at origin
- Need to transform desired view frustum to canonic view frustum

Canonic view volume

- Projection matrix is set such that
 - User defined view volume is transformed into canonic view volume, i.e., unit cube [-1,1]x[-1,1]x[-1,1]

"Multiplying vertices of view volume by projection matrix and performing homogeneous divide yields canonic view volume, i.e., cube [-1,1]x[-1,1]x[-1,1]"

• Perspective and orthographic projection are treated exactly the same way

Projection matrix

Perspective projection matrix

• General view frustum

 $\mathbf{P}_{persp}(left, right, top, bottom, near, far) =$

$$\begin{bmatrix} \frac{2near}{right-left} & 0 & \frac{right+left}{right-left} & 0\\ 0 & \frac{2near}{top-bottom} & \frac{top+bottom}{top-bottom} & 0\\ 0 & 0 & \frac{-(far+near)}{far-near} & \frac{-2far\cdot near}{far-near}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Perspective projection matrix

 Compare to simple projection matrix from before

Perspective projection matrix

• Symmetric view frustum with field of view, aspect ratio, near and far clip planes

$$\mathbf{P}_{persp}(FOV, aspect, near, far) = \begin{bmatrix} \frac{1}{aspect \cdot \tan(FOV/2)} & 0 & 0 & 0 \\ 0 & \frac{1}{\tan(FOV/2)} & 0 & 0 \\ 0 & 0 & \frac{near + far}{near - far} & \frac{2 \cdot near \cdot far}{near - far} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Orthographic projection matrix

Today

- Rendering pipeline
- Projections
- View volumes
- Viewport transformation

Viewport transformation

- After applying projection matrix, image points are in normalized view coordinates
 - Per definition range [-1..1] x [-1..1]
- Map points to image (i.e., pixel) coordinates
 - User defined range [x0...x1] x [y0...y1]
 - E.g., position of rendering window on screen

Viewport transformation

Scale and translation

$$\mathbf{D}(x_0, x_1, y_0, y_1) = \begin{bmatrix} (x_1 - x_0)/2 & 0 & 0 & (x_0 + x_1)/2 \\ 0 & (y_1 - y_0)/2 & 0 & (y_0 + y_1)/2 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

$$\mathbf{p}' = \mathbf{DPC}^{-1}\mathbf{M} \mathbf{p}$$

Object space

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

$$\mathbf{p}' = \mathbf{DPC}^{-1} \mathbf{M} \mathbf{p}$$

Object space
World space

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

$$\mathbf{p}' = \mathbf{DP} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$$

Object space
World space
Camera space

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

$$\mathbf{p}' = \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$$

Object space
World space
Camera space
Canonic view volume

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

intrix \mathbf{L} , $\mathbf{p}' = \begin{vmatrix} \mathbf{D} & \mathbf{P} & \mathbf{C}^{-1} \\ \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \\ \mathbf{D}$ Camera space Canonic view volume Image space

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

 $\mathbf{p}' = \mathbf{D}\mathbf{P}\mathbf{C}^{-1}\mathbf{M}\mathbf{p}$

$$\mathbf{p}' = \begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix}$$

Pixel coordinates

x'/w'y'/w'

OpenGL details

• Object-to-world matrix **M**, camera matrix **C**, projection matrix **P**, viewport matrix **D**

- OpenGL rendering pipeline performs these matrix multiplications in vertex shader program
 - More on shader programs later in class
- User just specifies the model-view and projection matrices
- See Java code jrtr.GLRenderContext.draw and default vertex shader in file default.vert

OpenGL details

• Object-to-world matrix **M**, camera matrix **C**, projection matrix **P**, viewport matrix **D**

- Exception: viewport matrix, **D**
 - Specified implicitly via glViewport()
 - No direct access, not used in shader program

Coming up

Next lecture

- Drawing (rasterization)
- Visibility (z-buffering)

Exercise session

• Project 2, interactive viewing