
Computergrafik

Matthias Zwicker

Universität Bern

Herbst 2016

Today

• Shader programming

• More texture mapping & antialiasing

2

Complete model

• Blinn model with several light sources i

ambientdiffuse specular

How is this implemented

on the graphics processor (GPU)?

Shader programming!

3

Programmable pipeline
• Functionality in

parts (grey boxes) of
the GPU pipeline
specified by user
programs

• Called shaders, or
shader programs,
executed on GPU

• Not all functionality
in the pipeline is
programmable

Scene data

Image

Vertex processing,

modeling and viewing

transformation

Projection

Rasterization,

fragment processing,

visibility

GPU

4

Shader programs
• Written in a shading language

• Examples

– Cg, early shading language by NVidia

– OpenGL’s shading language GLSL
http://en.wikipedia.org/wiki/GLSL

– DirectX’ shading language HLSL (high level shading
language)
http://en.wikipedia.org/wiki/High_Level_Shader_Language

– RenderMan shading language (film production)

– All similar to C, with specialties

• Recent, quickly changing technology

• Driven by more and more flexible GPUs

5

http://en.wikipedia.org/wiki/GLSL
http://en.wikipedia.org/wiki/High_Level_Shader_Language

Programmable pipeline (2006)

Two types of shader

programs

1. Vertex program

2. Fragment program

(fragment: pixel location

inside a triangle and

interpolated data)

Scene data

Image

Vertex processing,

modeling and viewing

transformation

Projection

Rasterization,

fragment processing,

visibility

GPU

6

GPU architecture (2006)

128 functional units, “stream processors”
http://arstechnica.com/news.ars/post/20061108-8182.html

NVidia NV80 (GeForce 8800 Series)

Pipeline GPU Architecture

7

http://arstechnica.com/news.ars/post/20061108-8182.html

GPU architecture (2014)

• Similar, but more processors (2048)

8http://hexus.net/tech/reviews/graphics/74849-nvidia-geforce-gtx-980-28nm-maxwell/

http://hexus.net/tech/reviews/graphics/74849-nvidia-geforce-gtx-980-28nm-maxwell/

GPU architecture (2016)

9

• Similar, but even more processors (3840)

https://devblogs.nvidia.com/parallelforall/inside-pascal/

https://devblogs.nvidia.com/parallelforall/inside-pascal/

Parallelism

• Task parallelism
http://en.wikipedia.org/wiki/Task_parallelism

– Processor performs different threads

(sequences of instructions) simultaneously

– Multi-core CPUs

• Data parallelism
http://en.wikipedia.org/wiki/Data_parallelism

– Processors performs same thread of

instructions on different data elements

– Single Instruction Multiple Data (SIMD)

– GPUs

10

http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Data_parallelism

Parallelism
• GPUs up to now exploit mostly data

parallelism

– Perform same thread of operations (same shader)

on multiple vertices and pixels independently

– Massive parallelism (same operation on many

vertices, pixels) enables massive number of

operations per second

– Currently: hundreds of parallel operations at

several hundred megahertz

• Detailed description of Nvidia „Kepler“

architecture
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf

11

http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf

Still fixed functionality (2014)
• “Hardcoded in hardware”

• Projective division

• Rasterization

– I.e., determine which pixels lie inside triangle

– Vertex attribute interpolation (color, texture
coords.)

• Access to framebuffer

– Z-buffering

– Texture filtering

– Framebuffer blending

12

Shader programming
• Each shader (vertex or fragment) is a separate

piece of code in a shading language (e.g. GLSL)

• Vertex shader

– Executed automatically for each vertex and its
attributes (color, normal, texture coordinates) flowing
down the pipeline

– Type and number of output variables of vertex shader
are user defined

– Every vertex produces same type of output

– Output interpolated automatically at each fragment
and accessible as input to fragment shader

• Fragment shader

– Executed automatically for each fragment (pixel)
being touched by rasterizer

– Output (fragment color) is written to framebuffer

13

Shader programming
• Shaders are activated/deactivated by host program

(Java, C++, …)

– Can have different shaders to render different parts of a
scene

• Shader programs can use additional variables set by
user

– Modelview and projection matrices

– Light sources

– Textures

– Etc.

• Variables are passed by host (Java, C++) program to
shader

– In jrtr via jogl, see class jrtr.GLRenderContext

• Learn OpenGL details from example code, then
(advanced) reference books, e.g.
http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf

14

http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf

Vertex programs
• Executed once for every vertex

– Or: “every vertex is processed by

same vertex program that is

currently active”

• Implements functionality for

– Modelview, projection

transformation (required!)

– Per-vertex shading

• Vertex shader often used for animation

– Characters

– Particle systems

15

Fragment programs
• Executed once for every

fragment

– Or: “Every fragment is processed
by same fragment program that
is currently active”

• Implements functionality for

– Output color to framebuffer

– Texturing

– Per-pixel shading

– Bump mapping

– Shadows

– Etc.

16

Creating shaders in OpenGL

[OpenGL programming guide]

• Sequence of OpenGL API calls to load,
compile, link, activate shaders

– Mostly taken care of
in Shader.java

• Input is a string that
contains shader
program

– String usually read
from file

– Separate files for
fragment and vertex
shaders

17

Creating shaders in OpenGL

• You can switch between different shaders

during runtime of your application

– Setup several shaders as shown before

– Call glUseProgram(s) whenever you want to

render using a certain shader s

– Shader is active until you call glUseProgram

with a different shader

• In jrtr, this functionality is encapsulated

in the Shader class

18

Vertex programs

Vertex

program

Vertices with attributes
storage classifier in

Coordinates in object space,

additional vertex attributes

From application

To rasterizer

Output
storage classifier out

Transformed vertices,

processed vertex attributes

Uniform parameters
storage classifier uniform

OpenGL state,

application specified

parameters

19

“Hello world” vertex program
• main() function is executed for every

vertex

• Three storage classifiers: in, out, uniform

in vec4 position; // position, vertex attribute

uniform mat4 projection; // projection matrix, set by host (Java)

uniform mat4 modelview; // modelview matrix, set by host (Java)

void main()

{

gl_Position = // required, predefined output variable

projection * // apply projection matrix

modelview * // apply modelview matrix

position; // vertex position

}

20

Vertex attributes

• “Data that flows down the pipeline with

each vertex”

• Per-vertex data that your application

sends to rendering pipeline

• E.g., vertex position, color, normal,

texture coordinates

• Declared using in storage classifier in

your shader code

– Read-only

21

Vertex attributes

• Application needs to tell OpenGL which
vertex attributes are mapped to which in

variables

• In host (Java) program, sequence of calls
glGenBuffers // Get reference to OpenGL buffer object

glBindBuffer // Activate buffer object

glBufferData // Write data into buffer

glGetAttribLocation // Get reference of uniform variable

// in shader

glVertexAttribPointer // Link buffer object with uniform

// shader variable

glEnableVertexAttribArray // Enable the link

• Details see GLRenderContext.draw

– No need to modify it
22

Uniform parameters

• Parameters that are set by the

application, but do not change on a per-

vertex basis!

– Transformation matrices, parameters of light

sources, textures

• Will be the same for each vertex until

application changes it again

• Declared using uniform storage classifier

in vertex shader

– Read-only
23

Uniform parameters
• To set parameters, use
glGetUniformLocation, glUniform*

in application

– After shader is active, before rendering

• Example

– In shader declare
uniform float a;

– In application, set a using
GLuint p;

//… initialize program p

int i=glGetUniformLocation(p,”a”);

glUniform1f(i, 1.f);

24

Output variables
• Required, predefined output variable:

homogeneous vertex coordinates
vec4 gl_Position

• Additional user defined outputs

– Mechanism to send data to the fragment shader

– Will be interpolated during rasterization

– Interpolated values accessible in fragment shader
(using same variable names)

• Storage classifier out

25

Limitations (2014)

• Cannot write data to any memory

accessible directly by application (Java,

C++, etc.)

• Cannot pass data between vertices

– Each vertex is independent

• One vertex in, one vertex out

– Cannot generate new geometry

– Note: “Geometry shaders” (not discussed

here) can do this

26

Examples
• Animation

– Offload as much as possible
to the GPU

• Character skinning

• Particle systems

• Water

http://www.youtube.com/watch?v=on4H3s-W0NY

Character skinning

27

http://www.youtube.com/watch?v=on4H3s-W0NY

Fragment programs

Fragment

program

Fragment data
storage classifier in

Interpolated vertex attributes,

additional fragment attributes

From rasterizer

To fixed framebuffer

access functionality

(z-buffering, etc.)
Output

storage classifier out

Fragment color, depth

Uniform parameters
storage classifier uniform

OpenGL state,

application specified

parameters

28

Fragment data
• Change for each execution of the fragment

program

• Interpolated from vertex output during
rasterization

– Fragment color, texture coordinates, etc.

• Declared as in variables

– Need to have same variable name as output
(declared as out) of vertex shader

29

Uniform parameters

• Work same as in vertex shader

• Typically transformation matrices,

parameters of light sources, textures

• Pass from host application via
glGetUniformLocation, glUniform*

30

Output variables

• Typically fragment color

• Declared as out

• Will be written to frame buffer (i.e.,

output image) automatically

31

“Hello world” fragment program

• main() function is executed for every

fragment

• Draws everything in bluish color

out vec4 fragColor;

void main()

{

fragColor = vec4(0.4,0.4,0.8,1.0);

}

32

Examples
• Per pixel shading as

discussed in class

• Bump mapping

• Displacement mapping

• Realistic reflection models

• Cartoon shading

• Shadows

• Etc.

• Most often, vertex and fragment shader work
together to achieve desired effect

33

Limitations (2014)

• Cannot read framebuffer

– Current pixel color, depth, etc.

• Can only write to framebuffer pixel that

corresponds to fragment being processed

– No random write access to framebuffer

• Number of variables passed from vertex to

fragment shader is limited

• Number of application defined uniform

parameters is limited

34

GLSL built in functions and data types

• See OpenGL/GLSL quick reference card
http://www.khronos.org/files/opengl-quick-reference-card.pdf

• Matrices, vectors, textures

• Matrix, vector operations

• Trigonometric functions

• Geometric functions on vectors

• Texture lookup

35

http://www.khronos.org/files/opengl-quick-reference-card.pdf

Summary

• Shader programs specify functionality of

parts of the rendering pipeline

• Written in special shading language (GLSL

in OpenGL)

• Sequence of OpenGL calls to

compile/activate shaders

• Several types of shaders, discussed here:

– Vertex shaders

– Fragment shaders

36

GLSL main features

• Similar to C, with specialties

• Most important: in, out, uniform

storage classifiers

• Parameters of shader (uniform variables)

passed from host application via specific

API calls

• Built in vector data types, vector

operations

• No pointers, classes, inheritance, etc.

37

Debugging shaders

• No direct way to debug (setting

breakpoints, inspecting values)

• Practical technique

– Render intermediate steps of your shader

– Color code information that you want to see

(e.g, paint pixel a specific color if you reach

certain part of shader code)

• Forum discussions
http://stackoverflow.com/questions/2508818/how-to-debug-a-glsl-shader

38

http://stackoverflow.com/questions/2508818/how-to-debug-a-glsl-shader

Tutorials and documentation

• OpenGL and GLSL specifications
http://www.opengl.org/documentation/specs/

• OpenGL/GLSL quick reference card
http://www.khronos.org/files/opengl-quick-reference-card.pdf

• Learn from example code and use the Ilias

forum!

39

http://www.opengl.org/documentation/specs/
http://www.khronos.org/files/opengl-quick-reference-card.pdf

GPGPU programming
• “General purpose” GPU programming

• Special GPU programming languages

– CUDA
http://en.wikipedia.org/wiki/CUDA

– OpenCL
http://en.wikipedia.org/wiki/OpenCL

• Exploit data parallelism

• SIMT (single instruction multiple threads)
programming model

– Each thread has unique ID

– Each thread operates on single data item (as
opposed to vector of data items in SIMD)

– Data items accessed via thread ID

40

http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/OpenCL

Next time

• More texture mapping, texture filtering

42

