
Programming Assignment 2: User interaction

Computer Graphics, Fall 2016

Submission deadline: Thursday, October 20th, 11:59

You will have to submit your solution for this exercise before Thursday, October 20th,
11:59 to ILIAS. Additionally, you will have to present your solution to one of the assistants.
Please register for a time slot on ILIAS. Please create separate Eclipse projects or packages
for the individual tasks in order to be able to demonstrate them separately. You may for
example copy and extend the project “simple.” Use the additional resources that we provide
in the file material.zip.

1 Frustum (1 Point)

1.1 Frustum

Extend the class jrtr.Frustum such that a projection matrix can be constructed out of the 4
parameters Near Plane, Far Plane, Aspect Ratio and Vertical Field of View. Use the matrix
formula that has been discussed in the lecture. You must not use the glu library or other
libraries to compute the camera and projection matrix.

1.2 Test

Use the test scene house.txt that we provide on ILIAS and render two images using the two
parameter sets shown in the figure below.

2 Virtual Trackball (3 Points)

Implement a virtual trackball that you can use to rotate an object with the mouse. Your
solution should translate mouse movements with clicked mouse button (dragging) into a
rotation matrix which can then be used to transform the scene. Rotations around all three
coordinate axes should be possible. The figure below shows how to extract a rotation axis and
a rotation angle out of a mouse movement. The symbols m0 and m1 denote two consecutive
2D mouse positions. These positions define two 3D points v and w on a “virtual sphere”
that fills the rendering window. Use the cross product a = v ×w as a rotation axis and the
angle between v and w as a rotation angle.

1



Parameters for image 1

Aspect Ratio 1
Vertical Field of View 60 Grad
Near, far clip Planes 1, 100
Center of Projection 0,0,40
Look-at-Point 0,0,0
Up-Vector 0,1,0

Parameters for image 2

Aspect Ratio 1
Vertical Field of View 60 Grad
Near, far clip Planes 1, 100
Center of Projection -10,40,40
Look-at-Point -5,0,0
Up-Vector 0,1,0

Output for image 1 Output for image 2

Horizontal movements in the center of the window should lead to a rotation around the
y-axis. Vertical movements in the center of the window should lead to a rotation around the
x-axis. Movements at the boundary of the window (horizontal and vertical) should lead to a
rotation around the z-axis. On ILIAS you’ll find a detailed description of a virtual trackball
implementation. Do not forget to handle the following special cases:

• The mouse position lies outside the virtual trackball.

• The rendering window is not quadratic.

2.1 Test

Test your implementation with triangle meshes that are read from files. You can use the
class ObjReader which can be found in the jrtr project. The object reader reads the .obj file
format, a simple text-based file format to store polygon meshes. What is basically stored is a
list of vertices (rows starting with v, one vertex per row) and a list of indices of the vertices
of all polygons (rows starting with f , one polygon per row). Additionally, normals (rows
starting with vn) and texture coordinates (rows starting with vt) can be stored. You can find
more details concerning the .obj format on Wikipedia and in the obj format specification.
The subfolder obj of the provided basecode contains some test files. It is recommended to
test the trackball with the file Teapot.obj.

2

http://en.wikipedia.org/wiki/Wavefront_.obj_file
http://paulbourke.net/dataformats/obj/


Visualization of the virtual trackball.

3 Fractal Landscape (3 Points)

Implement an algorithm to generate a fractal landscape. Follow the description from the
exercise session. A detailed explanation can also be found here. Your method should
also generate normal vectors by computing the cross product of neighboring triangle edges.
Choose the coordinates such that the xy-plane corresponds to the ground plane (floor)
and z corresponds to the height. Develop an easy method to assign colors to the vertices
depending on their height.

3

http://www.gameprogrammer.com/fractal.html#diamond


4 Interactive camera movement (3 Points)

Implement a method to move the camera interactively using a combination of keyboard and
mouse inputs. Keyboard inputs should determine the translation of the camera and mouse
inputs should determine the rotation. Use for example the WASD keys to move forward, left,
backward and right. If a key is pressed, the camera should move towards the corresponding
direction. The mouse determines the rotation of the camera. There are different possibilities
to choose the rotation axes for an intuitive navigation. We assume that the scene consists
of a world where the xy-plane corresponds to the floor and z points upwards. We propose
that vertical mouse movements correspond to a rotation of the camera around the x-axis of
the camera coordinate system. Horizontal mouse movements could correspond to a rotation
around the z-axis of the world coordinate system. Use the navigation with mouse and
keyboard to “fly” through your landscape from subtask 3.

Place an airplane in front of the camera (airplane.obj1) and transform the airplane in
such a way that you can fly the airplane through the scene using mouse and keyboard (see
Figure below). The camera should follow the movement of the airplane, i.e. the camera
should not move relative to the airplane.

Interactive Camere Movement

1The obj file for the airplane can be found on github.

4


	Frustum (1 Point)
	Frustum
	Test

	Virtual Trackball (3 Points)
	Test

	Fractal Landscape (3 Points)
	Interactive camera movement (3 Points)

