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ABSTRACT

We describe a user assisted technique for 3D stereo conversion
from 2D images. Our approach exploits the geometric structure of
perspective images including vanishing points. We allow a user
to indicate lines, planes, and vanishing points in the input im-
age, and directly employ these as constraints in an image warp-
ing framework to produce a stereo pair. By sidestepping explicit
construction of a depth map, our approach is applicable to more
general scenes and avoids potential artifacts of depth-image-based
rendering. Our method is most suitable for scenes with large scale
structures such as buildings.

Index Terms — Stereo image processing

1. INTRODUCTION

The conversion of conventional 2D imagery to 3D stereo is one of
the main strategies for 3D content production, besides capturing
using stereo or multiview camera rigs. Even with modern soft-
ware tools, however, the 2D to 3D stereo conversion process still
requires significant effort by specifically trained users. Although
there exist automatic algorithms, they fail to produce high-quality
results consistently. In this paper, we describe a technique for user
assisted 2D to 3D stereo conversion that exploits geometric struc-
ture of perspective images including vanishing points. We build on
an image warping framework and exploit constraints derived from
the perspective geometry of the input to obtain a stereo image pair.
In our approach a user specifies line and plane constraints, and in-
dicates lines that intersect at vanishing points. Instead of explicitly
constructing a depth map, we warp the input image according to
the user constraints to produce a stereo pair. Our approach is most
suitable for scenes with large scale geometric structures such as
buildings. It provides flexible user control and requires little user
effort to produce visually convincing results.

2. RELATED WORK

The 2D to stereo 3D conversion process [1] has gained significant
attention recently because of the resurgence of stereo display in
movie theaters and home TVs. The standard industry workflow
for high-quality conversion involves labor intensive manual pro-
cessing including segmentation (or rotoscoping) and depth map
creation [2]. Our work is related to previous academic research
that strives to reduce user effort, while still providing enough flex-
ibility to obtain convincing results. We restrict our discussion to
the most relevant previous work on user assisted stereo conver-
sion. We refer to overview articles [3] for broader coverage. Har-
mann et al. [4] describe an early system that combines automatic
depth map computation using a machine learning algorithm with
user input. Several authors [5, 6, 7, 8] have proposed scribble-
based interfaces that allow users to indicate the desired depth at

sparse locations in video sequences. An automatic procedure then
extrapolates the sparse user input to define dense per-pixel depth,
and stereo views are created using depth-image-based rendering.
Wang et al. [9] propose a similar scribble-based user interface, but
they develop a discontinuous warping technique that can create
sharp depth discontinuities at object boundaries. The “depth di-
rector” system by Ward et al. [10] is based on segmentation more
similar to the standard industry workflow, but it includes a variety
of computer vision techniques such as automatic oversegmenta-
tion, optical flow, and structure from motion, to support user in-
teraction. A disadvantage of scribble-based systems is that they
are less suitable to generate depth maps for large scale geometric
structures such as buildings, since the consistency of user scrib-
bles with the underlying geometry is not guaranteed.

Our approach exploits the geometric structure of perspective
images including vanishing points, inspired by the seminal work
by Horry et al. introducing the “tour into the picture” [11]. In
contrast to this work, however, we do not explicitly construct 3D
geometry, which allows us to work with more general scenes. In-
stead, we exploit line, plane, and vanishing points indicated by
the user directly as constraints for image warping to produce a
stereo pair. Our warping algorithm builds on the work by Car-
roll et al. [12], which we extend with constraints specifically for
stereo conversion. Since we sidestep explicit depth image cre-
ation, we also avoid potential artifacts commonly associated with
depth-image-based rendering.

3. OVERVIEW

We show an overview of our method in Figure 1. Given a source
image, our main idea is to construct the left and right view of
a stereo pair using constrained image warping. A user specifies
various constraints such as straight line constraints (yellow in Fig-
ure 1), which preserve linearity in the warped image, and planar
region constraints (blue), which locally restrict the image warp to
a homography. The user can also select sets of lines that converge
in vanishing points (dotted red lines). Finally, he can place target
disparity constraints at individual locations in the source image
(pink). In addition to the user inputs, our system automatically
enforces additional constraints specific to stereo conversion: we
restrict the image warp to generate horizontal disparities, we set
the target disparity of vanishing points to zero (since they are at
infinity), and we enforce that the disparity along line constraints
varies linearly. We feed these constraints into an optimization-
based image warping algorithm to map the input view, which is
used as the left view, to the right view. Figure 1 shows the line and
plane constraints provided by the user after warping in the middle,
and the final stereo output on the right. We next provide details of
the image warping algorithm, and then discuss results.
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Figure 1. Overview of our method: We show the source image with the user provided input consisting of line (yellow) and plane constraints (blue),
vanishing points (intersections of dotted red lines), and disparity constraints (pink dots) on the left. The middle shows the line and plane constraints in the
left and right view after warping (red-cyan anaglyph encoded), and the output stereo pair (anaglyph) is shown on the right.

4. CONSTRAINED IMAGE WARPING

Our constrained image warping algorithm is based on an energy
minimization framework following the work by Carroll et al. [12].
We next describe our user interface, the mathematical formula-
tion of the warping problem, and finally the energy minimization
solver.

4.1. User interface

The user interface allows a user to define constraints that describe
the geometric structure of the scene. The image warper then em-
ploys the constraints to obtain the novel views of the scenes re-
quired for stereo output. The user may indicate the following con-
straints:

Planar Regions. Regions indicated as planar will be warped
locally using a homography.

Straight Lines. The user can specify straight lines, which
will be preserved as straight during the warp. Further it is possible
to mark subsegments of line constraints as inactive. This is useful
if a constrained line is partially occluded by other objects.

Vanishing Points. The user can indicate lines and edges of
planar regions that are parallel in 3D. These lines define a vanish-
ing point in the image plane. Vanishing points are fixed during
image warping, since they correspond to points at infinity in 3D,
and the projection of points at infinity do not change under a trans-
lation of the camera parallel to the image plane.

Line Orientation. Lines and edges of planar regions can be
restricted to become vertical or horizontal after the warp.

Disparities. The user can fix a desired output disparity at any
point on the image. Often it is necessary to define the disparity
at only two or a few more locations. We allow users to indicate
relative disparities between the fixed locations, which provides the
ability to scale the disparities easily later.

4.2. Mathematical Formulation

We define our warp using a rectangular mesh consisting of quad
faces, which is overlaid on the input image. Given the warped lo-
cations of the four vertices of a quad, we warp the interior of the
quad using bilinear interpolation. To compute the left and right
view of the desired stereo output, we formulate an energy mini-
mization problem that determines two deformed meshes ul(xi,j)
and ur(xi,j) that best fulfill a set of constraints. Here, l and r
denote the left and right view, respectively, i and j are vertex in-
dices, xi,j are locations of undeformed mesh vertices on the input
image, and u∗(xi,j), with ∗ ∈ {l, r}, are the warped locations of

the vertices in the left and right output views, respectively. We also
denote input coordinates by x = (x, y) and output coordinates in
the left and right view by u∗ = (u∗, v∗), ∗ ∈ {l, r}. Next we
briefly discuss the energy terms for our constraints. In addition to
the user provided constraints introduced in Section 4.1, we impose
further constraints to ensure the output is a valid stereo pair.

Avoiding Vertical Disparities. We avoid vertical disparities
by penalizing differences between the v coordinates in the left and
right output views, which leads to an energy term summing up
over all mesh vertices,

Ea =
∑
i,j

(vli,j − vri,j)
2. (1)

User Provided Disparities. Each user specified disparity con-
straint is given by a location xd = (xd, yd) and a target relative
disparity ∆, where d denotes the disparity constraint. Each dis-
parity constraint corresponds to a target location ul,d = (xd +
f∆, yd) in the left, and ur,d = (xd − f∆, yd) in the right view,
where f is a user specified global disparity scaling factor. Hence
the energy term for each disparity constraint is

Ed =
∣∣∣ul(xd)− ul,d

∣∣∣2 +
∣∣∣ur(xd)− ur,d

∣∣∣2 . (2)

We also introduce a disparity constraint for each vanishing point,
where the target disparity simply is ∆ = 0, that is, vanishing
points remain fixed.

Note that the constrained location xd is unlikely to coincide
with a grid vertex. Hence we express the location as a linear
combination of its surrounding quad vertices, where we compute
weights (a, b, c, d) according to Heckbert’s inverse bilinear map-
ping [13], similar as proposed by Carroll et al. [12]. The cor-
responding output location is expressed using the same weights,
that is, u∗(x) = au∗i,j + bu∗i+1,j + cu∗i+1,j+1 + du∗i,j+1.

Ratios from Vanishing Points. While line constraints pre-
serve straightness of lines, they do not penalize deformations along
the line direction. We exploit the additional information provided
by vanishing points to avoid such undesired deformations. As-
sume we have two points x1 = (x1, y1),x2 = (x2, y2) on a
line with vanishing point x∞ = (x∞, y∞), as shown in Fig-
ure 2. Let us consider the ratios |x1 − x∞|/|x2 − x∞| = cx,
and |y1 − y∞|/|y2 − y∞| = cy . Because after the warp the line
given by x1 and x2 still goes through the same vanishing point
u∞ = x∞, and with the intercept theorem, we can see that the
ratios cx and cy stay constant during the warp. In our case the
vanishing point never lies between x1 and x2, hence we can omit
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Figure 2. The ratios of points on a line from a vanishing point stay constant
during the warp.

the norm. Reordering terms gives x1 − cxx2 = (1− cx)x∞, and
similarly for the y-coordinate. This leads to the energy

Er =
∑
k

(
u(xk)− cxu(x0)

1− cx
− u∞

)2

+

(
v(xk)− cyv(x0)

1− cy
− v∞

)2

, (3)

where xk, k ≥ 0 are locations sampled along the line. To sample
the line regularly, we split it into intervals obtained by intersect-
ing it with the mesh, and we use the middle point of each interval.
We express these locations using bilinear interpolation from mesh
vertices as above. Note that these constraints may seem redun-
dant with the constraint to avoid vertical disparities. With lines
that are nearly horizontal, however, even small vertical disparities
can lead to significant undesired deformations. We found the ra-
tio constraint to be necessary to avoid these in practice. Finally,
observe that we divide the energy by (1− cx) and (1− cy). This
scales the error to pixel units and makes it comparable to all the
other energy terms, which measure the error in pixels, too.

Additional Constraints. We implemented the remaining user
constraints described in Section 4.1 similarly as proposed in the
work by Caroll et al. [12], which we refer to for a more detailed
description. We use an energy term Eh to constrain the warp to a
homography in planar regions. If two planar regions have a com-
mon edge, it is necessary to constrain the homographies, which
gives rise to an additional term Ehc. The straight line constraint
yields an energy term El. This energy may also constrain the line
orientation, if desired. Next there is an energy Ev that keeps lines
pointing to vanishing points. Finally, there are two regularization
energies. The conformal energy Ec keeps the mesh rectangular,
and a smoothness term Es prevents abrupt changes from one mesh
cell to the next.

4.3. Optimization

The total energy E our algorithm minimizes is a weighted sum of
all the energies from the previous subsection,

E =w2
aEa + w2

d

∑
Ed + w2

r

∑
Er

+ w2
h

∑
Eh + w2

hc

∑
Ehc + w2

l

∑
El

+ w2
v

∑
Ev + w2

cEc + w2
sEs,

(4)

where the summations are over the number of the respective types
of constraints. We also multiply each type of energy with a weight
factor. The disparity constraints are the most important. Further,
they act on only one grid cell, where all other constraints affect
larger parts of the mesh. So we weight this energy highest. The
other user constraints are more important than the regularization
terms, since the later are not meant to be hard constraints. Hence
we also weight them more heavily. Although we normalize the

Figure 3. The top left image shows the input including the user given con-
straints. Next to it we show the geometry and a subsample of the warped
meshes, and at the bottom the gray scale output encoded in anaglyph.

energy of the ratio constraint in (Equation 3), this energy is often
about ten times larger than the others. We balance this by giving
ten times less weight to it. Besides, we found the best weights by
experimenting and with regard to [12]. We produced all results
shown in this paper with weights wd = 1000, wh = whc = 200,
wl = wv = 100, and wr = 10 for the user given constraints, and
wa = 20, ws = 12, and wc = l for the others.

The total energy we minimize is a least-squares problem. Be-
cause of the homography and line constraints, however, it is non-
linear. We implemented a simple iterative Gauss-Newton method
to solve for the minimum. We stop the minimization as soon as
the total error becomes smaller than 10−5. Keep in mind that
we measure the energy in pixel units. In the vast majority of our
experiments we reached the stopping condition after at most ten
iteration steps.

5. RESULTS

We show all results in gray scale because they are more suit-
able for anaglyph glasses than color images. Images that need
few constraints, as in Figure 3, take only a couple of minutes of
user interaction. For more complex scenes indicating appropriate
constraints may require trial and error, and our algorithm is fast
enough to enable an iterative workflow. While it may be chal-
lenging for the user to set geometrically plausible disparities, our
system allows a user to handle even complex scenes by specifying
only a small number of disparity constraints as shown in Figure 4.
In Figures 3 and 4 we also shift the produced images horizontally
towards each other by ∆/2 after warping. Hence we can adjust
the zero disparity plane such that the scene appears partially in
front and behind the screen.



Figure 4. These images need many user constraints. In each we constrain five lines to be vertical (black dots). We prescribe disparities only at one
(bottom) respectively two (top) points. On the bridge in the top image we use the ability to mark lines as partially hidden. This constraint guarantees that
the disparity is correct along the whole bridge.

6. LIMITATIONS

Our algorithm is able to produce 3D images from a variety of sin-
gle input images only with limited user input. In images show-
ing many objects with round or organic shapes, however, it may
be difficult to indicate the required constraints, because we rely
on planes, straight lines and vanishing points. The downside of
the cell-wise image warp is that it is not possible to create depth
discontinuities. It is also not possible to have objects of differ-
ent depths in one and the same cell. This can be seen in Fig-
ure 4, where the umbrellas are warped together with the building
and therefore appear at the same depth. In the future, we plan to
combine our approach with scribble and segmentation based tech-
niques to handle such cases.
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