
Computergrafik

Matthias Zwicker

Universität Bern

Herbst 2016



Today

• Rendering pipeline

• Projections

• View volumes, clipping

• Viewport transformation

2



Rendering pipeline

Scene data

Image

• Hardware & software that 
draws 3D scenes on the 
screen

• Most operations performed 
by specialized hardware 
(graphics processing unit, 
GPU, http://en.wikipedia.org/wiki/Graphics_processing_unit)

• Access to hardware through 
low-level 3D API (DirectX, 
OpenGL)

– jogl is a Java binding to 
OpenGL, used in our projects
http://jogamp.org/jogl/www/

• All scene data flows 
through the pipeline at 
least once for each frame 
(i.e., image)

Rendering

pipeline

http://en.wikipedia.org/wiki/Graphics_pipeline

3

http://en.wikipedia.org/wiki/Graphics_processing_unit
http://jogamp.org/jogl/www/
http://en.wikipedia.org/wiki/Graphics_pipeline


Rendering pipeline

• Rendering pipeline implements object 

order algorithm

– Loop over all objects

– Draw triangles one by one (rasterization)

• Alternatives?

• Advantages, disadvantages?

4



Object vs. image order
Object order: loop over all triangles

• Rasterization type algorithms

• Desirable memory access pattern („streaming“ 
scene data one-by-one, data locality, avoid 
random scene access)
http://en.wikipedia.org/wiki/Locality_of_reference

• Suitable for real time rendering (OpenGL, DirectX)

• Popular for production rendering (Pixar 
RenderMan), where scenes often do not fit in RAM

• No global illumination (light transport simulation) 
with purely object order algorithm

5

http://en.wikipedia.org/wiki/Locality_of_reference


Object vs. image order
Image order: loop over all pixels

• Ray tracing type algorithms

• Undesirable memory access pattern 
(random scene access)

• Requires sophisticated data structures for 
fast scene access

• Full global illumination possible

• Most popular for photo-realistic image 
synthesis

6



Rendering engine

Scene data

Image

• Additional software layer 
(“middle-ware”) 
encapsulating low-level 
API (OpenGL, DirectX, …)

• Additional functionality 
(file I/O, scene 
management, …)

• Layered software 
architecture common in 
industry

– Game engines
http://en.wikipedia.org/wiki/G
ame_engine

Rendering

pipeline

Rendering engine (jrtr)

7

http://en.wikipedia.org/wiki/Game_engine


Rendering pipeline stages (simplified)

• Geometry

– Vertices and how they are 

connected

– Triangles, lines, point 

sprites, triangle strips

– Attributes such as color

• Specified in object 

coordinates

• Processed by the rendering 

pipeline one-by-one

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image

8



Rendering pipeline stages (simplified)

• Transform object to 

camera coordinates

• Additional processing on 

per-vertex basis

– Shading, i.e., computing 

per-vertex colors

– Deformation, animation

– Etc.

MODELVIEW

matrix

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image

9



Rendering pipeline stages (simplified)

• Project 3D vertices to 2D 

image positions

• This lecture

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image

10



Rendering pipeline stages (simplified)

• Draw primitives pixel by 
pixel on 2D image 
(triangles, lines, point 
sprites, etc.)

• Compute per fragment 
(i.e., pixel) color

• Determine what is visible

• Next lecture

Rasterization

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image

11



Rendering pipeline stages (simplified)

• Grid (2D array) of RGB 

pixel colors

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image

12



Today

• Rendering pipeline

• Projections

• View volumes, clipping

• Viewport transformation

13



Object, world, camera coords.

World coordinates

Object

coordinates

Camera

coordinates

14



Objects in camera coordinates

• We have things lined up the way we like 

them on screen

– x to the right

– y up

– -z going into the screen

– Objects to look at are in 

front of us, i.e. have 

negative z values

• But objects are still in 3D

• Today: how to project them into 2D

Camera

coordinates

15



Projections

• Given 3D points (vertices) in camera 

coordinates, determine corresponding 2D 

image coordinates

Orthographic projection

• Simply ignore z-coordinate

• Use camera space xy coordinates as image 

coordinates

• What we want, or not?
16



Orthographic projection

• Project points to x-y plane along parallel 

lines

• Graphical illustrations, architecture

17



Perspective projection

• Most common for computer graphics

• Simplified model of human eye, or camera 

lens (pinhole camera)

• Things farther 

away seem smaller

• Discovery/formalization attributed to

Filippo Brunelleschi in the early 1400’s

http://en.wikipedia.org/wiki/Pinhole_camera

18

http://en.wikipedia.org/wiki/Pinhole_camera


Perspective projection

• Project along rays that converge in center 

of projection

2D image plane

Center of

projection

3D scene

19



Perspective projection

Parallel lines 

no longer parallel,

converge at one point

Earliest example

La Trinitá (1427) by Masaccio
http://en.wikipedia.org/wiki/Holy_Trinity_(Masaccio)

20

http://en.wikipedia.org/wiki/Holy_Trinity_(Masaccio)


Perspective projection

The math: simplified case

Image plane

Center of

projection

21



Perspective projection

The math: simplified case

• Can express this using homogeneous 

coordinates, 4x4 matrices

Image plane

Center of

projection

22



The math: simplified case

Perspective projection

Homogeneous coord. != 1!

Homogeneous division
Projection matrix

23



Perspective projection

• Using projection matrix and homogeneous 

division seems more complicated than just 

multiplying all coordinates by d/z, so why do it?

• Will allow us to 

– handle different types of projections in a unified way

– define arbitrary view volumes

Homogeneous divisionProjection matrix

24



Detour: projective space
http://en.wikipedia.org/wiki/Projective_space

• Projective space: the space of one-

dimensional vector subspaces of a given 

vector space

– Elements of projective spaces are 1D vector 

subspaces

– Each element of 1D subspace is equivalent

(represents same element of projective space)

25

http://en.wikipedia.org/wiki/Projective_space


Intuitive example
• All points that lie on one projection line (i.e., a 

"line-of-sight", intersecting with center of 
projection of camera) are projected onto
same image point

• All 3D points on one projection line are equivalent

• Projection lines form 2D projective space, or
2D projective plane

26



3D Projective space

• Projective space P3 represented using R4

and homogeneous coordinates

– Each point along 4D ray is equivalent to same 

3D point at w=1

2
6666664

x

y

z

w

3
7777775
»

2
6666664

¸x

¸y

¸z

¸w

3
7777775
»

2
6666664

x=w

y=w

z=w

1

3
7777775

„equivalent“

1D vector subspace,

arbitrary scalar value l

Equivalent element, 

for any l
27



3D Projective space
• Projective mapping (transformation): 

any non-singular linear mapping on homogeneous 
coordinates, for example,

• Generalization of affine mappings

– 4th row of matrix is arbitrary (not restricted to [0 0 0 1])

• Projective mappings are collineations
http://en.wikipedia.org/wiki/Projective_linear_transformation
http://en.wikipedia.org/wiki/Collineation

– Preserve straight lines, but not parallel lines

• Much more theory
http://www.math.toronto.edu/mathnet/questionCorner/projective.html
http://en.wikipedia.org/wiki/Projective_space

28

http://en.wikipedia.org/wiki/Projective_linear_transformation
http://en.wikipedia.org/wiki/Collineation
http://www.math.toronto.edu/mathnet/questionCorner/projective.html
http://en.wikipedia.org/wiki/Projective_space


3D Projective space

• P3 can be interpreted as consisting of R3 

and its „points at infinity“

• Points are said to be at infinity if 

homogeneous coordinate w = 0

– Represented by direction vector

– Can actually perform computations with points 
at infinity (not possible with 1 sign!)

29



Points at infinity

(2,1,0,1)

(2,1,0,0.5) ~ (4,2,0,1)

(2,1,0,0.33333) ~ (6,3,0,1)

Point at infinity,

direction vector

(2,1,0,0)

30



2D line intersection

• Do parallel lines intersect at infinity?

In projective geometry, yes.
http://www.math.toronto.edu/mathnet/questionCorner/infinity.html

31

http://www.math.toronto.edu/mathnet/questionCorner/infinity.html


• Two line equations

• Intersection: solve two equations in two
unknowns

• If lines are parallel: division by zero

2D line intersection

Determinant

32



• Note: can multiply each of the equations 

by arbitrary scalar number w, still 

describes the same line!

• Using homogeneous coordinates 

x=wx‘,y=wy‘,w

2D line intersection

Same line

33



• Line equations

Using homogeneous coordinates

h
a0 b0 c0

i
2
6664

x

y

w

3
7775 = 0

h
a1 b1 c1

i
2
6664

x

y

w

3
7775 = 0

a0x+ b0y+wc0 = 0

a1x+ b1y+wc1 = 0

34

Or equivalent:



• Line equations

• Intersection: any scalar multiple of

• Lines not parallel: intersection is

• Lines parallel: wi=0, intersection at infinity!

Using homogeneous coordinates

a0x+ b0y+wc0 = 0

a1x+ b1y+wc1 = 0

35

h
a0 b0 c0

i
2
6664

x

y

w

3
7775 = 0

h
a1 b1 c1

i
2
6664

x

y

w

3
7775 = 0

Or equivalent:



Projective space
Projective space
http://en.wikipedia.org/wiki/Projective_space

• [xyzw] homogeneous coordinates

• includes points at infinity (w=0)

• projective mappings (perspective projection)

Vector space

• [xyz] coordinates

• represents vectors

• linear mappings

(rotation around origin,

scaling, shear)

Affine space

• [xyz1], [xyz0]

homogeneous coords.

• distinguishes points 

and vectors

• affine mappings

(translation)

36

http://en.wikipedia.org/wiki/Projective_space


In practice
• Use 4x4 homogeneous matrices like other 4x4 matrices

• Modeling & viewing transformations are affine mappings

– points keep w=1

– no need to divide by w when doing modeling operations or 
transforming into camera space

• 3D-to-2D projection is a projective transform

– Resulting w coordinate not always 1

• Divide by w (perspective division, homogeneous division) 
after multiplying with projection matrix

– OpenGL rendering pipeline (graphics hardware) 
does this automatically

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image

37



Realistic image formation

• More than perspective projection

• Lens distortions, artifacts
http://en.wikipedia.org/wiki/Distortion_%28optics%29

Barrel distortion 38

http://en.wikipedia.org/wiki/Distortion_%28optics%29


Realistic image formation

• More than perspective projection

• Lens distortions, artifacts
http://en.wikipedia.org/wiki/Distortion_%28optics%29

Focus, depth of field Fish-eye lens

http://en.wikipedia.org/wiki/Depth_of_field

39

http://en.wikipedia.org/wiki/Distortion_(optics)
http://en.wikipedia.org/wiki/Depth_of_field


Realistic image formation

• Often too complicated for hardware 

rendering pipeline/interactive rendering

Chromatic aberration Motion blur

http://en.wikipedia.org/wiki/Chromatic_aberration

http://en.wikipedia.org/wiki/Motion_blur

40

http://en.wikipedia.org/wiki/Chromatic_aberration
http://en.wikipedia.org/wiki/Motion_blur


Today

• Rendering pipeline

• Projections

• View volumes, clipping

• Viewport transformation

41



View volumes

• View volume is 3D volume seen by camera

World coordinates

Camera coordinates

World coordinates

Camera coordinates

Perspective view volume Orthographic view volume

42



Perspective view volume
General view volume

• Defined by 6 parameters, in camera coordinates 

– Left, right, top, bottom boundaries

– Near, far clipping planes

• Clipping planes to avoid numerical problems

– Divide by zero

– Low precision for distant objects

• Often symmetric, i.e., left=-right, top=-bottom

Camera

coordinates

43



Perspective view volume
Symmetric view volume

• Only 4 parameters

– Vertical field of view (FOV)

– Image aspect ratio (width/height)

– Near, far clipping planes

-z

FOV

y

z=-near

z=-far

y=top

aspect ratio=
right  left

top  bottom

right

top
 

tan(FOV / 2) 
top

near

44



Orthographic view volume

• Parametrized by 6 parameters

– Right, left, top, bottom, near, far

• If symmetric

– Width, height, near, far

Camera

coordinates

45



Clipping
• Need to identify objects outside view volume

– Avoid division by zero

– Efficiency, don’t draw 
objects outside view 
volume

• Performed by OpenGL 
rendering pipeline

• Clipping always to 
canonic view volume

– Cube [-1..1]x[-1..1]x[-1..1] centered at origin

• Need to transform desired view frustum to 
canonic view frustum

46



Canonic view volume

• Projection matrix is set such that

– User defined view volume is transformed into canonic 

view volume, i.e., unit cube [-1,1]x[-1,1]x[-1,1]

“Multiplying vertices of view volume by projection 

matrix and performing homogeneous divide yields 

canonic view volume, i.e., cube [-1,1]x[-1,1]x[-1,1]“

• Perspective and orthographic projection are 

treated exactly the same way

48



Projection matrix

Camera coordinates

Projection matrix

Canonic view volume

Viewport transformation

(later)

49



Perspective projection matrix

• General view frustum

Camera

coordinates

50



Perspective projection matrix

• Compare to simple projection matrix from 

before

Simple projection General view frustum

51



Perspective projection matrix
• Symmetric view frustum with field of view, 

aspect ratio, near and far clip planes

Ppersp (FOV ,aspect,near, far) 

1

aspect  tan(FOV / 2)
0 0 0

0
1

tan(FOV / 2)
0 0

0 0
near  far

near  far

2 near  far

near  far

0 0 1 0





























-z

FOV

y

z=-near

z=-far

y=top

Camera

coordinates

52



Orthographic projection matrix

Portho(right, left, top,bottom,near, far) 

2

right  left
0 0 

right  left

right  left

0
2

top  bottom
0 

top  bottom

top  bottom

0 0
2

far  near

far  near

far  near

0 0 0 1





























Portho(width,height,near, far) 

2

width
0 0 0

0
2

height
0 0

0 0
2

far  near

far  near

far  near

0 0 0 1



























Camera

coordinates

w = 1 after mult.

with orthographic

projection matrix

53



Today

• Rendering pipeline

• Projections

• View volumes

• Viewport transformation

54



Viewport transformation
• After applying projection matrix, image 

points are in normalized view coordinates

– Per definition range [-1..1] x [-1..1]

• Map points to image (i.e., pixel) coordinates

– User defined range [x0…x1] x [y0…y1]

– E.g., position of rendering window on screen

x0 x1
y0

y1

Screen 
Rendering window

55



Viewport transformation

• Scale and translation

D x0 , x1, y0 , y1 

x1  x0  2 0 0 x0  x1  2

0 y1  y0  2 0 y0  y1  2

0 0 1 2 1 2

0 0 0 1



















x0 x1
y0

y1

Rendering window

Screen 

-1 x1
-1

1

Normalized device

coordinates

D

56



The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Object space

57



The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Object space

World space

58



The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Object space

World space

Camera space

59



The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates 

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Object space

World space

Camera space

Canonic view volume

60



The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Object space

World space

Camera space

Image space

Canonic view volume

61



The complete transform

• Mapping a 3D point in object coordinates 

to pixel coordinates 

• Object-to-world matrix M, camera matrix 

C, projection matrix C, viewport matrix D

Pixel coordinates

62



OpenGL details
• Object-to-world matrix M, camera matrix C, 

projection matrix P, viewport matrix D

• OpenGL rendering pipeline performs these matrix 
multiplications in vertex shader program

– More on shader programs later in class

• User just specifies the model-view and projection 
matrices

• See Java code jrtr.GLRenderContext.draw and default 
vertex shader in file default.vert

Model-view matrix

Projection matrix

63



OpenGL details
• Object-to-world matrix M, camera matrix C, 

projection matrix P, viewport matrix D

• Exception: viewport matrix, D

– Specified implicitly via glViewport() 
– No direct access, not used in shader program

Model-view matrix

Projection matrix

64



Coming up

Next lecture

• Drawing (rasterization)

• Visibility (z-buffering)

Exercise session

• Project 2, interactive viewing

65


