
Computergrafik

Matthias Zwicker

Universität Bern

Herbst 2016

Today

• Basic shader for texture mapping

• Texture coordinate assignment

• Antialiasing

• Fancy textures

2

Texture mapping

• Glue textures (images)

onto surfaces

• Same triangles, much

more interesting

and detailed appearance

• Think of colors as reflectance coefficients

3

Texture mapping in OpenGL

• Initializing and loading texture requires

series of OpenGL API calls

glPixelStorei

glGenTextures

glBindTexture

glTexImage2D

etc…

• Look up details when you need them

• Learn from example code, GLTexture.java

• Documentation http://www.opengl.org/documentation/

http://www.glprogramming.com/red/

4

http://www.opengl.org/documentation/
http://www.glprogramming.com/red/

Basic shaders for texturing
// Need to initialize texture using OpenGL API calls, which are

// implemented in GLTexture.java. Need to pass “uniform” parameters

// to shaders, as in GLRenderContext.java

// Vertex shader

uniform mat4 modelview;

uniform mat4 projection;

in vec2 texcoords;

in vec4 position;

out frag_texcoords;

void main()

gl_Position = projection * modelview * position; // predefined output

frag_texcoords = texcoords; // pass texture coords. to fragment shader

}

// Fragment shader

uniform sampler2D tex; // “tex” is reference to texture, set by host

in frag_texcoords;

out frag_color;

void main()

{

frag_color = texture(tex, frag_texcoords); // “texture” is a GLSL fnct.

}
5

Today

• Basic shader for texture mapping

• Texture coordinate assignment

• Texture filtering

• Fancy textures

6

Texture coordinate assignment
• Surface parameterization

– Mapping between 3D positions on surface and 2D

texture coordinates

– In practice, defined by texture coordinates of triangle

vertices

• Various options to establish a parameterization

7

Parametric surfaces
http://en.wikipedia.org/wiki/Parametric_surface

• Surface position x,y,z given by three functions

of parameters u, v

• Very common in computer aided design (CAD)

• Use (u,v) parameters as texture coordinates

• Later in class: Bézier surfaces

8

http://en.wikipedia.org/wiki/Parametric_surface

As a function of vertex positions
• In general, may compute u and v using two

functions of vertex positions x, y, z

u = fu(x,y,z), v = fv(x,y,z)

• How to define fu, fv?

9

Linear functions
• Simplest form: linear function (transformation) of

vertex x, y, z coordinates

• For example, orthographic transformation

10

Projective transformation

• Use perspective projection of x, y, z

coordinates

• Useful to achieve “fake” lighting effects

11

Spherical mapping
• Use, e.g., spherical coordinates for sphere

• Place object in sphere

• “shrink-wrap” sphere to object

– Shoot ray from center of sphere through each vertex

– Spherical coordinates of the ray are texture
coordinates for vertex

12

Cylindrical mapping

• Similar as spherical mapping, but with

cylinder

• Useful for faces

13

Skin mapping
• Techniques to unfold surface onto plane

– Minimize “distortions”

– Preserve area, angle

• Sophisticated math

• Functionality usually provided by 3D modeling
tools (Maya, Blender, etc.)

14

Today

• Basic shader for texture mapping

• Texture coordinate assignment

• Antialiasing

• Fancy textures

15

What is going on here?

16

Aliasing

Sufficiently

sampled,

no aliasing

Insufficiently

sampled,

aliasing
[R. Cook]

http://en.wikipedia.org/wiki/Aliasing

High frequencies in the input appear as

low frequencies in the sampled signal

17

http://en.wikipedia.org/wiki/Aliasing

Aliasing

Sufficiently

sampled,

no aliasing

Insufficiently

sampled,

aliasing
[R. Cook]

http://en.wikipedia.org/wiki/Aliasing

High frequencies in the input appear as

low frequencies in the sampled signal

18

http://en.wikipedia.org/wiki/Aliasing

Antialiasing: intuition
• Pixel may cover large area on triangle in camera

space

Texture spaceCamera spaceImage plane

Pixel area

Texels

19

Antialiasing: intuition
• Pixel may cover large area on triangle in camera

space

• Corresponds to many texels in texture space

• Should compute “average” of texels over pixel area

Texture spaceCamera spaceImage plane

Pixel area

Texels

20

Antialiasing: the math
• Pixels are samples, not little squares

http://alvyray.com/Memos/CG/Microsoft/6_pixel.pdf

• Use frequency analysis to
explain sampling artifacts

– Fourier transforms
http://en.wikipedia.org/wiki/Fourier_transform

• If you are interested

– Heckbert, “Fundamentals of
texture mapping”
http://www.cs.cmu.edu/~ph/texfund/texfund.pdf

– Glassner, “Principles of digital
image synthesis”
http://www.glassner.com/andrew/writing/books/podis.htm

http://www.cs.cmu.edu/~ph/texfund/texfund.pdf

Schematic explanation

of aliasing

21

http://alvyray.com/Memos/CG/Microsoft/6_pixel.pdf
http://en.wikipedia.org/wiki/Fourier_transform
http://www.cs.cmu.edu/~ph/texfund/texfund.pdf
http://www.glassner.com/andrew/writing/books/podis.htm
http://www.cs.cmu.edu/~ph/texfund/texfund.pdf

Antialiasing

• Can be achieved by „averaging“ texels

over pixel area

• Problems, disadvantages?

Texture spaceCamera spaceImage plane

Pixel area

Texels

22

Antialiasing using mipmaps
• Averaging over texels during rendering is

expensive

– Many texels as objects get smaller

– Large memory access and computation cost

• Precompute and store “averaged” (filtered)
textures

– Mipmaps, http://en.wikipedia.org/wiki/Mipmap

– MIP stands for “multum in parvo” (Williams 1983)

• Practical solution to aliasing problem

– Fast and simple

– Available in OpenGL, implemented in GPUs

– Reasonable quality
23

http://en.wikipedia.org/wiki/Mipmap

Mipmaps
Before rendering

• Precompute and store several filtered

versions of textures (mipmaps)

• Filtering performs “local averaging”

– Simplest: box filter, uniform weighting in a

square window; replace each pixel by average

of pixels in its neighborhood

• Use higher quality filter to avoid aliasing

• Precompute several filtered textures with

different sizes of filtering window
24

Mipmaps

Level 0 Level 1 Level 2

Level 3 Level 4

Double the size of the filtering window from level to level! 25

Computing mipmaps

• Filtering implemented using convolution
http://en.wikipedia.org/wiki/Convolution

– Input function f, convolution kernel (filter) g

– Continuous formulation

– Discrete formulation

• Two-dimensional convolution is a

straightforward extension

26

http://en.wikipedia.org/wiki/Convolution

Computing mipmaps

• Filtered textures are blurry

– Reduce resolution by factor 2 successively without

losing information

• Increases memory cost only by 1/3

– 1/3 = ¼+1/16+1/64+…

• Width, height of texture needs to be power of

two

27

Example

• Resolutions 512x512, 256x256, 128x128,

64x64, 32x32

“multum in parvo”
Level 0

Level 1

2

3
4

28

Example

• 1 texel in level 4 is an average of 44=256

texels in level 0

“multum in parvo”
Level 0

Level 1

2

3
4

29

Rendering with mipmaps
• Interpolate texture coordinate of each

pixel as before

• Compute approximate size of pixel in
texture space

• Look-up color in nearest mipmap

– E.g., if pixel corresponds to 10x10 texels use
mip-map level 3

– Use nearest neighbor or bilinear interpolation
as before

30

Mipmapping

Texture spaceCamera spaceImage plane

Pixel area

Texels

Mip-map level 0

Mip-map level 1

Mip-map level 2

Mip-map level 3
31

Size of a pixel in texture space

• Given by partial derivatives of mapping

Texture spaceCamera spaceImage plane

32

Nearest mipmap, nearest neighbor

• Visible transition between mipmap levels

33

Nearest mipmap, bilinear

• Visible transition between mipmap levels

34

Trilinear mipmapping
http://en.wikipedia.org/wiki/Trilinear_filtering

• Use two nearest mipmap levels

– E.g., if pixel corresponds to 10x10 texels, use

mipmap level 3 and 4

• Perform bilinear interpolation in both mip-

maps

• Linearly blend between the results

• Requires access to 8 texels for each pixel

• Standard method, supported by hardware

with no performance penalty

35

http://en.wikipedia.org/wiki/Trilinear_filtering

Trilinear mipmapping

• Smooth transition between mipmap levels

36

Note on OpenGL

• Distinguishes between minification and

magnification

– Minification: a texel is smaller than a pixel

– Magnification: a texel is larger than a pixel

– Minification, magnification may vary across

pixels of individual triangles

• OpenGL allows you to specify different

interpolation techniques separately

– glTexParameteri

37

Are we satisfied?

Trilinear mipmapping

38

Mipmapping limitations
• Mipmap texels always represent square areas

• Pixel area is not always square in texture space

• Mipmapping makes trade-off between aliasing

and blurriness

A circular pixel is back-projected to an ellipse
39

Anisotropic texture filtering
https://en.wikipedia.org/wiki/Anisotropic_filtering

• Average texture over elliptical area

– Higher quality than trilinear mip-mapping

– More expensive

• Anisotropic filtering in hardware

– Take several bilinear probes approximating the ellipse

– Reduces rendering performance on current GPUs

Texture space

Ellipse of back-

projected pixel

Bilinear

probe

40

https://en.wikipedia.org/wiki/Anisotropic_filtering

Comparison

• Animation

41

Today

• Basic shader for texture mapping

• Texture coordinate assignment

• Antialiasing

• Fancy textures

42

Fancy textures

• Textures most commonly used to modulate

ambient and diffuse reflection

• E.g., diffuse fragment shader with texture
in vec3 normal, lightstrength, lightDir;

uniform sampler2D tex;

out fragColor;

void main()

{

fragColor = lightstrength *

max(dot(normal, normalize(lightDir)),0.0) *

texture(tex, texcoords); // texture as diffuse coeff.

}

• Other applications?

43

Bump mapping
• Texture map contains normal perturbations

• No modification of geometry

– Visible mostly at silhouettes

• Render using per-pixel shading, fragment shader

– Normal in each pixel is modified using texture map
(later in course)

44

Displacement mapping
• Texture map contains local height field

• Modifies geometry

– Correct silhouettes, shadows

• Requires complicated fragment shader

45

Other effects

Multi-texturing

• Several layers of textures for different

effects

– Scratches, dents, rust, …

– Illumination textures

Animated textures

• Raindrops

• A TV screen, projector in a 3D scene

Multi-texturing

46

Next time

• Scene graphs and hierarchies

47

