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_ Abstract—Learning 3D global features by aggregating multiple WO dimensional views can be used to represent both
views is important. Pooling is widely used to aggregate viesvin manifold and non-manifold 3D shapes. This advantage
deep leaming models. However, pooling disregards a lot ofan- gjeviates the difficulty of direct learning of 3D featuresrh

tent information within views and the spatial relationship among . lar 3D sh . bit " b . |
the views, which limits the discriminability of learned features. irreguiar shapes (i.e. arbitrary vertex number, irragu

To resolve this issue,3D to Sequential Views (3D2SeqViews) is Vertex topology and orientation ambiguity on 3D surfacé)-[1
proposed to more effectively aggregate sequential views ing [3] by deep learning models, which makes learning 3D feature
convolutional neural networks with a novel hierarchical attention  from multiple views important for 3D shape analysis [4]-[8]
aggregation. Specifically, the content information within each ¢ o a5 3D shape classification and retrieval [9]. By taking

view is first encoded. Then, the encoded view content inforntian ltiol . d 3D sh 3D sh feat
and the sequential spatiality among the views are simultare muliple views around a shape, shape 1ealures can

ously aggregated by hierarchical attention aggregation, were D€ learned by aggregating the information of views [4], [5],
view-level attention and class-level attention are propasl to [7], [8], [10]-[12], where the key lies in an efficient and
hierarchically weight sequential views and shape classe¥iew- effective view aggregation. To fully benefit from the powerf
level attention is learned to indicate how much attention igaid learning ability of deep learning models, it is critical &amn

on each view by each shape class, which subsequently weight . S
sequential views through a novel recursive view integratio. %D features by view aggregation in the end-to-end parameter

Recursive view integration learns the semantic meaning ofiew  Optimization procedure.

sequence which is robust to the first view position. Furtherrore, Max or mean pooling is widely used for view aggregation in
class-level attention is introduced to describe how much &ntion  deep learning models [4], [5], [7], [8], [10], [11]. As a pmc

is paid on each shape class, which innovatively employs they e originally designed for information abstraction, fiog

discriminative ability of the fine-tuned network. 3D2SeqViews | | th | f h di .
learns more discriminative features than the state-of-theart, ON'Y €MPIOYS (€ max or mean vajue of each dimension across

which leads to the outperforming results in shape classifizion ~ all view features to learn 3D shape features. Although pagpli

and retrieval under three large-scale benchmarks. is able to eliminate the rotation effect of 3D shapes to some
Index Terms—3D global feature learning, View aggregation extent, a lot of content information within views and thetsgda
Sequential views, Hierarchical attention aggregation, CN. relationship among the views are inevitably lost, leadmthe

limited discriminability of learned features. Therefoitas still
a research challenge to learn 3D features by more effegtivel
aggregating the content information and spatial relatignsf
multiple views in deep learning models.

To tackle this challenge, a novel deep learning model,
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more comprehensive characteristics in the view sequerae th. Mesh-based methods
existing methods. Then, the encoded view content infolonati
and the sequential spatiality among the views are simulta-3D mesh is an important type of 3D shape representations.
neously aggregated to learn 3D global features by a novk|3D mesh is composed of vertices which are connected
hierarchical attention aggregation. Finally, a softmayetais Py €dges. Mesh-based methods mainly aim to learn the ge-
employed to guide the parameter optimization by minimizin@memcw and spatial information from triangle faces of 3D
the classification errors of 3D shapes. mesh. To directly learn features from 3D meshes, different
In hierarchical attention aggregation, view-level atiemt deep learning models have been proposed. Han et al. [1]
and class-level attention are proposed to hierarchicadiigit proposed circle convolutional restricted bolt_zmann maeh]p _
sequential views and shape classes. View-level attenion!§amn 3D local features based on a novel circle convolution i
learned to indicate how much attention is paid on each viedf Unsupervised way. To learn global features by hieraadiic
by each shape class, while class-level attention is fuitiies- @Pstracting from local information, Han et al. [2] further
duced to describe the attention paid on each shape clash wiitoPosed mesh convolutional restricted boltzmann machine
employs the discriminative ability of fine-tuned networks. Which simultaneously encodes the geometry of local regions
addition, a novel recursive view integration is proposed ®d the spatiality among them. Jonathan et al. [13] learned
weight the encoded view content information by view-levelD féatures from hand-crafted features on 3D meshes by a
attention while preserving the sequential spatiality agitre novgl g_eodesm cqnvolutlonal neural networks. To gxplhﬂa t
views, which enables 3D2SeqViews to learn the semant@asiPility of learning features in the spectral domainyide
meaning of view sequence that is robust to the first vie@f al- [14] proposed localized spectral convolutional reeks
position. Our significant contributions are listed as below 0 perform supervised local feature learning. By encodire t
i) A novel deep learning model called 3D2SeqViews igpatlal relationships among v!rtual words on 3D meshes, Han
proposed for 3D global feature learning by aggregati et al. proposed deep spatiality [_15] to simultaneouslyHrear
sequential views. It not only encodes the content infoy- global rz:md Iocalhfedatures W'fh tr;ovel ((:jouplled so]ftmax.
mation within all sequential views but also preserves tr} owever, these methods can only be used to learn features

sequential spatiality among the views. fom smooth manifold meshes.
ii) A novel view aggregation in CNN called hierarchical
attention aggregation is proposed to simultaneously aggre
gate the content information and sequential spatiality inBa Voxel-based methods
view sequence, where view-level attention and class-level
attention are propOSed to get Comprehensive|y Combined\/oxel'based methods learn 3D features from voxels which
to significantly increase the discriminability of learnedepresent 3D shapes by the distribution of corresponding
features. binary variables. These methods usually employ deep legrni
iy The sequential spatiality captured by a novel recuyfhodels to capture the patterns of correlation among theyina
sive view integration improves the limited ability ofvariables involved in each 3D shape. Wu et al. [16] proposed
CNN for learning from sequential data, which enable3D ShapeNets to learn global features from voxelized 3D
3D2SeqViews to learn the semantic meaning of vieRhapes based on convolutional restricted boltzmann mechin
sequence that is robust to the first view position. Sharma et al. [17] employed fully convolutional denoising
iv) The discriminative ability of fine-tuned network for lew autoencoder to robustly perform unsupervised global featu
level view feature extraction is innovatively employed byearning by decomposing and reconstructing voxelized 3D
3D2SeqViews through class-level attention in hierardhic&hapes. Girdhar et al. [18] combined voxels and views of
attention aggregation, which is an important source to eD shapes to learn global features by a novel T-L network

hance the discriminability of learned features but ignordtgsed on CNN. With the generative adversarial training, Wu
by existing methods. et al. [19] learned 3D global features by a novel 3DGAN

This paper is organized as follows. The related studi&@'Ch IS composed of a generator and a discriminator. By
; . Iaéﬂnalysmg the reason why the performances of voxel-based

ethods are always not as good as view-based methods, Qi
al. [10] employed CNN to learn global features from novel
xel representations, where max pooling is used to agtgega
information captured from different orientations. To spee
up the training, Wang et al. [12] proposed O-CNN to learn
global features based on a novel octree data structureafio le

The deep learning methods for 3D feature learning alecal features from voxels, Han et al. [3] proposed a novel
reviewed in this section. These methods are categorizedvisxelization permutation strategy to eliminate the effett
terms of different raw 3D representations that are learrmd f rotation and orientation ambiguity on 3D surface. Although
including meshes, voxels and views. In the reviewed methodsxel-based methods have the advantage of generating 3D
the procedures employed for view aggregation are emplahsizsbapes, these methods require heavily computational ndst a
to highlight the novelty and the significance of hierarchicaheir performances in shape discrimination are always &ors
attention aggregation proposed in 3D2SeqViews. than the following view-based methods.

presented in Section Ill. Experimental setup and resulth wi"
analysis are shown in Section IV and Section V, respectives;
Finally, a conclusion is drawn in Section VI. 0

Il. RELATED WORK
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C. View-based methods shapes to some extent, however, it inevitably loses a lot of

content information within views and the spatial relatioips
View-based methods try to understand each 3D shape fr mong the views which has been regarded an important

different viewpoints. These methods learn the feature dba nformation in computer vision area [26]. In addition, the

sha_pe ”9”‘ a set (_)f Viewimages c_aptured_ from thg sb Shaeﬁatial relationship between pairwise views is also desregd
Light field descriptor (LFD) [20] is the pioneer view-based,y, {he view pair decomposition [25]. Although it is able to

3D descriptor to extract 3D global features, which emplé¥s t oyercome the disadvantages of pooling by concatenation of
features of 2D silhouettes in multiple views taken aroun®a 3, \iew content information [24], it is sensitive to the firs

shape. Instead of learning global features by aggregatirtrm view position in a view sequence. Xu et al. [27] employed
view information, LFD evaluates the dissimilarity betweew the concept of attention to find next best view for depth

shapes by comparing the corresponding two view sets inyaqisition, and then, found the most discriminative part i
greedy way. By the same strategy, GIFT [6] measures tQg 1 view for part-based recognition.

difference between two 3D shapes by the Hausdorff distancery yesolve the aforementioned issues, 3D2SeqViews em-
between their corresponding view sets. These methods gm foys a novel hierarchical attention aggregation to agafeeg

a greedy strategy to compare views for the evaluation of tagq ,ential views for 3D global feature learning. In hierar-
difference between two 3D shapes, which avoids to ideicalica) attention aggregation, the content informationhisit

align 3D shapes before pairwise 3D shape comparison. In cgj)- sequential views and the sequential spatiality amorey th

trast, RptationNet [21] was propose_d to Iearfl global fﬁl{f\,iews are effectively aggregated under hierarchicallyghei
by treating pose labels as latent variables which are optichi

I . ing view-level attention and class-level attention. Withavel
o self-align in an unsupervised manner. recursive view integration, the sequential spatiality amo
Besides the 2D rendered views, other different 2D regpquential views is encoded to help 3D2SeqViews learn the
resentations are also employed to represent 3D shapes f@hantic meaning of sequential views in the view sequence,

deep learning models to learn. DeepPano [7] was proposeq\f§ich is robust to the first view position.
learn features from panorama views using CNN, where each

panorama view can be regarded as the seamless aggregation of lIl. 3D2SEQVIEWS
multiple views captured on a circle. To eliminate the effefct
rotation about the up-orientation, row-wise max poolingswa
introduced in DeepPano. With pose normalization, Sfikas
al. [22] used CNN to learn 3D global features from multipl
panorama views which were stacked together in a consist
order. Similarly, Sinha et al. [23] proposed to learn feasur
from hand-crafted features named as geometry images.
To encode information from multiple views through view
aggregation, pooling becomes a widely used procedure im dée Overview
learning models. This manner was introduced in multi-view The framework of 3D2SeqViews is illustrated in Fig. 1.
CNN [4] which learns global features by aggregating mudtiplFirst, for eachi-th 3D shapem’ in a training set ofM 3D
views. To describe a 3D shape, the content information withéhapes, whereé € [1, M], a view sequence’ is obtained
all views is first max-pooled together before the globaldeat by capturingV sequential viewsv’ aroundm’, such that
of the 3D shape is learned. Similarly, max pooling is alsd firg? = [vi, -y 0k, vy ] andj € [1, V], as shown in Fig. 1 (a).
employed to aggregate multiple views which are taken aroummlen, the low-level featurgf; of each viewv} is encoded by
local regions to learn local features for 3D shape segmentatrow-wise convolution after extracted by a fine-tuned VGG19
or correspondence [5]. Instead of performing pooling firshetwork [28]. The VGG19 also provides the classification
3D2SeqViews convolves the content information within afrobability p;'. of each Viewy;‘. to calculate the subsequent
sequential views in a view sequence, which prevents the lagass-level attention, as shown in Fig. 1 (b). Finally, the
of content information caused by pooling. global featureF" of shapem/’ is learned by aggregating the
To employ the content information within all views, Li etcontent information within all sequential view§ in »* and
al. [24] concatenated all content information for hieracah the sequential spatiality amongf. This view aggregation is
abstraction in the CNN-based model. By decomposing a vimenducted under hierarchically weighting view-level atien
sequence into a set of view pairs, Johns et al. [25] classifiadd class-level attention by hierarchical attention agatien,
each pair independently, and then, learned an object fitassias shown in Fig. 1 (c).
by weighting the contribution of each pair, which allows To learn F?, the low-level feature#j of all sequential
3D shape recognition over arbitrary camera trajectories. Views in v* are first stacked into a low-level view feature
perform pooling more efficiently, Wang et al. [8] proposethatrix A* according to the sequential direction derived in
dominant set clustering to cluster views taken from eachshav®. Then, several hidden convolutional layers are employed
where pooling is performed in each cluster respectively. to perform row-wise convolution oA’ by row-wise convolu-
The issues of the view aggregation procedures in thien kernels, which abstracts the content information inith
aforementioned methods are analyzed in the following. Viegach vierj. The hidden convolutional layers shorten the
aggregation by pooling eliminates the effect of rotation3@h low-level feature f; of each viewv; in »* and form an

In this section, 3D2SeqViews is introduced in detail. First
overview of 3D2SeqViews is presented. Then, the key
lements, including sequential views capturing, low-levew
gature encoding, and hierarchical attention aggregadien
described in detail in the subsequent three subsectiors, re
spectively.
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(a) Sequential view capturing (b) Low-level view feature encoding (c) Hierarchical attention aggregation

Fig. 1. The overview of 3D2SeqViews. The sequential viewss farst captured around each up-oriented 3D shapes on a gir¢l). Then, the low-level
feature of each view is encoded by row-wise convolutionraderacted by a fine-tuned VGG network, as shown in (b). Binghe global 3D feature is
learned by aggregating sequential views in hierarchidaintibn aggregation.

abstracted view feature matrig?. Subsequently, another row-all v;'. is further encoded into a s#* of column-wise feature
wise convolution layer is employed to further encod maps by row-wise convolution. The content information and
into a set H' of column-wise feature maps by row-wisethe sequential spatiality af’ in H* is subsequently aggregat-
convolution. Finally, F* is learned fromH*® by hierarchical ed by hierarchical attention aggregation which will be deta
attention aggregation, where view-level attentighand class- in the next subsection.

level attention3’ are employed to weight* in a hierarchical Low-level view feature extraction. VGG19 is employed to
manner. View-level attention’ weights the encoded contentextract the low-level featurg! of each sequential view! in
information of views with preserving the sequential sgdyia v’ from thei-th shapen’. VGG19 is originally trained under
among the views through the novel recursive view integratiolmageNet benchmark for large scale image classificatioh [28
which helps 3D2SeqViews learn the semantic meaning ofVGG19 is formed by 19 weight layers which include
the view sequence that is robust to the first view position convolutional layers and 3 fully connected layers. With
With introducinge” and3?, the discrminability of the learned a softmax layer, VGG19 is capable of classifying images

global featureF™ are significantly increased. belonging to 1000 categories. Here, the VGG19 pre-trained
under ImageNet is fine-tuned by all sequential views of 3D
B. Sequential view capturing shapes in the training set, where each vigvis classified into
. . . ) one of C' shape classes by another softmax layer, as shown in
The V sequential views); are taken around théth 3D Fig. 1 (b).

shapem’ on a circle, which forms a view sequeneé as

shown in Fig. 1 (a), wherg € [1,V] andi € [1,M]. The In Fig. 1 (b), when the view; is forwarded through the

sequential views inv* are uniformly distributed on the circle fine-tuned VGGL9, its low-level featurg, is extracted as a
q y 4096 dimensional vector from the last fully connected layer

in order, \{vh_ere the cameras are eleveaad irom the grpundl In addition, the classification probabiligy: of sequential view
plane, pointing to the centroid of the 3D shape. The first view . : J . :

. . ) . . . vt is also obtained from the softmax layer, which will be
in the view sequence is taken from a fixed position which can

be randomly selected on the circle. Then, the subsequem;vic?s_l;\?vsfe?/lﬁn\t)ii vtsigaiz:;a;%lgzgzgoﬂa'srilE\;le:::/?ﬁgg se-
are taken with an angle interval 860°/V in a consistent i P

sequential direction. The sequential direction is deteedi Iquerlltlfal spatlality famltl)ng sequgnlua! views an, thek I(;w_—
by the right hand rule, i.e., the direction of wrapping one’s Ve eaturesf; of all sequential views are stacked into

right hand when the thumb is in the same direction of the ug,_qlow-level view feature matrixA® = [ff;...; £;...; £]

i V x4096 =i _ 7
orientation, as demonstrated by the green arrow surrognd dA € R - First, the IOV\{ level featur_g‘j of ea_Ch
the 3D shape in Fig. 1 (a) view v} is abstracted by row-wise convolution oA’ in

N hidden layersD;, wheren € [1,N]. The hidden layer

Different from the traditional multi-view capturing [6]2D], ) Bou . . ;
nDéL € R&#»*V >4~ is produced byFE,, row-wise convolution

the sequential views are captured on a circle rather tha b q des th > . ithi h Vi
unit sphere. Although the sequential views cannot fullyerov liters and encodes the content information within each view

the top or the bottom of 3D shapes, the content informatidmn With reducing the dimension of low-level view features into

within sequential views can be more efficiently aggregatdd: 1hen. an abstracted view feature matfiky is obtained
from A*, where Ey = 1. The matrix D}, is denoted as

with preserving the sequential spatiality among the viears f_~ VD :
3D global feature learning. B'eR _W|th D = gy for more clear represe_ntanon.
Low-level view feature encoding.Another row-wise convo-
) ) lution is conducted o’ to further encode the content infor-
C. Low-level view feature encoding mation within each view by row-wise filters{k;}, where
In this subsection, the low-level featugf of each view k, € R'*? andt¢ € [1, K]. For each row-wise convolution
v} in v’ is first extracted by a fine-tuned VGG19. Then, thélter k;, a column-wise feature mdg € RYXl is obtained by
content information within each view is abstracted by rédgic convolving acrossB* row-by-row, whereh! = sig(B" * k),
the dimension of the low-level featureﬁ? using row-wise = is the row-wise convolution angig is the sigmoid function.
convolution. Finally, the abstracted content informatidgthin ~ Then, all column-wise feature map$ obtained by{k;} form
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a set of feature mapHi = {h“t S [1, K]} 0.6 Bowl Cup Bowl/Cup Ratio Isoline 1 6?
80.5 L4g

i ; ; : E 128

D. Hierarchical attention aggregation 504 LoB
The global featureF? of the i-th shapem! is learned §o.3 0.8
from H* by hierarchical attention aggregation. Hierarchic@o_2 0.65
attention aggregation aims to aggregate the encoded ¢omten: 0.4%
formation within sequential views and the sequential sgigti " 025

among thg views for Iegrnlng 3D global features._lnladdltlon Olﬁ 73 38’ 4ap - - & - 0
the two kinds of attention, i.e., view-level attenties#f and z ‘' ‘W W “
class-level attentio®, hierarchically weight sequential views
; e vi ; Fig. 2. The illustration of view-level attention learned @ cup. The view-

and shape classc_es in this view aggr_e_gatlon process. level attention on different views is shown by bars, wheee ¢blors indicate
VIeW-|eV€‘| attenthﬂ. In Ordel’ tO faCI|Itate 3DZS€‘QViGWS tO different Shape C|asses’ such as Shape class “bowl” aném “Cup". The
conduct the classification of 3D shapes, view-level attentiline of ratio between view-level attention from the two skagasses is also
o is learned to indicate how much attention is paid on eaéhown, where the isoline indicating the unit ratio is used rigference. As

. i i Shown by the attention values, a shape class tries to focus amthe views
view v} in v* by each shape class wherec € [1,C] andC'  that are more distinctive to the shape class. This is actiéyemeasuring
is the number of shape classes. the distance between the low-level view feature and shagss deature in a

Intuitively, each shape class focuses more on the views tff&f'men space learned in our model.

are more distinctive to the shape class when contributing to

the classification of 3D shapes. For example, because of sgff,ore its entrya(c, j) denotes the attention paid on thie
occlusion, shape class “bpwl” focuses more on some vie\ﬁ§ sequential viev\/u’;'- of shapem’ by the c-th shape class.
of a cup with a handle if the handle does not appear ifhe entry oi(c, j) indicates the distinctiveness of thieth

these views, while shape class “cup” focuses more on othef,ential view' to thec-th shape class, which is defined as
views where the handle appears. Thus, view-level attergion,|q, J

proposed to indicate how much attention is paid on each view
by each shape class, which shows the distinctiveness of each al = Wu(A)T + FCWe + by, 1)
view to each shape class.

In addition, the distinctiveness indicated by view-level awhere W4, W¢, and by are learnable parametergr®
tention is measured by the similarity between each view aigl @ matrix formed by all shape class featurg$ which
each shape class in our work. This is because a specific shafge innovatively employed as the parameters learned in the
class focuses more on some views which are more similarsoftmax layer for the classification of 3D shapes, where
the common characteristics of the shape class. For examglé, = [f',.... f¢, ..., f¢] and f¢ is the feature of the-
the views of the cup that shape class “bowl” focuses more &h shape class. To make our description more cledfy,
are more similar to the characteristics of shape class “bowill be detailed at the end of this subsectid¥4 and W¢
than the ones of shape class “cup”. respectively projecd’ and F¢ into a common subspace for

For sequential views of a cup, the view-level attentiothe calculation of similarity betweed’ and F©, whereby,
learned by 3D2SeqViews is briefly visualized in Fig. 2. This used as a bias term. In addition, for th¢h shape class,
view-level attention paid by shape class “bowl” and shapegl its attentiona’(c, 1 : V) to all sequential views? in v* are
“cup” is shown by bars in different colors. To better visaali normalized by softmax as follows,
which shape class pays more attention on a specific view, the _ _
line of ratio between view-level attention paid by shapessla orm (6,11 V) = softmaz(a’(c,1:V)), 2
“bowl!” and shape class “cup” is also shown, and the iso””v(\a/hereai
of unit ratio is used for reference. Since the handle of the ¢ bon. rorm
!‘i:v(\;lt’:’luiei %yoizeagggt)i/olrr\] gilem;s: r:/(ije\\//vlgv:hih Sshh&jaloee Cclijs?g cursive view integration. Each feature mah; € R*>!
“cup” aps ghown by the ratio upon the isoline. In contrasf)tewh MH " is welghtec_i by_ V|ew—le_ve| atte_ntloo_z:m_m through the
the h:emdle appears in view 3, view 4 and v.iew 5, shape cl nSoSveI recursive view |nFegrat|on, Wh'f:h hllghhghts the eded
“cup” pays more attention tha{n shape class “bOV\;|” AIthou;%O.ntent |nformat_|on within sequential views that_ sho_uld _be

’ paid more attention by each shape class. Recursive view inte

Fhe handle also appears In views 6, view 7, and views 8, Fation not only aggregates the encoded content informatio
is very hard to distinguish the handle from the body becau%ge ) ) : A L
of the resolution of the views. Thus, shape class “bowl!” pa () of thej-th view v; with view-level attention,,, but
. ' O pe ¢ ) Pa¥3so preserves the sequential spatiality among the vietws. T
more attention than shape class “cup” again. This example,
illustrates the rationale of the proposed view-level diten
o' which is detailed in the following.

The view-level attentiomx’ measures the distinctiveness of
each vieWz;;i to each shape clagsby the similarity between
the low-level view feature matrixA’ and the shape classwhere® denotes the recursive view integratiafi.c R¢*! is

featuresF“. The view-level attentiomy’ is aC x V matrix, the result of recursive view integration dij, whose element

denotes the normalizea® for clearer descrip-

rsive view integration on a feature mapwith o, is

norm

defined as,

i 1 7
Tt = Qnorm ® h’t’ (3)
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orm(CG: 11 V)@ hi(1: V). r; comprehensively aggregation to employ the discriminative ability of the fine

encodes the sequential spatiality among views and the monteined VGG19 by 3D2SeqViews.

information encoded ith! along with weighting the attention Class-level attentiof3’ presents a shape class prior to show
paid by each shape clags Specifically, with the attention the importance of shape classes to the classification of-the

paid by thec-th shape clase& .. (c,1: V), thec-th element th 3D shapen?, which comes from the softmax layer in the

norm

ri(c) of r} is obtained by the recursive view integration on éine-tuned VGG19. The fine-tuned VGG19 not only extracts

is ri(c) = ol

feature maph!, as defined by, low-level features of sequential views but also learns the
discriminative information for the classification of seqtiel
r(1) = ai, (e, 1)hi(1), yiews. Cla_ss-level _attentioﬁi helps 3D2SeqViews adopt this
. ; N i N important information source.
7 (7) = (1= o ()75 = 1) + Qopm ;)i (9), B¢ is innovatively calculated using the classification prob-
ri(c)=r'(V),and2 < j <V, ability p’ of sequential views provided by the fine-tuned

_ _ _ _ (4)  VGG19, wherep! € R'*C. VGG19 is fine-tuned to minimize
where r’ is an intermediate variable vector for better unge classification error of each sequential vigjvinto one of
derstanding of recursive view integration, the iteratian i; shape classes, where the classification probabljtgf v
continued untilj reaches/ from 2, andr’(1) is initialized by ig provided to indicate which shape clagsbelongs to. With
Xporm (€ 1R (1) Wr/‘enj_ = 1. Finally, ry(c) is assigned by p’, class-level attentioB’ € R'*“ is calculated by averaging
th_e last _element of’. This proce(_jure is further illustrated |np§ of all sequential views in/’, as defined below,

Fig. 3 with a sequence df = 4 views.

14
i 1 %

%F 1 X 1 - B = V ;Pj- (5)

=2 X 2)=~ - | |

N2 3 / 3" 3) = Class importance weighting.Global featureF™ of shapem®
ol / A m N is finally learned by weighting?? using3?, which highlights
the dimensions of each feature mejpin R! according to the

4 —¥ he dimensions of each f R' according to th

’ importance of shape classes to the classification of 3D shape
r ®X® m'. Each elemenf"(¢) of F' is obtained by multiplying3!

with r! in R’, as defined as follows,

Fig. 3. The recursive view integration is illustrated by glging normalized ) o
attention weightsx? (c,1:V) on afeature mapj(1 : V) of a sequence F*? (t) = Igzrz (6)

norm

of V. = 4 views. The calculation involved in the second row of Eq. (4)
is represented by a _symbol _of star. The _recursive view iategr not only where F¢ = [Fi(l), . Ft (t), . FZ(K)] c RXK js a K
gggﬁgﬁ@ tg;gggtfﬁé 'Cifgvf,'gat'on of each view but also presdhe sequential dimensional vector which is employed for the classification
of m' by a softmax layer. The classification probabilii/
Recursive view integration is defined as a form of recursii@ovided by the softmax layer is used to classify shape
filtering as shown in Eq. (4). It is able to encode the séato one ofC' shape classes, as defined by,
guential spatiality among the sequential views, and maegov _ _
makes the 3D2SeqViews learn the semantic meaning of view P’ = softmax(F'Wg + bp). @)
sequence which is robust to the first view position. This is
because recursively weightidg — ., (c, 7)) significantly In Eq. (7), W and by are learnable parameters. The
. i ! . th element ofP*, P*(I* = ¢|F"), is the probability thatn®
reduces the influence of the first view position but keeps

- idi— ition. W
concentrating on the sequential spatiality among the sisoce 31‘129.5 tp the: th shape class, i.el, = c. In addition, Wy €
s R is innovatively used as the features of all shape classes.
sequential views.

. . C ; .
Similar to HY, all column-wise feature mapsi form Here,F“ in Eq. (1) is the transpose &V for the calculation

another setR’ of feature maps, such tha®' = {ri|t € of view-level attentiono’, such thatF"® = W

[1, K]}. SubsequentlyR! is weighted by class-level attention

B3* to highlight the shape classes that are focused more By Learning inference

3D2SeqViews, which represents the importance of each shapginally, the parameters involved in 3D2SeqViews are opti-
class to the classification of 3D shapé. mized by minimizing the negative log-likeliho@d over M 3D
Class-level attention. Because of our limited computa-shapes in the training set, as defined below, wiigé’ = c)
tional capacity, VGG19 is not jointly trained with entirejs the ground truth label,

3D2SeqViews in an end-to-end manner, which is a compro-
mise that is widely adopted by existing methods. However, th 1 o o
discriminative ability of fine-tuned network, such as VGG19 O=-+; > > QU =e)log P(I' = c). (8)

was always ignored by existing methods, which should be i=1c=1

an important source to increase the discriminability ofrieal The involved parameters can be optimized by back propaga-
global features although it is hard to use. To resolve tlsisds tion of classification errors of 3D shapes. It is worth notihat
class-level attention is introduced in hierarchical dftan the gradient for updatin§¥x comes from two parts. One part

M C
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is from the softmax layer for the classification of 3D shapedropout ratio, the learning ratg the numben/ of sequential
i.e.,00/0Wp, the other is from the calculation of view-levelviews in the view sequence captured around each 3D shape
attention, i.e.0a’/OW . Finally, W is iteratively updated and the numbeiN of hidden row-wise convolution layers for

with the learning rate as follows, low-level view feature abstraction.
. The number K of row-wise kernels and dropout ratio.
o0 da' . . . :
We — Wp — &= ). (9) In this experiment, the impacts of the numk€rof row-wise
OWp  OWp kernels and dropout ratio on the performance of 3D2SeqViews

The advantage of Eq. (9) lies in th&/» can be learned are comprehensively investigated. To explore the raw effec
more flexibly for optimization convergence, which can bé, the row-wise convolution in hidden layers is not used, i.e.
regarded as a skip connection across 3D2SeqViews. ThisNis= 0 and A = B®. In addition, the dropout is employed
becauseWr is innovatively employed as the shape classn the low-level view feature matrid®.
features for the learning of view-level attentiaf. In addition, The learning rates is set t00.000002. K is iterative-
the shape class featur¥&r also enablex’ to simultaneously ly selected from{32, 64,128,256, 512,1024}. Similarly, the
observe the encoded content information of viewddh and dropout ratio is iteratively selected frof0.7,0.5,0}. The
the original content information of views iAd*, which makes result comparison is presented in Table .
3D2SeqViews comprehensively understand the 3D shape

TABLE |
IV. EXPERIMENTAL SETUP K AND DROUPOUT RATIO COMPARISON UNDERMODELNET40,
. . . £ = 0.000002.
In this section, different shape benchmarks and performanc
measures for shape classification and retrieval are regplgct Accuracy(%) | Dropout=0.7 | Dropout=0.5| Dropout=0

described for evaluating the 3D global features learned by P oo o o0
3D2SeqViews. In addition, the setup of parameters involved K=128 93.03 93.07 92.99
in 3D2SeqViews is also discussed. K=256 93.15 93.03 93.15
K=512 93.15 93.27 93.31
K=1024 93.15 93.23 93.23

A. Benchmarks and evaluations

The shape classification and retrieval experiments are conComparison results show that the performance of
ducted under three well-known large-scale 3D shape ben@b2SeqViews can be improved by increasitg In ad-
marks, including ModelNet40 [16], ModelNetl0 [16] andlition, the dropout ratio only affects the performance of
ShapeNetCore55 [29]. 3D2SeqViews whenK is small, such asKk = 32. The

ModelNet40 and ModelNet10 are two subsets of ModelNaverage instance accuracy achie®8s31% with K = 512
which contains 151,128 3D shapes categorized into 660 shapel dropout ratio of 0. In addition, these results indicat t
classes. As smaller subsets, ModelNet40 is formed by 4Gshéipe performance is slightly affected by the dropout. This is
classes with a total of 12,311 3D shapes, while ModelNetb@cause although there is information loss using dropout, i
comprises 4,899 3D shapes split into 10 shape classes. The be compensated by using more row-wise kernels. This
training and testing sets of ModelNet40 consist of 9,84@servation also shows that there is no overfitting issueuin o
and 2,468 shapes, respectively. In addition, the trainimgy acurrent network. Therefore, dropout is not employed in the
testing sets of ModelNet10 consist of 3,991 and 908 shapés|owing experiments.
respectively. ShapeNetCore55 is a subset of the ShapeNké learning rate . In this experiment, we explore how
dataset, and it contains 51,190 3D shapes of 55 shape clas$gs learning rate affects the optimization of parameters

In classification experiments, the metrics employed fof-evdan 3D2SeqViews. ¢ is set to each candidate from
uating the performances of different methods inclagerage {0.000001, 0.000002, 0.000004, 0.000016,0.0001,0.001,0.01}
instance accuracyand average class accuracyn retrieval which are 0.5, 1, 2, 8, 50, 500 and 5000 times0@f00002
experimentsmean Average Precisio(mAP), Precision and employed in the former experiment. As the comparison shown
Recall (PR) curves precision (P), recall (R), F1 score(F1) in Table II, the results obtained with appropriate learning
and Normalized Discounted Cumulative Ga({iNDCG) are rates are quite well, such 8.000001, 0.000002, 0.000004}.
presented to compare the performances of different methadsaddition, the result obtained with learning rate of 0.000
under different benchmarks. is better than the ones obtained in the former experiment,
which achieves up t®3.40%. While the performance is
degenerated gradually with bigger learning rates, such as

n thi b . he K involved _#0.000016,0.0001,0.001,0.01}.Inthefollowingexperiments,
n this subsection, the key parameters involved 0. <ott00 000004,

3D2SeqViews are set by exploring their impacts on the
performance of 3D2SeqViews in shape classification under TABLE I
ModelNet40. The average instance accuracy is used as thﬁm LEARNING RATE & COMPARISON UNDERMODELNET40, K=512.
metric for the performance comparison.

In 3D2SeqViews, the key parameters include the numhef x 0.000001 1 2 4 16 100 | 1000 | 10000
K of row-wise kernels for low-level view feature encoding,AScuracy’% | 93.19 | 93.31 | 93.40] 93.23 | 92.46 | 92.17 | 32.30

B. The setup of parameters
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The number V' of sequential views inv®. In this experiment, A. Shape classification

the effect of the numbeV” of sequential views is explored.pvodelNet40. Under ModelNet40, the performance compari-
Note thatV = 12 sequential views in the view sequencggp in shape classification is shown in Table V, where the
captured around each 3D shape are employed to learn globglyality and numbers of views are also presented. The evalua

in Table Ill, both the performances of 3D2SeqViews undgjfrecision, are presented in Table V if they are availablédn t
ModelNet40 and ModelNet10 keep improved along with injierature.

creasingV until V' = 12. In the following experiments,

V = 12 sequential views in the view sequence captured around TABLE V
each Shape are used to Iearn 3D global features CLASSIFICATION COMPARISON UNDERMODELNET40, K=512,
& = 0.000004.
TABLE Il Methods Modality | Views | Class(%) | Instance(%)
V COMPARISON UNDERMODELNET, K=512, = 0.000004. SHD Mesh - 68.23 -
LFD Image 10 75.47 -
View nunmber 3 6 12 24 PyramidHoG-LFD Image 20 87.2 90.5
ModelNet40 Accuracy(%)| 92.10 | 93.07 | 93.40 | 92.75 Fisher vector [4] - 12 84.8 -
ModelNet10 Accuracy(%)| 94.49 | 94.60 | 94.71 | 94.60 3DShapeNets [16] Voxel 12 77.32 -
DeepPano [7] Image 1 77.6 -
. . . Geometry image [23] Image 1 83.9 -
The number N of hidden row-wise convolution layers. VoxNet [30] Voxel - 83.0 -
In this experiment, we explore whether the performance of ;/;?NNN[%%] xoxe: 24 604 91.33
. . ) (0).(5] - . -
SDZSqu|ews_ com_Jld l_:)e further improved by add_monal TOW- | Network [18] Voxel i 74.4 )
wise convolution in hidden layers for low-level view featur 3DGAN [19] Voxel - 83.3 -
abstracting. Specifically, we incrementally adfd= 2 hidden PPPi?’:IN?t [3[214] EO?n: i 86.2 g?'sza
Wi . 1 i ointNet++ oin - .
row-wise convolution Iaye_rs to abstraA’.t, whereD? employs. FoldingNet [35] Point 1 ) 88.4
E, € {16,32,64} row-wise convolution kernels to obtain Octree [12] Voxel 12 90.6 -
multiple feature maps fromA’, and D} employs E; = 1 PANORAMA [22] Image 6 90.70 -
row-wise convolution kernel to combine these feature maps|t ~ FaIrwise [25] Image ) 12 9.7 )
_ ut _ ol p GIFT [6] Image | 64 89.5 ;
form B*. In addition, the width ofA* is not reduced by the Dominant Set [8] Image 12 - 92.2
two hidden row-wise convolution layers, i.;, = g2 = 4096, Sl\ljl-vl\é\{\ﬁ\lN[f\llo[]‘l] :mage gg gg-% 2.0
. . . o } mage . .
Whlch aims to e>_<p|org the effect_of hidden row-wise cor MVCNN-Sphere [10] Voxel 20 86.6 895
volution layers with fairly comparing the results of formef spherical projection [36]] Image 36 - 93.31
experiments. As shown in Table IV, different numh&r of Rostgtl?\lnN%Y[]Zl] lgﬂé}ge 112 63 %%%5
. - -Net oint . .
row-wise convolution kernels, such &4, _128, 256, 512},_are [VG&(ModeiNet0) mage 1 - 5947
employed for the performance comparison. Comparing with  vGG(voting) Image 12 90.27 92.50
the results in Table I, the degenerated performances irhgly t Ours Image 12 91.51 93.40
the added hidden row-wise convolution layers cause overfit- Oursl Image | 12 91.64 93.21
i X X X Ours(Start) Image 12 90.83 93.27
ting. This experiment also demonstrates that the hidden rqw  ours(No finetune) Image 12 80.74 83.43

wise convolution layers are capable of increasing the lagrn
ability of 3D2SeqViews. According to the scale of dataset, Using the sequential views captured around 3D shapes in the
the hidden row-wise convolution layers are not employed ifaining set of ModelNet40, VGG is fine-tuned by classifying
the following experiments, that isN' = 0, A* = B* and each sequential view into one of 40 shape clasées-(40).

D = 4096. The accuracy of single view classification 89.47%, as the
result named as “VGG(ModelNet40)". By voting the classi-
N COMPARISON UNDI;I-RAI\?IC_JEDI;\L/NET4O o 0.000004 fication results of_ all seque_ntial views in a view sequence,

' : : namely “VGG(Voting)”, the instance accuracy of classifyin

Accuracy(%) | E1=16 | E1=32 | E1=64 3D shapes i92.50%. Fine-tuning is important for VGG to
K=64 9149 | 91.73 | 89.91 extract low-level view features. This is because VGG is pre-
gigg giég gi:g; g%:gg tr_ained with color images from ImageNet While the sequéntia
K=512 91.05 | 91.86 | 91.92 views are captured without colors. To verify this point, the

results listed as “Ours(No finetune)” are obtained by trajni
3D2SeqViews under low-level view features extracted from
pre-trined VGG. As analysis before, they are unsatisfgctor
comparing to our best results described in the following
In this section, the performance of 3D2SeqViews is evalparagraph.

ated by comparing with the state-of-the-art methods in shap Using the low-level view features from the fine-tuned VG-
classification and retrieval under ModelNet40, ModelNet1lB19, the results of 3D2SeqViews listed as “Ours” achieve
and ShapeNetCore55, respectively. For fair comparisam, #i.51% and 93.40%, as shown in the bold numbers. Our
results obtained by the state-of-the-art methods are ctadpuresults are the best among all reported results in termstof bo
from the single modality, such as image, voxel or point cloudverage class accuracy and average instance accurackieAll t

V. RESULTS AND ANALYSIS
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compared methods learn 3D shape features from three differ- TABLE VI

ent modalities. We find that the methods learning from voxel 0~ CLASSIFICATION COMPAR'SgNOlOJgO%iRM0DELNET10:K:512:
. . . e =0Vu. .

point clouds are usually with the worst performance in shape

classification, although they have the ability of gene@8D Methods Modality | Views | Class(%) ] Instance(%)
shapes using voxel or points. View-based methods usuglly SHD Mesh - 79.79 -
. . LFD Mesh 10 79.87 -
perform better _but thes_e methods are still sufferl_ng from th  3pshapeNets [16] |  Voxel 12 83.54 .
loss of content information and spatiality among views eaus DeepPano [7] Image 1 85.5 -
i i i i Geometry image [23]| Image 1 88.4 -
by pooling and tlhe understandlng of the amblguous.wevxs. VoxNet [30] Imags - 920 .
To resolve these issues, 3D2SeqViews employs recursive vie VRN [31] Voxel 24 _ 03.8
integration with view-level attention mechanism, whichkesa 3DGAN [19] Voxel - 91.0 -
3D2SeqViews achieve the best results. With hierarchical at _ORION [38] Voxel : 93.8 -

. . . FoldingNet [35] Point 1 - 94.4
tention aggregation, 3D2SeqViews can aggregate views mOresanorAMA [22] Image 6 91.12 -
effectively. This enables 3D2SeqViews to learn more diseri Pairwise [25] Image 12 92.8 -
inati — i GIFT [6] Image 64 91.5 -
|nat|v§ features from _onIW 12 views than the methods RotationNet [21] Imags 12 - 93.84
learning fro_mV = 20 views or more, such as MVCNN-Spher_e 3DDescriptorNet [39]|  Voxel R . 92 4
[10], Spherical projection [36], and Su-MVCNN [4]. For fair SO-Net [37] Point 1 93.9 94.1
comparison, the result of VRN [31] is presented with a single YGG(ModelNet10) | Image 1 - 91.87

here twi : than ours are emoloved. the VGG(voting) Image 12 93.83 93.83
CNN, where twice more views _are employed, ours Image | 12 94.68 94.71
result of RotationNet [21] is presented with views taken by Ours(256) Image 12 94.43 94.49

the default camera system orientation which keeps iddntica

with other methods, and the result of Spherical projection

[36] is presented with the same type of views as ours. be further improved by a smaller numbéf of row-wise

addition, our another set of results listed as “Oursl”, igd convolution kernels, such @ = 256. However, as the results

with another set of initialized parameters, achiepes54% listed as “Ours(256)", the results are slightly degenerdte

and93.27%, which are also state-of-the-art results in terms &.43% and 94.49%, but they are still the state-of-the-art

average class accuracy. The comparison between “Ours” d&gults among all reported results.

“Ours1” implies that the unbalanced number of shapes in eaShapeNetCore55.In this experiment, the performance of

shape class makes average class accuracy and averageansg82SeqViews in shape classification is evaluated under

accuracy not positively correlated. ShapeNetCoreb5. 3D2SeqViews is trained by 12 sequential
3D2SeqViews is able to learn the semantic meaning wiews (V' = 12) rendered without colors. In addition, we

a view sequence by aggregating sequential views using &iso explore whether sequential views rendered with colors

erarchical attention aggregation, which makes 3D2Seq¥/ie@an be used to train 3D2SeqViews better. The sequential

insensitive to the first view position. To explore this peintviews with colors are downloaded from the main page of

the result listed as “Ours(Start)” is obtained by trainin@hapeNet, however, there are only 8 sequential viéWs-(8)

3D2SeqViews with random first view position. Although thdo represent each 3D shape. The results are shown in Table VI

first view position is not fixed for training, the results abted

by “Ours(Start)” are comparable to our best results listed a TABLE VII
“Ours”. CLASSIFICATION COMPARISON UNDERSHAPENET, K=512,
=0. 4.

ModelNet10. We further evaluate the performance of = = 0.00000

3D2SeqViews under ModelNet10 in shape classification. All Methods Modality | Views | Class(%) ]| Instance(%)

the results are compared in Table VI. VGG\(/Sthz’\?O'\t‘iﬁgore55) :mgg: 112 Lea gg-?g
Under Model_Neth, the low-level view featyres are aldo ours Image 12 74.07 84.58

extracted by a fine-tuned VGG19. In this experiment, VGG19 Ours(1024) Image 12 72.65 82.95

is fine-tuned by classifying each sequential view into ong®mf VGG&ggi‘?\fo’\t‘.it(;me‘r’S IQZQZ é 603 g?-gi

. . epe 1 . .
shape classe<(= 10). The accuracy of single view classifi- oursl ’ |ma§e 8 76.12 86.29
cation is 91.8%, as the result named as “VGG(ModelNet10). Ours1(1024) Image 8 76.38 86.46

By voting the classification results of all sequential vidws:

view sequence, namely “VGG(Voting)”, the average instance In Table VII, the results named as “VGG(ShapeNetCore55)”
accuracy of classifying 3D shapes is 9383WNith low-level and “VGG1(ShapeNetCore55)” are obtained by fine-tuning
view features extracted by the fine-tuned VGG19, we obtafGG under the views without colors and the views with
the results listed as “Ours”, “Ours(256)”, “Ours(Maxpdol) colors, respectively, where the classification of 3D shapes
“Ours(Meanpool)” and “Ours(No recursive)”. obtained by voting across sequential views are correspond-

As the results shown as “Ours”, 3D2SeqViews achieves thgly listed as “VGG(Voting)” and “VGG1(Voting)”. Because

best results under ModelNet10, where average class agcurat the highly unbalanced number of shapes in each shape
and average instance accuracy achieve u@4®8% and class, we only present our best results in terms of average
94.71%, respectively. Considering that the shapes for trainimgass accuracy, as listed as “Ours” and “Oursl” which are
in ModelNet10 are less than the ones in ModelNet40, we toptained by learning from low-level view features employed
to explore whether the performance of 3D2SeqViews couild “VGG(ShapeNetCore55)” and “VGG1(ShapeNetCore55)”,
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respectively. The comparison between these results implie TABLE VIII

that the Color |S Sllghtly helpful to Increase the performn LOW-LEVEL VIEW FEATURE EXTRACTION NETWORK COMPARISON UNDER
. . . MODELNET40,K=512, = 0.000004.

of 3D2SeqViews in terms of average class accuracy, i.an fro c

74.07% to 76.12%. Based on the consideration that there Methods Modality | Views | Class(%)]| Instance(%)
are more 3D shapes in ShapeNetCore55 than the ones |in VGG19 Image 1 - 89.47
ModeINet40, we also try to explore whether the performance Vgu(rasl(%,(g(é'{‘g)) :mgg: 2 evar o
of 3D2SeqViews could be improved by increasing the numbefr VGG16 Image 1 . 89.34
K of row-wise convolution kernels, i.e., from 512 to 1024, as| VGG16(Voting) Image 12 90.01 92.30
the results of “Ours(1024)” and “Ours1(1024)". Howevee th O“F:z(s\ﬁgém :mggz 112 91.10 gggg
results of “Ours(1024)” or “Ours1(1024)” are comparable t0| Resnet50(Voting) | Image 12 89.44 92.10
“Ours” or “Oursl”, respectively, which implies that the 512 | Ours(Resnet50) | Image 12 90.38 93.35
row-wise convolution kernelsi = 512) are sufficiently good Resﬁ:tsl%elt(leolﬁng) :mgg: 5 | o060 e
to learn from shapes under the scale of ShapeNetCore55. | ouyrs(Resnet101)| Image 12 91.40 93.40

B. Ablation studies the spatial relationship among the views. On the other hand,

In this subsection, we conduct ablation studies to demadmerarchical attention aggregation can simultaneousltyrexg
strate the contribution of elements involved in 3D2Seq\dewgate the content information within all sequential viewsl an
First, we explore how much the performance of 3D2SeqViewlse sequential spatiality among the views, where recursive
relies on the VGG19 for low-level view feature extractiowiew integration effectively weights view-level attermiovith
under ModelNet40. Then, we highlight the advantage of opreserving the sequential spatiality.
hierarchical attention aggregation over widely used papli

under ModelNet40 and ModelNet10. Finally, we highlight the TABLE IX
effect of recursive view integration under ModelNet40 andcOMPARISON BETWEEN HIERARCHICAL ATTENTION AGGREGATION AND
ModelNet10 POOLING FOR VIEW AGGREGATION UNDERVIODELNET40AND
) MODELNET10,K=512,e = 0.000004.
To explore the effect of VGG19, we replace VGG19
by several other state-of-the-art neural networks for ienag ModelNet40 ModeINet10
At ; ; Methods Class(%) | Instance(%)| Class(%) | Instance(%)
classification, mcludlng. VGGl_6 _[28], Resnet50 [40], an e e e e 4 L
Resnet101 [40] respectlvely. Similar tO the VGGlg, we f!nf?- Ours(Maxpool) 90.20 92.59 94.41 94.49
tune these networks using the same single view in our trgininOurs(Meanpool)|  90.77 92.99 94.53 94.60

set, and then, use these fine-tuned networks to extract low-

level view features. As shown in Table VIII, we see that Furthermore, we highlight the effect of recursive view
these low-level view feature extraction networks perform #$itegration by replacing it with linear weighting. In other
lightly different. However, 3D2SeqViews can always ackiewvords, the sequential spatiality is disregarded by diyectl
the state-of-the-art results using the low-level view tiees multiplying view-level attentiona,,,,, with each feature
extracted by all these different networks. This observationap in H*. As shown in Table X, compared to our best
shows that 3D2SeqViews does not rely on a particularf@sults under ModelNet40 in Table V and ModelNet10 in
fine-tuned network for low-level view feature extractiom. | Table VI, the results listed as “Ours(No recursive)” degate
addition, we also show the results obtained by voting ttgdightly, which is caused by the lack of encoding the segaént
single view classification from each of these networksetist spatiality among the views. However, “Ours(No recursive)”
as “*(Voting)”. Our outperforming results over voting indites  are still at the state-of-the-art level with the help of vitavel
that 3D2SeqViews can improve the discriminability of lezdn attention and class-level attention.

features by aggregating more information from multiplenge

Moreover, by hierarchical attention aggregation, thedssin TABLE X

current view aggregation are resolved. T T O o NI SRATION UNDEMODELNET40
Then, we highlight the effect of hierarchical attention ag- ' ' ’ '

gregation by replacing it with the widely used pooling in ModelNet40 ModelNet10

view aggregation. In this experiment, we compare our best Mgtl:‘&ds 051355(1%) '”Sg"‘s”zg(%) Cg‘:z(;@ '”Sga”;i(%)

results under ModelNet40 in Table V and ModelNet10 inours(No recursive) 90.61 9311 04.31 04.49

Table VI with the ones obtained using max pooling and mean
pooling, respectively. Specifically|? is pooled by max or
mean calculation across the content information withirsell
guential views that is encoded in each feature map. As shofvn
in Table IX, our proposed hierarchical attention aggremati In this subsection, the view-level attention and clasgllev
outperforms “Ours(Maxpool)” and “Ours(Meanpool)” in tesm attention learned by 3D2SeqViews under ModelNet40 are vi-
of both average instance accuracy and average class agcumgalized, which demonstrates how 3D2SeqViews understands
This is because max pooling or mean pooling loses a lot 8D shapes by analysing sequential views. In Fig. 4, view-
content information within sequential views, and disregar level attentiono’ on sequential views im* from all shape

7
norm

Attention visualization
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classes is visualized as a matrix, such as the matrices of aBoth training and testing sets are provided in ModelNet40
airplane in Fig. 4 (a) and two different bookshelves in Fig. &nd ModelNet10. Thus, to comprehensively evaluate the per-
(b) and (c), wherex! ... is transposed for better demonstraformance of 3D2SeqViews in shape retrieval, four experisien
tion. The (j, ¢)-th entry of the matrix represents the attentioare conducted under each benchmark. The four experiments
paid on thej-th view by thec-th shape class. 3D2SeqViewsare named as “Test-Test”, “Test-Train”, “Train-Train”, can
learns the view-level attention matrices of two booksh&lv&All-All”, indicating retrieval range formed by the setsahthe

with similar patterns which are much different from the onquery and the retrieved shapes come from, respectively. For
of airplane. In addition, class-level attentigt employed by example, “Test-Train” indicates that the shapes in therngst
3D2SeqViews is also visualized on top of each view-levekt are used as query to retrieve shapes from the training set
attention, where each circle indicates the attention paidazch

shape class by 3D2SeqViews. As shown in Fig. 4 (a), (b) and TABLE XI
(c), class-level attention could provide valuable infotioa to RETRIEVAL COMPARISON(MAP) UNDER MODELNET, K=512,
3D2SeqViews for the learning of highly discriminative gédb & = 0.000004.
features via employing the discriminative ability learrgdthe Vethods Range ModelNet20 | ModelNetio
fine-tuned network. Moreover, view-level attention andssta SHD Test-Test 33.26 44.05
: ; LFD Test-Test 40.91 49.82
level atte_ntlon en_able 3D2SeqViews to_ effectlv_el)_/ co_mhnme_ 3DShapeNets [16] | Test Test 493 6826
content information and the sequential spatiality in a view Geometry image [23] Test-Test 51.30 74.90
sequence with the discriminability of fine-tuned network by DeepPano [7] Test-Test 76.81 84.18
hierarchical ntion r ion. su-MVCNN [4] Test-Test 79.50 -
erarchical attention aggregatio PANORAMA [22] Test-Test 83.45 87.39
‘ GIFT [6] Random 81.94 91.12
Clasetovel ‘ ‘ ‘ ‘ ‘ ‘ ‘ M Triplet-Center [41] Test-Test 88.0 -
m(tcmmn 05 7 Ours Test-Test 90.76 92.12
Ours Test-Train 93.51 95.26
Ours Train-Train 98.76 99.82
Ours All-All 96.98 98.48

In Table XI, the comparison between 3D2SeqViews and the
state-of-the-art methods is shown in terms of mAP, where the
retrieval ranges are also presented. As shown by bold nianber

Class-level the proposed 3D2SeqViews completely outperforms the other
T | eelesocses®ets ,,,,,,,,.,.,,,,,,,,I,,l *s compared methods in any range. Specially, in the “Test-
Test” and “All-All", it achieves 90.76% and 96.98% under
ModelNet40, while achieving2.12% and98.48% under Mod-
elNet10. Comparing with GIFT [6] under ModelNet10 (best
performing among the state-of-the-art methods), 3D2Sag¥i
only achieves a higher mAP abouts, i.e., from 91.12%

to 92.12%. However, the dataset used by GIFT is formed
by randomly selecting 100 shapes from each shape class,
which is much simpler than the whole benchmark that we
2 used. Moreover, the corresponding PR curves of our results
obtained under ModelNet40 and ModelNetl0 are shown in
Fig. 5 (a) and (b), respectively, where the PR curves of the
results illustrate an excellent performance of 3D2Seq¥iew

0.4

1

Class-level |
attention

0

(c)

Fig. 4. The attention weights learned by 3D2SeqViews for anglane and
two bookshelves from ModelNet40, including view-leveleation (demon-
strated in a matrix) and class-level attention (demoresdram a vector), as
shown in (a), (b) and (c), respectively.

= SHD
0.6/===LFD
Fisher vector
).5| === 3D ShapeNets
| ===DeepPano

= SHD
5| m—LFD

3D ShapeNets

Precision
Precision

0. Panorama 04 === DeepPano
03 m—MVCNN 03 === Panorama
7| m—GIFT GIFT
0.2] = OUR-Test2test 02| = OUR-Test2test
. OUR-Test2train —— OUR-Test2train
D. Shape retrieval 0.1) == OUR-Train2train 0.1| === OUR-Train2train
o/ ——OUR-AlI2all ol OUR-AlI2all
- : - 1 02 03 04 05 06 07 08 09 1 02 03 04 05 7 08 0.
The performance of 3D2SeqViews is also evaluated using® *' * ° MR%C;“U( TSI L0 002 0l “R(%Ba)u“ oo 0t
a

the learned global features for shape retrieval under Model
Net40, ModelNet10 and ShapeNetCores5, respectively. Un%. 5. The comparison between precision and recall curdaired by
ModelNet40 and ModelNet10, our shape retrieval results afierent methods under (a) ModelNet40 and (b) ModelNet10.
respectively produced with the global features learnedhiey t

trained 3D2SeqViews named as “Ours” in the correspondingUnder the three subsets of ShapeNetCore55, i.e., train-
Table V, Table VI. ing set, validation set and testing set, the performance of
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3D2SeqViews in shape retrieval is compared with other stathis inspiration, how to learn global features by aggrewsti
of-the-art methods in terms of different metrics. Sincadhie unordered views is still eager to be resolved, which would be
no comparison results under training set and validatiorirsetour next research topic in the future.

[42], the results of state-of-the-art methods under tgstiet

are from the SHREC2017 retrieval contest [42], while thesone REFERENCES

under training set and validation set are from the SHREC2016; 7 yan, z. Liu, J. Han, C.-M. Vong, S. Bu, and X. Li, “Unsupised
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h der ShapeNetCore55 | and 5331-5344, 2016,
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