Computergrafik

Matthias Zwicker

Universitat Bern
Herbst 2016

Today

Curves

e Introduction

e Polynomial curves

o Bézier curves

e Drawing Bézier curves

e Piecewise curves

Modeling
e Creating 3D objects

e How to construct complicated
surfaces?

e Goal

- Specify objects with few control
points

- Resulting object should be
visually pleasing (smooth)

o Start with curves, then
generalize to surfaces

Usefulness of curves

e Surface of revolution

—
. .

Usefulness of curves

e Extruded/swept surfaces

Usefulness of curves

e Animation

- Provide a “track” for objects
- Use as camera path

F__. -.- a_ _ :- —mi__ - . s)
- e o] i = e -

- - -.l _ - — -
= e _ - N _

Usefulness of curves

e Generalize to surface patches using “grids
of curves”, next class

How to represent curves

e Specify every point along curve?

- Hard to get precise, smooth results
- Too much data, too hard to work with

e |dea: specify curves using small numbers of control
points

e Mathematics: use polynomials to represent curves

Control

/ point

o |(50.120)

Interpolating polynomial curves

http://en.wikipedia.org/wiki/Polynomial interpolation

e Curve goes through all control points

e Seems most intuitive

e Surprisingly, not usually the best choice

- Hard to predict behavior
- Overshoots, wiggles
- Hard to get “nice-looking” curves

http://en.wikipedia.org/wiki/Polynomial_interpolation

Approximating polynomial curves

e Curve is “influenced” by control points

Control

/ point

e Various types & techniques based on polynomial
functions

- Bézier curves, B-splines, NURBS
e Focus on Bézier curves

10

Mathematical definition
e A vector valued function of one variable x(t)

- Given ¢, compute a 3D point x=(x,y,z2)
- May interpret as three functions x(t), y(t), z(t)
- “Moving a point along the curve”

v X(O)

Za
/ y‘X x(0.0) x(0.5) x(1.0)

Tangent vector

e Derivative x'(t) = CZ = (2'(t), 4 (t), /()

e A vector that points in the direction of
movement

e Length of x’(¢¥) corresponds to speed
v X

1 y x’(0.0)

x’(0.5) x’(1.0)

Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bézier curves

e Piecewise curves

Polynomial functions
e Linear: f(t)=at+5b /
(15t order)

e Quadratic: f(t) =at®> + bt +c \/

(2" order)

: UQ
o Cubic: f(t) =at’ +bt* +ct +d
(3rd order)
7 > 1

Polynomial curves

e Linear x(t) =at+ b
X = (x,y, z),a — (a:maya CLZ),b — (b:m bya bz)

o Evaluated as z(t) = a,t + b,
y(t) = a,t + b,
z(t) = a,t + b,

Polynomial curves

e Quadratic: x(t) = at* + bt + ¢ Z
(2" order) ‘{ ’A
it
e Cubic: x(t) = at’ + bt +ct +d ?JZ
(314 order) JL/ i /
T

e We usually define the curve for0<¢<1

Control points

e Polynomial coefficients a, b, ¢, d etc. can
be interpreted as 3D control points

- Remember a, b, ¢, d have x,y,z components
each

e Unfortunately, polynomial coefficients
don’t intuitively describe shape of curve

e Main objective of curve representation is
to come up with intuitive control points

- Position of control points predicts shape of
curve

Control points

e How many control points?

- Two points define a line (15t order)

- Three points define a quadratic curve (2"
order)

- Four points define a cubic curve (3" order)
— k+1 points define a k-order curve

e Let’s start with a line...

First order curve

e Based on linear interpolation (LERP)
http://en.wikipedia.org/wiki/Linear interpolation

- Weighted average between two values
- “Value” could be a number, vector, color, ...

 Interpolate between points p, and p, with parameter t
- Defines a “curve” that is straight (first-order curve)

— t=0 corresponds to p,
— t=1 corresponds to p,
— t=0.5 corresponds to midpoint i

=1

t=0

x(¢)= Lerp(t, py, P,)=(1—1)p, +7 p,

http://en.wikipedia.org/wiki/Linear_interpolation

Linear interpolation
e Three different ways to write it

- Equivalent, but different properties become
apparent

- Advantages for different operations, see later
1. Weighted sum of control points

x(t) = po(l —t) + Pit
2. Polynomial in t
x(t) = (p1 — Po)t + Polt"

3. Matrix form

-t [1 3][

Weighted sum of control points

x(1)=(A=0)p,+ (@)p,
= B,(t) p, + B,(t)p,, where B,(t)=1—-¢ and B,(¢) =t

« Weights B(t), B,(t) are functions of t

- Sum is always 1, for any value of t
- Also known as basis or blending functions

0.5 \\BO (1) B (f)/-
0.4 /(“\\
- | //

21

Linear polynomial

X(#)=(P,—Py) I+ Py

%K—J ;\C—/
vector pOlnt
a b

e Curve is based at point p,

e Add the vector, scaled by t

_pl'po

Matrix form

x(t) = | Po pl}[ll éHH—GBT

» Geometry matrix G =[py pi |

e Geometric basis -1 1
B =
10
« Polynomial basis ¢ }
T =
1
e In components Por P |y
X(1) = | poy Py { 1 O]{
_pOz P1z |

Tangent

e For a straight line, the tangent is constant
X'(t) = P1 — Po
 Weighted average
x(t) = po(l —t) + p1t — X'(t) = (—1)po + (+1)p1
e Polynomial
x(t) = (p1 — Po)t + Po — X'(t) = 0t + (p1 — Po)

e Matrix form

X/(t) = [po Pl]“ éH(ﬂ

Lissajou curves

http://en.wikipedia.org/wiki/Lissajous curve

http://en.wikipedia.org/wiki/Lissajous_curve

Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bézier curves

e Piecewise curves

Bézier curves

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

e A particularly intuitive way to define
control points for polynomial curves

e Developed for CAD (computer aided
design) and manufacturing

- Before games, before movies, CAD was the big
application for CG

e Pierre Bézier (1962), design of auto bodies
for Peugeot, http://en.wikipedia.org/wiki/Pierre_B%C3%A9zier

e Paul de Casteljau (1959), for Citroen

http://en.wikipedia.org/wiki/B%C3%A9zier_curve
http://en.wikipedia.org/wiki/Pierre_B%C3%A9zier

Bézier curves

e Higher order extension of linear
interpolation

« Control points p,, py, .-

P1

Po Po

Linear Quadratic Cubic

Bézier curves

e Intuitive control over curve given control
points

]
\
LN

- Endpoints are interpolated,
intermediate points are
approximated

- Convex Hull property
- Variation-diminishing property
e« Many demo applets online

— http://ibiblio.org/e-notes/Splines/Intro.htm

— http://www.qgris.uni-
tuebingen.de/edu/projects/grdev/doc/html/Overview.html

— http://www.theparticle.com/applets/nyu/BezierApplet/

— http://www.sunsite.ubc.ca/LivingMathematics/\VVOO1INO1/UBCExamples/
Bezier/bezier.html

29

http://ibiblio.org/e-notes/Splines/Intro.htm
http://www.gris.uni-tuebingen.de/edu/projects/grdev/doc/html/Overview.html
http://www.theparticle.com/applets/nyu/BezierApplet/
http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Bezier/bezier.html

Cubic Bézier curve

e Cubic polynomials, most common case
e Defined by 4 control points

e Two interpolated endpoints

« Two midpoints control the tangent at the
endpoints

L@
L
-

g _~ Control

~

~~~~~~~~~~ polyline

S
\\
~

~

~

\~.

4
4
4
4
4
4
4
4
4
’

4

Ps3



Béezier Curve formulation

e Three alternatives, analogous to linear
case

1. Weighted average of control points
2. Cubic polynomial function of ¢
3. Matrix form

e Algorithmic construction

- de Casteljau algorithm



de Casteljau Algorithm

http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

e A recursive series of linear interpolations

- Works for any order, not only cubic
e Not terribly efficient to evaluate

- Other forms more commonly used
e Why study it?

- Intuition about the geometry
- Useful for subdivision (later today)

32


http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

de Casteljau Algorithm

e Given the control
points D,

e Avalue of t P
o Here t=0.25

R
L
’

~
~,
~
~
~
~.
~
~
~
~
~
~
~
o
~

~
~,
~
~
~
~,
~
~
~
~

P3

\\
\\
~

~
N,
~
~
~
~
~

33



de Casteljau Algorithm

q, ()= Lerp(t,po,pl)
q,(t)= Lerp(,p,,p, )
q,(t)= Lerp(t,p,,p;)

Ps3

34



de Casteljau Algorithm

/.'\
7’ q
-,
g 1
-, ~
-, ~
e --
7 rO ________ \\\\
- N
qo [ ANIEREN
7’ - ~
(3 Shu AN
-, N
-, &
-, AN
&

r,(1) = Lerp(2,9,(1),q,(?))
r,(¢)= Lerp(t, q,(?), qz(t))

N 4
A 4
\\®l
U
4
B V
’
1
/7
/

35



de Casteljau Algorithm

x(¢) = Lerp(t,x,(2),x,(1))

36



de Casteljau algorithm

e Applets

— http://www?2.mat.dtu.dk/people/J).Gravesen/cagd/decast.html
— http://www.caffeineowl.com/graphics/2d/vectorial/bezierintro.htmi

Ps3

37


http://www2.mat.dtu.dk/people/J.Gravesen/cagd/decast.html
http://www.caffeineowl.com/graphics/2d/vectorial/bezierintro.html

de Casteljau Algorithm

http://en.wikipedia.org/wiki/De Casteljau's algorithm

oP, aP,
t=0 oP, Py t=0 0P,
Linear Quadratic
2y aP, . oF,
oP,
F",:| =0 DPS F",:, =0 DP3
Cubic Quartic

38


http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

Recursive linear interpolation

P;

Py

P
P
P
P;

39



Recursive linear interpolation

p
qo = Lerp(t,po,pl) ’
q, = Lerp(,p,.p, )

q, = Lerp(t,p,,p;) "
P;

=
o

AN A

P;

=

Py




Recursive linear interpolation

Py
q, = Lerp(t,p,,p, )
q, = Lerp(,p,.p, )
q, = Lerp(t,p,,p;)

Iy = Le’”p(taqoa%)

r1 :Lerp(taqlan) p2

P;

41



Recursive linear interpolation

p
q, = Lerp(t,p,,p,)
q, = Lerp(,p,.p, )
q, = Lerp(t,p,,p;)

Iy = Le’”p(taqoa%)

:L o 2
X erp(t r() rl rl :Lerp(t,qqu)

P,

P;

42



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t)= Le’”p(tapppz): (1 - t)pl +1p,
q,()= Lerp(t,pz,p3)= (1 ~ t)p2 +1p,

43



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t)= Le’”p(tapppz): (1 - t)pl +1p,
q,()= Lerp(t,pz,p3)= (1 ~ t)p2 +1p,

r,(¢)= Lerp(t, q,(?), q1(t))
r,(1) = Lerp(t,q,(1),q,(1))

44



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t)= Lerp(t,pl,p2)= (1 - t)pl +1p,
q,()= Lerp(t,pz,p3)= (1 ~ t)p2 +1p,

r,(¢)= Lerp(taqo(t)a(h(t)): (1 ~ t)((l - t)po T tp1)+ t((l - t)p1 T tpz)
r,(t)= Lerp(ta(h(t)aqz(t)): (1 — t)((l — t)pl + tpz)"‘ t((l — t)pz + tps)

45



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t)= Lerp(t,pl,p2)= (1 - t)pl +1p,
q,()= Lerp(t,pz,p3)= (1 ~ t)p2 +1p,

r,(¢)= Lerp(taqo(t)a(h(t)): (1 ~ t)((l - t)po T tp1)+ t((l - t)p1 T tpz)
r,(t)= Lerp(ta(h(t)aqz(t)): (1 — t)((l — t)pl + tpz)"‘ t((l — t)pz + tps)

x(¢) = Lerp(t,x,(¢),x,(t))



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t)= Lerp(t,pl,p2)= (1 - t)pl +1p,
q,()= Lerp(t,pz,p3)= (1 ~ t)p2 +1p,

r,(¢)= Lerp(taqo(t)a(h(t)): (1 ~ t)((l - t)po T tp1)+ t((l - t)p1 T tpz)
r,(t)= Lerp(ta(h(t)aqz(t)): (1 — t)((l — t)pl + tpz)"‘ t((l — t)pz + tps)

x(¢) = Lerp(t,x,(¢),x,(t))
-(1- t)((l ~t)((1-t)p, +p, )+ 2((1-1)p, + tpz))
+((1=1)((1-1)p, +1p,)+t((1-1)p, +p;))



Weighted average of control points
e Regroup

X(t) = (1 — t)((l — t)((l — t)po + tp1)+ t((l — t)p1 +1p, ))
+t((1 —t)(A-1)p, +1p, )+ t((1-1)p, + tp3))



Weighted average of control points
e Regroup

X(t) = (1 — t)((l — t)((l — t)po + tp1)+ t((l — t)p1 +1p, ))
+t((1 —t)(A-1)p, +1p, )+ t((1-1)p, + tp3))

x(t)=(1-¢)p, +3(1—1) 1p, +3(1—1)t*p, + 'p,



Weighted average of control points
e Regroup

X(t) = (1 — t)((l — t)((l — t)po + tp1)+ t((l — t)p1 +1p, ))
+t((1 —t)(A-1)p, +1p, )+ t((1-1)p, + tp3))

x(t)=(1-¢)p, +3(1—1) 1p, +3(1—1)t*p, + 'p,

B‘),St) BljSt)

X(t) = (—t3 +3t° =3¢+ 1>p0 + (3t3 — 61" + 3t)p1

+(—3t3 + 3t2)p2 + (tg’)p3
\ / A\

B;Et) B3 (1)

Bernstein polynomials

50



Cubic Bernstein polynomials

http://en.wikipedia.org/wiki/Bernstein polynomial

x(t)= B, (t)p, + B,(t)p, + B, (t)p, + B, (¢)p,

Bernstein Cubic Polynomials

The cubic Bernstein polynomials : =Y
3 2 I
B,(t)=-1>+3t"-3t+1 sl \
B, (t): 3t° — 6t + 3¢ 06 \“x_,& B,(1) B/(1) B,(t) B.(1)
N,
. 3 2 ] A -
B,(t)=-3t" + 3t o4 D —X
_ 3 N .
B3 (t) - t Dz_ _Ir,.-""J . T '\_\x‘ _J_...--*"'_I-H_"“*-_,H___ .H‘\
VS PV N\
Z B i (t ) =1 / e Af_____:——-""’! T s .
° o0z o4 , 0B 08 |

e Partition of unity, at each t always add to 1
« Endpoint interpolation, B, and B;go to 1


http://en.wikipedia.org/wiki/Bernstein_polynomial

General Bernstein polynomials

B,(t)=-t+1
B (t)=t1

52



General Bernstein polynomials

B,(t)=-t+1
B (t)=t1

Bi(t)=t"-2t+1
Bl (t)=-21"+2¢

2 2
Bl(t)=t
/ AN
- 2 0.8 o

53



General Bernstein polynomials

B,(t)=-t+1
B (t)=t1

Bi(t)=t"-2t+1
Bl (t)=-21"+2¢
Bi(t)="

By (t)=—t>+3t>-3t+1
B} (t)=3t>—61>+3t
B;(t)=-3+3¢
Bi(t)="¢

54



General Bernstein polynomials

B,(t)=-t+1 Bi(t)=t"-2t+1

B/ (t)=t Bl (t)=-21"+2¢
Bi(t)="

n

Order n: B/'(1)= {

l

}(1—0" ©

B} (t)=—1+3t" -3t +1
B} (t)=3t>—61>+3t
B;(t)=-3+3¢

Bi(t)="¢

!

n
il(n—i)

(n

D*\
i)~

ZBin (t): 1

Partition of unity, endpoint interpolation

55



General Bézier curves

« nth-order Bernstein polynomials form nth-order
Bézier curves

o Bézier curves are weighted sum of control points
using nth-order Bernstein polynomials

Bernstein polynomials N NP
of order n: B (t)‘kij(l_t) ()

Bézier curve of order n:  x(¢)= ZBZ-” (t)p,
i=0



Bézier curve properties

e Convex hull property
e Variation diminishing property

e Affine invariance

57



Convex hull, convex combination

e Convex hull of a set of points

- Smallest polyhedral volume such that
(i) all points are in it
(i1) line connecting any two points in the volume lies completely
inside it (or on its boundary)

e Convex combination of the points

- Weighted average of the points, where weights all between 0 and
1, sumuptol

e Any convex combination always lies within the convex hull

Convex hull

58



Convex hull property

Bézier curve is a convex combination of the control
points

- Bernstein polynomials add to 1 at each value of t
Curve is always inside the convex hull of control points

Makes curve predictable

Allows efficient culling, intersection testing, adaptive
tessellation

59



Variation diminishing property

 If the curve is in a plane, this means no straight
line intersects a Bézier curve more times than it
intersects the curve's control polyline

e “Curve is not more wiggly than control polyline”

N/
o <
) S
// ;
w

Yellow line: 7 intersections with control polyline
3 intersections with curve

60



Affine invariance

« Two ways to transform Bézier curves

1. Transform the control points, then compute
resulting point on curve

2. Compute point on curve, then transform it
e Either way, get the same transform point!

- Curve is defined via affine combination of
points (convex combination is special case of
an affine combination)

- Invariant under affine transformations
- Convex hull property always remains



Cubic polynomial form

Start with Bernstein form:

x(t) = (= + 32 = 30+ 1)p, + (3> = 66> + 3¢ Yo, + (=3¢ + 37 Jp, + (©* o,

62



Cubic polynomial form

Start with Bernstein form:

x(t) = (= + 32 = 30+ 1)p, + (3> = 66> + 3¢ Yo, + (=3¢ + 37 Jp, + (©* o,

Regroup into coefficients of ¢ :

x(t)=(=p, +3p, - 3p, +P; ) +(3p, — 6p, +3p, )" +(=3p, + 3p, )t + (p, )1

63



Cubic polynomial form

Start with Bernstein form:

x(t) = (= + 32 = 30+ 1)p, + (3> = 66> + 3¢ Yo, + (=3¢ + 37 Jp, + (©* o,

Regroup into coefficients of ¢ :

x(t)=(-p, +3p, - 3p, +p;)’ +(3p, — 6p, + 3p, )t* + (=3p, + 3p, )t + (p, )!

a=(-p,+3p,—3p,+p;)
b= (31)0 —6p, + 3p2)
c= (—3p0 + 3p1)

d=(p,)

x(t)=at’ +bt* +ct +d




Cubic polynomial form

Start with Bernstein form:

x(t) = (= + 32 = 30+ 1)p, + (3> = 66> + 3¢ Yo, + (=3¢ + 37 Jp, + (©* o,

Regroup into coefficients of ¢ :

x(t)=(-p, +3p, - 3p, +p;)’ +(3p, — 6p, + 3p, )t* + (=3p, + 3p, )t + (p, )!

a=(-p,+3p,—3p,+p;)
b= (31)0 —6p, + 3p2)
c= (—3p0 + 3p1)

d=(p,)

e Good for fast evaluation, precompute constant
coefficients (a,b,c,d)

e Not much geometric intuition

x(t)=at’ +bt’ +ct+d




Cubic matrix form

x()={a b ¢ d|

t C= 3p0+3p)
|1 d=(p,)
1 3 =3 1]
3 -6 3 0]
xO=[po o P2 ops] t
1 0 0 0]1
-~ e g oC T
GBéZ BBeZ T

e Can construct other cubic curves by just using
different basis matrix B

e Hermite, Catmull-Rom, B-Spline, ...



Cubic matrix form
e 3 parallel equations, in X, y and z:

-1 3 =3 1]#
3 =6 3 0}
X ()=
() [pOx Pix  Pax p3x] 3 3 0 0} ¢
1 0 0 01
1 3 -3 17[#
3 -6 3 0}¢
Xy(f):[poy ply p2y p3y:| -3 3 0 0 t
1 0 0 01|
1 3 =3 1][#]
3 =6 3 0} ¢
xz(t)=[p02 Pz P ]932] 3 3 0 0] ¢
1 0 0 o)1

67



Matrix form

e Bundle into a single matrix

-1 3 3 1]
pOx plx p2x p3x 3 _6

3
X(1)=| Py, P, Dy Dy 33 0
_pOZ plz p2z p3z | 1 O O

X(t) = GBezBBezT
x(¢1)=CT

e Efficient evaluation

- Precompute C

- Take advantage of existing 4x4 matrix
hardware support



Today

Curves

e Introduction

e Polynomial curves

o Bézier curves

e Drawing Bézier curves

e Piecewise curves



Drawing Bezier curves

e Generally no low-level support for drawing
smooth curves
- l.e., GPU draws only straight line segments

e Need to break curves into line segments or
individual pixels

e Approximating curves as series of line
segments called tessellation

o Tessellation algorithms
- Uniform sampling
- Adaptive sampling
- Recursive subdivision



Uniform sampling
e Approximate curve with N-1 straight segments

— N chosen in advance

- Evaluate x, =x(t,) where ¢, :LN fori =0,1,..., N
.3 )

xi:al—3+bl—2+ci+d
N N N
- Connect the points with lines

e Too few points?
- Bad approximation
- “Curve” is faceted
e Too many points?

- Slow to draw too many line segments
- Segments may draw on top of each other



Adaptive Sampling
e Use only as many line segments as you need

- Fewer segments where curve is mostly flat
- More segments where curve bends
- Segments never smaller than a pixel

e Various schemes for sampling,
checking results, deciding whether
to sample more

X(t)



Recursive Subdivision

e Any cubic (or k-th order) curve segment can be
expressed as a cubic (or k-th order) Bézier curve

“Any piece of a cubic (or k-th order) curve is
itself a cubic (or k-th order) curve”

e Therefore, any Bézier curve can be subdivided
into smaller Bézier curves



de Casteljau subdivision

P3

e de Casteljau construction points
are the control points of two Bézier
sub-segments (Pg,do:1,X) and (X,r,,0,,Ps)



Adaptive subdivision algorithm

1. Use de Casteljau construction to split
Bézier segment in middle (t=0.5)

2. For each half

- If “flat enough”: draw line segment
- Else: recurse from 1. for each half

e Curve is flat enough if hull is flat enough

e Test how far away midpoints are from
straight segment connecting start and end

- If about a pixel, then hull is flat enough



Today

Curves

e Introduction

e Polynomial curves

o Bézier curves

e Drawing Bézier curves

e Piecewise curves



More control points

e Cubic Bézier curve limited to 4 control points

- Cubic curve can only have one inflection
- Need more control points for more complex curves

« k-1 order Bezier curve with k control points

« Hard to control and hard to work with

- Intermediate points don’t have obvious effect on shape
- Changing any control point changes the whole curve

 Want local support

- Each control point only influences nearby portion of curve



Piecewise curves (splines)

e Sequence of simple (low-order) curves, end-to-end

- Piecewise polynomial curve, or splines
http://en.wikipedia.org/wiki/Spline_(mathematics)

e Sequence of line segments
- Piecewise linear curve (linear or first-order spline)

TN

e Sequence of cubic curve segments
- Piecewise cubic curve, here piecewise Bézier (cubic spline)

78


http://en.wikipedia.org/wiki/Spline_(mathematics)

Piecewise cubic Béezier curve

e Given 3N +1 points p,,P,»---» Py
e Define N Bézier segments:

X,(¢) = B,(t)p, + B,(1)p, + B,(¢)p, + B;(¢)p;

Xy 1(8)=By()Psy_s + B(1)Psy_, + By (H)Psy_ + By (H)Psy

79



Piecewise cubic Bézier curve

e Global parameter u, 0<=u<=3N

(x,(Lu), 0<u<3

1y —1), 3<u<é6
X(u)=<le(3u ) N

Xy Gu—(N-1)), 3N-3<u<3N

x(u) = X, Gu — i), where i = L%u_'

. . /X(8.75)
ol
i .‘xh X3(t)
o XM e X(H) ~ ' * \
o
i hd u=12

u=0
X(3.5)

80



Continuity

Want smooth curves
CYcontinuity

- No gaps
- Segments match at the endpoints
C! continuity: first derivative is well defined

- No corners
- Tangents/normals are C° continuous (no jumps)

C? continuity: second derivative is well defined

- Tangents/normals are C!continuous
- Important for high quality reflections on surfaces

Cy continuil/v-.\

Co & Cy continuity

Coy & Cy & C, continuity

‘.

81



Piecewise cubic Bézier curve

« CU continuous by construction w

» C! continuous at segment
endpoints P; if Py;- P3ig = Paisg - P
« C?is harder to get

"
Fa
7\
’ \

’
‘o
‘o
‘s

I: v

Po
CY% continuous C! continuous



Piecewise cubic Bézier curves
e Used often in 2D drawing programs

e |nconveniences

- Must have 4 or 7or 10 or 13 or ... (1 plus a
multiple of 3) control points

- Some points interpolate (endpoints), others
approximate (handles)

- Need to impose constraints on control points
to obtain C! continuity

— C? continuity more difficult
e Solutions

- User interface using “Beézier handles”
- Generalization to B-splines, next time



Bézier handles

e Segment end points (interpolating) presented
as curve control points

e Midpoints (approximating points) presented as
“handles”

« Can have option to enforce C! continuity

| Aligned

Vector

[www.blender.org] Adobe Illustrator



Next time
e B-splines and NURBS

e Extending curves to surfaces



