
Computergrafik

Matthias Zwicker

Universität Bern

Herbst 2016

Today

• Bump mapping

• Shadows

• Shadow mapping

• Shadow mapping in OpenGL

2

Bump mapping
• Surface detail is often the result of small

perturbations in the surface geometry

– Modeling detailed surfaces would lead to
impractical number of triangles

• Bump mapping alters the surface normal

– Normals are encoded in texture maps

– Provide the illusion of small scale surface
detail

– Does not change geometry (triangles)

• Requires per-pixel shading using a
fragment program

3

Bump mapping

No bump mapping With bump mapping

No bump mapping With bump mapping Bump texture

Bump mapped plane

4

Bump mapping

1. Generating and storing bump maps

2. Rendering with bump maps

5

Generating bump maps
• Usually done in a pre-process

• Input

– Texture map that encodes

small surface displacements

– Height field

– E.g., use gray scale image as height values

• Output

– Texture map that encodes normals of

displaced surface

– This texture will be stored as an image, read

by the application
6

• Start with displacement map (height field)

• Normal

• Discrete case using central differencing

– Usually, Du, Dv = 1

• Normalize length of normal!

Generating bump maps

7

Storing bump maps

• Encode normal direction in RGB color

channels

– Coordinates of unit normal are in [-1..1]3

– Need to map range [-1..1] to [0..255] for all

channels

RGB encoded bump map
8

Rendering with bump maps

• When applying a bump map to a curved

surface, how are the normals specified in

the bump map related to the surface?

• Normals are defined relative to local

tangent/normal vectors

Normals in bump map
Bump map applied

to curved surface

Local tangent vector

Normals

9

Rendering with bump maps
• Bump map normals are defined in tangent

space

– Defined by two tangent vectors and normal

• Will define tangent space for each triangle

– Texture coordinates provide parameterization
of each triangle, i.e., parametric patch x(u,v)

– Compute tangent vectors using partial
derivatives of parameterization

• For shading, will need to transform
normals from tangent space to camera
space

10

Tangent space
• Triangle with texture coordinates can be

expressed as parametric surface x(u,v)

– Triangle vertices in object space v0, v1, v2

– Texture coordinates (u0, v0), (u1, v1), (u2, v2),

• Interpolation constraints: we know

11

Tangent space

• Solve for affine function

• Using constraints at vertices

12

Tangent space
• Tangent space defined by two tangent vectors

(tangent t, “bi-tangent” b), and normal vector n

• t, b, n defined in object space coordinates

• Tangent, bi-tangent not orthogonal in general

• No normalization necessary
13

Normal in object space

• Normal map stores normals in tangent

coordinates

– Basis vectors t, b, n

• Can transform normal from tangent to

object space

– Given values [bm0, bm1, bm2] from bump map

– Unpacked from [0..1] to range [-1..1]

14

Storing tangent vectors
Before rendering

• For each triangle, compute tangent, bi-
tangent vector

• At each vertex, average tangent, bi-
tangent vectors over adjacent triangles to
get smooth transitions between triangles

• Store tangent vector as additional vertex
attributes

– Only one tangent vector and normal necessary

– Second tangent vector computed on the fly

15

Rendering
Vertex shader

• Per-vertex input

– Vertex position, normal, tangent vector in object
space

– Bump map texture coordinates

• Compute bi-tangent vector

• Transform everything to camera space using
modelview matrix

• Output to fragment shader (will be interpolated
to each pixel)

– Vertex position, texture coordinates, tangent, bi-
tangent, normal vector in camera space

– Bump map texture coordinates

16

Rendering
Fragment shader

• Transform normal [bm0, bm1, bm2] stored in
bump map to camera coordinates

– Use t, b, n basis to transform to object space

– Use modelview matrix to transform from
object space to camera space

– Normalize

• Perform lighting in camera coordinates

17

Variations

• Perform lighting in different coordinate

system than camera space

– Object space

– Tangent space

• Tangent space is more efficient

– Transform light direction to tangent space in

vertex shader

– Rasterizer interpolates it across triangle

– No need to transform bump mapped normal at

each pixel (in fragment shader)

18

Caveats

• Need mesh with texture coordinates to

define tangent space

• Avoid triangles with zero area in texture

space

– Cannot compute valid tangent space

• Avoid triangles with negative area in

texture space

– May happen when texture is mirrored

• Avoid non-uniform stretching of bump map

19

Combination with env. map
• “Environment mapped bump mapping”

(EMBM)

• Use bump mapped normal to compute
reflection vector, look up cube map

http://zanir.wz.cz/?paged=3&lang=en
20

http://zanir.wz.cz/?paged=3&lang=en

Env. mapped bump mapping
• Use additional ‘dirt’ texture to modulate

strength of reflection from environment
map

21

Tutorials

• Caution, slightly different derivation
http://www.blacksmith-

studios.dk/projects/downloads/bumpmapping_using_cg.php

• OpenGL shading language book

– Bump mapping uses shading

in tangent space

22

http://www.blacksmith-studios.dk/projects/downloads/bumpmapping_using_cg.php

Today

• Bump mapping

• Shadows

• Shadow mapping

• Shadow mapping in OpenGL

23

Why are shadows important?

• Cues on scene lighting

24

Why are shadows important?

• Contact points

• Depth cues

25

Why are shadows important?

• Realism

Without self-shadowing Without self-shadowing

26

Terminology

• Umbra: fully shadowed region

• Penumbra: partially shadowed region

(area) light source

receiver
shadow

occluder

umbra

penumbra

27

Hard and soft shadows

• Point and directional lights lead to hard

shadows, no penumbra

• Area light sources lead to soft shadows,

with penumbra

point directional area

umbra penumbra

28

Hard and soft shadows

Hard shadow,

point light source

Soft shadow,

area light source

29

Shadows for interactive rendering

• Focus on hard shadows

– Soft shadows often too hard to compute in

interactive graphics

• Two main techniques

– Shadow mapping

– Shadow volumes

• Many variations, subtleties

• Still active research area

30

Today

• Bump mapping

• Shadows

• Shadow mapping

• Shadow mapping in OpenGL

31

Shadow mapping
http://en.wikipedia.org/wiki/Shadow_mapping

Main idea

• Scene point is lit by light source if it is visible
from light source

• Determine visibility from light source by placing
camera at light source position and rendering
scene

Scene points are lit if

visible from light source

Determine visibility from

light source by placing camera

at light source position

32

http://en.wikipedia.org/wiki/Shadow_mapping

Two pass algorithm
First pass

• Render scene by placing

camera at light source

position

• Store depth image

(shadow map)

Depth image seen

from light source

depth value

in shadow map

Second pass

• Render scene from
camera (eye) position

• At each pixel, compare
distance to light source
(yellow) with value in
shadow map (red)

– If yellow distance is larger
than red, we are in shadow

– If distance is smaller
or equal, pixel is lit

Two pass algorithm

Final image

with shadows

vb is in

shadow pixel seen

from eye vb

depth value

in shadow map

34

Issues

• Limited field of view of shadow map

• Z-fighting

• Sampling problems

35

Limited field of view
• What if a scene point is

outside the field of view

of the shadow map?

field of view

of shadow map

Limited field of view
• What if a scene point is

outside the field of view

of the shadow map?

• Use six shadow maps,

arranged in a cube

• Requires rendering pass

for each shadow map!

shadow

maps

• In theory, depth values
for points visible from
light source are equal
in both rendering
passes

• Because of limited
resolution, depth of
pixel visible from
camera could be larger
than shadow map value

• Need to add bias in
first pass to make sure
pixels are lit

z-fighting

Camera image

Shadow map

Image

pixels

Shadow map

pixels Pixel is

considered

in shadow!

Depth

of pixel visible

from camera

Depth of

shadow map

Solution

• Add bias when rendering shadow map

– Move geometry away from light by small

amount

• Finding correct amount of bias is tricky

Correct bias Not enough bias Too much bias

39

Bias

Correct

Not enough Too much

40

Sampling problems

• Shadow map pixel may project to many

image pixels

• Ugly stair-stepping artifacts

41

Solutions
• Increase resolution of shadow map

– Not always sufficient

• Split shadow map into several slices

• Tweak projection for shadow map
rendering

– Light space perspective shadow maps (LiSPSM)
http://www.cg.tuwien.ac.at/research/vr/lispsm/

– With GLSL source code!

• Combination of splitting and LiSPSM

– Basis for most serious implementations

– List of advanced techniques see
http://en.wikipedia.org/wiki/Shadow_mapping

42

http://www.cg.tuwien.ac.at/research/vr/lispsm/
http://en.wikipedia.org/wiki/Shadow_mapping

LiSPSM

Basic shadow map Light space perspective

shadow map

43

Percentage closer filtering
• Goal: avoid stair-stepping artifacts

• Similar to texture filtering, but with a
twist

http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html

Simple shadow mapping Percentage closer filtering

44

http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html

Percentage closer filtering
• Instead of looking up one shadow map pixel,

look up several

• Perform depth test for each shadow map pixel

• Compute percentage of lit shadow map pixels

45

Percentage closer filtering

• Supported in hardware for small filters

(2x2 shadow map pixels)

• Can use larger filters (look up more

shadow map pixels) at cost of performance

penalty

• Fake soft shadows

– Larger filter,

softer shadow

boundary

46

Today

• Bump mapping

• Shadows

• Shadow mapping

• Shadow mapping in OpenGL

47

Shadow mapping with OpenGL

• Recommended book: „OpenGL

Shading Language“ by Randi Rost

48

First pass
• Render scene by placing camera at light source

position

• Compute light view (look at) matrix

– Similar to computing camera matrix from look-at, up

vector

– Compute its inverse to get world-to-light transform

• Determine view frustum such that scene is

completely enclosed

– Use several view frusta/shadow maps if necessary

49

First pass
• Each vertex point is transformed by

– Object-to-world
(modeling) matrix M

– World-to-light space
matrix Vlight

– Light frustum (projection)
matrix Plight

• Remember: points within
frustum are transformed to unit cube
[-1,1]3 by projection matrix Plight

(-1,-1)

(1,1) Light space

Object space

50

First pass

• Use glPolygonOffset to apply depth bias

• Store depth image in a texture

– Use glCopyTexImage with internal format

GL_DEPTH_COMPONENT

Final result

with shadows

Scene rendered

from light source

Depth map

from light source
51

Second pass

• Render scene from camera

• At each pixel, look up corresponding

location in shadow map

• Compare depths with respect to light

source

• Shade accordingly

52

• Need to transform each point from object space
to shadow map

• Shadow map texture coordinates are in [0,1]2

• Transformation from object to shadow map
coordinates (set it as texture matrix, see below)

• After perspective
projection we have
shadow map coordinates

Looking up shadow map

(0,0)

(1,1)

Light space

Object space

Shadow map

53

Looking up shadow map
• Transform each vertex to normalized frustum of

light

• Pass s,t,r,q as texture coordinates to fragment
shader

• Rasterizer interpolates s,t,r,q to each pixel

• Use projective texturing to look up shadow map

– This means, the texturing unit automatically computes
s/q,t/q,r/q,1

– s/q,t/q are shadow map coordinates in [0,1]2

– r/q is depth in light space

• Shadow depth test: compare shadow map at
(s/q,t/q) to r/q 54

GLSL specifics
In application

• Compute matrix T and pass to shader as uniform

In vertex shader

• Declare and access matrix T as uniform

• Multiply vertex positions with T and pass result
to fragment shader

In fragment shader

• Declare shadow map as sampler2DShadow

• Look up shadow map using projective texturing
with
vec4 textureProj(sampler2D, vec4, float bias)

55

GLSL specifics

• When you do a projective texture look up

on a sampler2DShadow, the depth test is

performed automatically

– Return value is (1,1,1,1) if lit

– Return value is (0,0,0,1) if shadowed

• Simply multiply result of shading with

current light source with this value

56

Shadow volumes

Shadowing

object

Partially
shadowed
object

Light

source

Eye position

(note that

shadows are

independent of

the eye position)

Surface inside

shadow volume

(shadowed)

Surface outside

shadow volume

(illuminated)

Shadow

volume

(infinite extent)

57

In shadow or not
• Test if surface visible in given pixel is

inside or outside shadow volume

1. Allocate a counter per pixel

2. Cast a ray into the scene, starting from eye,
going through given pixel

3. Increment the counter when the ray enters
the shadow volume

4.Decrement the counter when the ray leaves
the shadow volume

5.When we hit the object, check the counter.

• If counter > 0, in shadow

• Otherwise, not in shadow

58

In shadow or not

Occluder
Light

source

Eye

position

+1 +2 +2+3

In shadow

+1

59

Implementation in rendering pipeline

• Ray tracing not possible to implement

directly

• Use a few tricks...

60

Shadow volume construction

• Need to generate shadow polygons to

bound shadow volume

• Extrude silhouette edges from light source

Extruded shadow volumes

61

Shadow volume construction

• Needs to be done on the CPU

• Silhouette edge detection

– An edge is a silhouette if one adjacent triangle

is front facing, the other back facing with

respect to the light

• Extrude polygons from silhouette edges

62

Shadow test without ray tracing
Using the stencil buffer

• A framebuffer channel (like RGB colors, depth)
that contains a per-pixel counter (integer value)

• Available in OpenGL

• Stencil test

– Similar to depth test (z-buffering)

– Control whether a fragment is discarded or not

– Stencil function: is evaluated to decide
whether to discard a fragment

– Stencil operation: is performed to update the
stencil buffer depending on the result of the
test

63

Shadow volume algorithms
Z-pass approach

• Count leaving/entering shadow volume events as
described

• Use stencil buffer to count number of visible (i.e.
not occluded from camera) front-facing and back
facing shadow volume polygons for each pixel

• If equal, pixel is not in shadow

Z-fail approach

• Count number of invisible (i.e. occluded from
camera) front-facing and back-facing shadow
volume polygons

• If equal, pixel is not in shadow

66

Z-pass approach: details
• Render scene with only ambient light

– Update depth buffer

• Turn off depth and color write, turn on stencil, keep the depth
test on

• Init stencil buffer to 0

• Draw shadow volume twice using face culling

– 1st pass: render front faces and increment stencil buffer when
depth test passes

– 2nd pass: render back faces and decrement when depth test
passes

• At each pixel

– Stencil != 0, in shadow

– Stencil = 0, lit

• Render the scene again with diffuse and specular lighting

– Write to framebuffer only pixels with stencil = 0

67

Issues

• Z-pass fails if

– Eye is in shadow

– Shadow polygon clipped by near clip plane

68

Shadow volumes
• Pros

– Does not require hardware support for shadow
mapping

– Pixel accurate shadows, no sampling issues

• Cons

– More CPU intensive (construction of shadow
volume polygons)

– Fill-rate intensive (need to draw many shadow
volume polygons)

– Expensive for complex geometry

– Tricky to handle all cases correctly

– Hard to extend to soft shadows

70

Shadow maps
• Pros:

– Little CPU overhead

– No need to construct extra geometry to
represent shadows

– Hardware support

– Can fake soft shadows easily

• Cons:

– Sampling issues

– Depth bias is not completely foolproof

• Shadow mapping has become more popular
with better hardware support

71

Resources
• Overview, lots of links

http://www.realtimerendering.com/

• Basic shadow maps
http://en.wikipedia.org/wiki/Shadow_mapping

• Avoiding sampling problems in shadow maps
http://www.comp.nus.edu.sg/~tants/tsm/tsm.pdf
http://www.cg.tuwien.ac.at/research/vr/lispsm/

• Faking soft shadows with shadow maps
http://people.csail.mit.edu/ericchan/papers/smoothie/

• Alternative: shadow volumes
http://en.wikipedia.org/wiki/Shadow_volume
http://developer.nvidia.com/object/robust_shadow_volumes.html
http://www.gamedev.net/reference/articles/article1873.asp

72

http://www.realtimerendering.com/
http://en.wikipedia.org/wiki/Shadow_mapping
http://www.comp.nus.edu.sg/~tants/tsm/tsm.pdf
http://www.cg.tuwien.ac.at/research/vr/lispsm/
http://people.csail.mit.edu/ericchan/papers/smoothie/
http://en.wikipedia.org/wiki/Shadow_volume
http://developer.nvidia.com/object/robust_shadow_volumes.html
http://www.gamedev.net/reference/articles/article1873.asp

Next time

• Advanced topics, outlook

73

