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Figure 1: We minimize MSE in Monte Carlo rendering by adaptive sampling and reconstruction in image space. We iterate over two steps:
given current samples, optimize over a set of filters at each pixel to minimize MSE; then, given a filter at each pixel, distribute more samples
to further reduce MSE. Left: initialization with 4 samples per pixel. Insets: each column is one iteration (top to bottom): filter selection
(smooth filters shaded white, sharp ones black), sample density map, reconstruction. Right: result at an average of 32 samples per pixel. This
image features single scattering participating media, indirect illumination using photon mapping, depth of field, and area lighting.

Abstract

We introduce a novel approach for image space adaptive sampling
and reconstruction in Monte Carlo rendering. We greedily mini-
mize relative mean squared error (MSE) by iterating over two steps.
First, given a current sample distribution, we optimize over a dis-
crete set of filters at each pixel and select the filter that minimizes
the pixel error. Next, given the current filter selection, we distribute
additional samples to further reduce MSE. The success of our ap-
proach hinges on a robust technique to select suitable per pixel fil-
ters. We develop a novel filter selection procedure that robustly
solves this problem even with noisy input data. We evaluate our ap-
proach using effects such as motion blur, depth of field, interreflec-
tions, etc. We provide a comparison to a state-of-the-art algorithm
based on wavelet shrinkage and show that we achieve significant
improvements in numerical error and visual image quality. Our ap-
proach is simple to implement, requires a single user parameter, and
is compatible with standard Monte Carlo rendering.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: adaptive sampling and reconstruction

1 Introduction

Monte Carlo techniques compute pixel colors by (quasi-)randomly
sampling an integration domain that covers all light paths trans-
porting light from a source to the camera. The integration domain
may include effects such as depth of field, motion blur, and light
paths with multiple interreflections. Unless one computes an exces-
sive number of samples, this often leads to high pixel variance and
the typical noise artifacts in Monte Carlo rendering. There are two
main strategies to address this. The first is to distribute samples in
an optimal fashion, with respect to the problem at hand. The second
is to smooth out noise by applying suitable filters. Both strategies
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can be applied in the high dimensional space of light paths or in
the image plane. We focus on strategies that operate in the image
plane.

We formulate the problem as follows: given a certain budget of
Monte Carlo samples, obtain an image that minimizes the relative
mean squared error (MSE) by distributing samples in a suitable
fashion in the image plane and by filtering the image with appro-
priate filters. We can interpret this as an optimization problem over
the space of sample distributions and image filters. Our core idea is
to make the problem tractable by restricting the space of filters to a
discrete set of predetermined filters per pixel. Each pixel may have
a different set of filters, but the set is predefined and not itself part
of the optimization. We use a simple greedy strategy to obtain an
approximate solution to the MSE minimization problem. Starting
from an initial set of samples, we iterate over two steps. First, for
each pixel we select the filter from its discrete set that minimizes the
pixel MSE given the current samples. Second, given the currently
chosen pixel filters, we distribute a new batch of samples that try to
further reduce MSE as much as possible. This process is repeated
until a termination criterion is fulfilled.

To minimize pixel MSE we express it as the sum of the squared
bias, i.e., expected error, and variance. We define the set of filters
at each pixel such that it provides a trade-off between reducing bias
and increasing variance. Then we attempt to minimize pixel MSE
by selecting the filter that offers an optimal compromise. The main
challenge in practice is that we only have access to noisy data to es-
timate bias and variance. Therefore, an important component of our
algorithm is a robust method to solve this filter selection problem.

We demonstrate and evaluate our framework using Gaussian fil-
ters at different scales as the smoothing filters. We describe sim-
ple but effective methods to select filter scales at each pixel and
to distribute samples in each iteration, always attempting to min-
imize pixel MSE. We evaluate the performance of our approach
and its robustness to noise by comparing it to images rendered us-
ing ground truth statistics, i.e., bias, variance, and MSE values. We
show that our method to minimize MSE based on noisy data comes
reasonably close to the reference, and provides a significant im-
provement over state-of-the-art adaptive sampling and reconstruc-
tion algorithms. Our method is consistent in that it converges to



To appear in ACM TOG 30(6).

noise and bias free images as the number of samples increases. Bias
is only guaranteed to vanish in the limit, however, as the number of
samples goes to infinity. Our framework is orthogonal to Monte
Carlo ray tracing on a pixel-by-pixel basis, and we implemented it
on top of the PBRT renderer.

In summary, we make the following contributions:

e We present a framework for adaptive sampling and recon-
struction based on minimizing per pixel MSE. In a greedy
error minimization procedure, we iterate over two steps: se-
lecting pixel filters from a set of smoothing filters to mini-
mize pixel MSE, and distributing new samples in an attempt
to maximally reduce MSE in each iteration.

We describe an implementation of our framework with Gaus-
sian smoothing filters at different scales. This includes robust
methods to select filter scales and estimate MSE, and a strat-
egy to distribute samples in each iteration.

We evaluate our implementation by comparing it to results
obtained using ground truth statistics. We show that in many
cases, our approach comes reasonably close to ground truth.
Despite its simplicity, it provides significant improvements
over the state-of-the-art in adaptive sampling and reconstruc-
tion.

2 Previous Work

We discuss related work in the areas of adaptive sampling and re-
construction and image denoising. We do not discuss advanced
Monte Carlo sampling techniques such as importance sampling and
its extensions, since these are orthogonal to our approach.

Image Space Adaptive Sampling and Reconstruction. Our
framework belongs to the class of image space adaptive sampling
and reconstruction methods. The basic idea of these techniques
is to estimate some per pixel error criterion and adaptively dis-
tribute more samples in pixels with large errors. The pioneer-
ing approach by Mitchell [1987] is often used as a reference to
compare such techniques. Bala et al. [2003] describe a sophisti-
cated approach that is targeted at interactive rendering. By explic-
itly representing edges, they obtain high quality image reconstruc-
tion. If edge detection fails, however, artifacts may occur. Our
approach for filter selection is similar to wavelet-based methods.
Bolin and Meyer [1998] use Haar wavelets and develop a percep-
tual error metric for adaptive sampling. We currently use relative
mean squared error, and it would be interesting to include a more
perceptually based measure in future work, similarly to Farrugia
and Péroche [2004]. Adaptive wavelet rendering (AWR) by Over-
beck et al. [2009], which we consider the current state-of-the-art
for screen space algorithms, is probably most closely related to our
technique. Similar to our approach, their technique is based on it-
eratively smoothing (or denoising) the image and distributing new
samples. Their technique specifically uses wavelets, where smooth-
ing is performed by soft thresholding the wavelet coefficients. Our
framework is more general in that it is not restricted to wavelets.
We explicitly attempt to minimize MSE, while their approach is
based on a heuristic to distribute new samples. We provide a de-
tailed comparison to adaptive wavelet rendering and show that our
algorithm consistently leads to lower numerical errors and visually
higher quality images. Recently, Chen et al. [2011] proposed adap-
tive sampling and reconstruction for depth of field effects. They
attempt to select an optimal filter from a filterbank on a per pixel ba-
sis similarly to our approach. In addition, they combine depth maps
with sample variance maps to guide sampling and reconstruction.

In contrast, our method needs no information other than sample
values and variances and is not limited to depth of field.

Multidimensional Adaptive Sampling and Reconstruction. A
logical extension of image space methods is to perform adaptive
sampling and reconstruction directly in the high dimensional space
of light paths. A general solution to this problem has been pro-
posed by Hachisuka et al. [2008], where samples are adaptively
distributed in the multidimensional space, and the high dimensional
signal is reconstructed using anisotropic interpolation. Overbeck et
al. [2009] point out that this strategy becomes ineffective for higher
dimensions because of the curse of dimensionality. Nonetheless,
the approach can be highly successful if restricted to specific ef-
fects such as depth of field, motion blur, or soft shadows, where
problem specific information is available to guide sampling and re-
construction. In particular, a number of algorithms are based on
a frequency analysis of the sheared light field structure generated
by these effects. Soler et al. [2009] propose a multidimensional
sampling scheme with an appropriate reconstruction filterbank tai-
lored to depth of field. Egan et al. [2009] propose an adaptive
scheme with sheared reconstruction filters for motion blur, and a
similar scheme for shadow light fields [Egan et al. 2011]. Lehtinen
et al. [2011] also exploit the sheared light field structure to render
combinations of motion blur, depth of field and soft shadows, al-
though their approach does not rely on frequency analysis. In con-
trast to these methods, our approach is not restricted to motion blur,
depth of field, or soft shadow effects.

Adaptive Filtering. A variety of algorithms attempt to adaptively
smooth images suffering from Monte Carlo noise, without cou-
pling the filtering process with adaptive sampling. This strategy
has recently become more popular for interactive rendering, where
performance and visual quality is more important than theoretical
properties such as convergence or bias. A common strategy is to
construct edge preserving smoothing filters by including informa-
tion about the scene geometry, such as normal or depth buffers. For
example, Ritschel et al. [2009] use cross bilateral filtering to smooth
noisy image data while respecting edges. Dammertz et al. [2010]
describe an edge-avoiding a-trous wavelet transform. Shirley et
al. [2011] exploit the depth buffer for adaptive filtering. A com-
mon shortfall of these approaches is that they fail to adapt to image
features, such as caustics, that cannot be inferred from the auxiliary
information that is used. In addition, the objective of these tech-
niques is slightly different from ours, since they prioritize interac-
tive performance. Nonetheless, it would be interesting to extend
our framework to operate on these more sophisticated filters rather
than the Gaussians that we currently use.

Image Denoising. A vast body of work in the image processing
field addresses the problem of image denoising, which is related to
our problem. We restrict the discussion to the most prevalent ap-
proaches and highlight differences to our setting. Wavelet shrink-
age, introduced by Donoho and Johnstone [1994], is particularly
widespread because it rests on a very thorough theoretical founda-
tion. The intuition is simple: decompose a noisy signal using a
wavelet representation, subtract the noise from the wavelet coef-
ficients, and reconstruct the smoothed signal. Since noise yields
small wavelet coefficients and signal yields large coefficients, the
signal is effectively smoothed while retaining its sharp features.
The reconstruction step of the AWR algorithm by Overbeck et al.
actually performs wavelet shrinkage using a conservative estimate
of the noise. Another line of work is based on the idea that if the
probability distribution of the true image in a neighborhood and the
distribution of the noise are known, one can find the most likely true
image value by Bayes estimation. Starting from methods based on
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Gaussian models as proposed by Lee et al. [1980], this approach
has been refined to include non-Gaussian image statistics, operate
in the wavelet domain, and take into account correlation between
wavelet coefficients [Portilla et al. 2003]. However, these sophis-
ticated methods are computationally expensive. In addition, they
usually assume a global noise model, which is not an appropriate
assumption for images produced by Monte Carlo rendering. Our
work is related to the concept of non-parametric bandwidth selec-
tion [Lepski et al. 1997; Goldenshluger and Nemirovski 1997]. The
idea is to spatially adapt a filter bandwidth to local signal properties
such as to minimize the MSE of the filtered signal. The intersection
of confidence interval (ICI) method described by Katkovnik [1999]
inspired our own filter selection approach.

3 Algorithm Overview

Ideally, we would like to solve the following problem: given a cer-
tain budget of Monte Carlo samples, obtain an image that mini-
mizes the MSE by distributing samples in a suitable fashion in the
image plane and by filtering the image with appropriate filters. This
problem is probably intractable in general, because the space of po-
tential image filters is too large. A core idea is to make the problem
more manageable by restricting the potential filters to a discrete set
of predetermined filters per pixel. Each pixel may have a differ-
ent set of filters, but the set is predefined and not itself part of the
optimization.

Our framework uses a simple greedy strategy to solve the MSE
minimization problem, as illustrated in Figure 2. Starting from an
initial set of samples, we iterate over two steps. First, for each pixel
we select the filter from its discrete set that minimizes the pixel
MSE given the current samples. Second, given the currently cho-
sen pixel filters, we distribute a new batch of samples that tries to
further reduce MSE as much as possible under the current selec-
tion of filters. This process is repeated until a termination criterion
is met, for example, a given sample budget is reached.

In the following we describe an implementation of this framework
that uses the same set of filters for each pixel. In addition, the fil-
ters compute a linear function of their input, and they are related
by a uniform scale. The smallest scale corresponds to the usual,
unbiased pixel filter that is used in standard rendering. Selecting
appropriate filters from this set allows us to minimize pixel MSE
by making an optimal trade-off between bias and noise. Filters at
smaller scales have little bias but much noise, and vice-versa for
larger scales. We next describe the two steps of our approach in
detail, i.e., filter selection (Section 4) and sample distribution (Sec-
tion 5).

4 Filter Selection

In this section we describe how, at each pixel of a noisy image, we
select a filter from our predefined set that attempts to minimize the
pixel MSE, that is, the sum of the squared bias and the variance. In
Section 4.1 we formulate an incremental MSE minimization strat-
egy that avoids explicit bias estimation. We then describe in Sec-
tion 4.2 how we implement this strategy under the assumption that
the true image is locally a quadratic function. In Section 4.3 we
analyze the behavior of the resulting filter selector under noisy in-
put, and finally we describe a post-processing approach to greatly
reduce erroneous filter choices in Section 4.4.

4.1 Incremental MSE Minimization

In theory we could estimate bias and variance for each filter directly
to minimize MSE. It is very challenging, however, to guess the true
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Figure 2: Overview of our framework. We iterate over two steps:
filter selection based on the noisy image on the right, and distribu-
tion of new samples to greedily reduce MSE on the left.

bias from noisy input. Hence, we avoid explicit bias estimation.
Directly estimating the variance is less problematic, because it does
not require knowledge of the true pixel value. Considering that the
filters in our set are related by uniform scaling, we can order them
in a fine to coarse, or sharp to smooth, manner according to their
scales. A key observation is that, for most pixels, the filter bias
increases and the variance decreases monotonically as we go from
finer to coarser scales. Assuming monotonicity, we find the filter
with minimum MSE simply by traversing the list of filters from fine
to coarse. At each pixel, for each pair of consecutive fine and coarse
filters f and ¢, we compute the change in MSE, AMSE [f — ¢],
and stop when it is positive. Note that the difference between the
MSE of the fine and coarse scales is

AMSE [f — ¢] = MSE [¢] — MSE [f]
= Bias [¢]® — Bias [f]* 4 Var [¢] — Var [f],

bias term variance term

consisting of a bias and variance term. The crucial benefit of this
approach is that we can well approximate the bias term without
knowledge of the true bias Bias [c] and Bias [f], as we will show
in Section 4.2.

We compare MSE minimization using exhaustive search over the
filters to MSE minimization based on the assumption of mono-
tonicity of bias and variance in Figure 3(a) and (b). We use a
filter set consisting of five scales of Gaussian filters at dyadic in-
tervals. For the sake of this comparison, we computed ground truth
per pixel bias and variance for each filter by empirically gathering
ground truth statistics (of course, in practice ground truth statistics
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(a) Exhaustive (b) Incremental 7

(c) Our approx.

Figure 3: Results of scale selection using (a) minimization of
the MSE using exhaustive search, (b) the incremental approach,
(c) our incremental approach with bias computation using the
quadratic approximation. We used five scales, where white indi-
cates the coarsest and black the finest scale.

are not available; see Section 4.3). We obtain ground truth bias by
rendering a reference image and, for each filter, computing the dif-
ference between the reference and filtered image. We obtain per
pixel variance by rendering a noisy image with a limited number
of 16 samples per pixel many times. We then applied the filters to
each noisy image and computed empirical pixel variance over all
filtered images. In the figure we visualize the selected scales for
both methods and observe that they agree for 99.7% of the pixels.

4.2 Quadratic Approximation

We now show how we can compute the bias term without knowl-
edge of the true pixel value. Let us assume that the true image is a
quadratic function within the support of the coarse and fine filters
f and c at each pixel. In addition, we require the filters to have
vanishing first central moments. We denote the scale of the coarse
and fine filter by 7. and r. It is straightforward to show that in this
case, there is a simple relation between the bias of the filters based
on their relative scales [Silverman 1986],

2
Bias [¢] = :—;Bias [f].
f

Let us denote the true value of the image by £, and, by slight abuse
of terminology, the filtered pixel value using the coarse filter by ¢
and the value using the fine filter by f. Then Bias|[c] = ¢ — &
and Bias [f] = f — £. Using the above relation between Bias [c]
and Bias [f] we get two equations in two unknowns, and we can
eliminate £. After some more algebraic manipulation, we find that
we can express Bias [¢]> — Bias [f]? in terms of ¢ — f as

Bias [6]2 — Bias [f]2 .C - f)2,

where the approximation is exact for quadratic image regions.Using
this approximation, we get the following expression for the change
in MSE,

S — f)?+ Var|[¢] — Var [f]. 1
N————

variance term
approximate bias term

We call this our scale selector S using an approximate bias term. If
the scale selector is positive, we select the fine scale f; otherwise,
we proceed to the next pair of coarser scales.

We compare MSE minimization using our scale selector S to the
two previous methods in Figure 3(c). Similar as above, we use
filtered reference images to evaluate the bias term and empirically

established ground truth pixel variances. For 82.8% of pixels our
method agrees with ground truth scale selection in (a), indicating
that the quadratic approximation is valid for most pixels. Results
for the other scenes of Figure 12 are given in Table 1.

Table 1: Percentage of pixels in agreement with scale selection ob-
tained using exhaustive search, for both the incremental approach
(Inc.) and our approximation (Our) for scenes of Figure 12.

Scene Inc. Our Scene Inc. Our
killeroos 97.7% 92.8%  toasters 98.7% 91.9%
plants-dusk  95.5% 86.0%  yeahright 98.2% 87.8%

4.3 Estimation from Noisy Data

Of course in practice, we do not have access to ground truth data
for the filtered pixel values, ¢ and f, and their variances, Var [c]
and Var [f]. Instead, we need to estimate them from the noisy
data available, i.e., the Monte Carlo samples that we acquired
so far in the iterative procedure. We denote these samples by
si,i = {1...k}. We now express the filtered pixel values and
their variances directly using the Monte Carlo samples. Again, our
equations are for an individual pixel.

A filtered pixel value for, e.g., the fine filter is simply the weighted

average
f= 2. wis,
ie{l...k}
where wif are the filter weights for each sample s;. The expression

for the coarse filter is analogous. The pixel variance is

Var [f] = Z (wlf)QVar [s:], 2)

i€{1...k}

where we use the squared filter weights, because the Monte Carlo
samples are supposed to be uncorrelated. Again, the expression
for Var [c] is analogous. Unfortunately, Var [f] and Var [c] rely on
the variances of the Monte Carlo samples Var [s;], which are not
known. Therefore, for each s; we use the empirical variance over
all samples that are in the same pixel (i.e., square pixel region) as
s;. Let us denote this subset of samples by P. Then

1
BT 2 -9 3)

Jje{P}

Var [s;] =~

where 5 is the mean of the samples in P, and | P| is the number of
samples in the pixel.

‘We have now expressed our scale selector S in Equation 1 directly
using the Monte Carlo samples. Interpreting the Monte Carlo sam-
ples as random variables, S is itself a random variable. This opens
up the possibility to analyze the behavior of S under given assump-
tions about the random samples. Unfortunately, even for normally
distributed s;, its density is highly complex and not easily amenable
to analytical investigation.

Empirical Analysis. We analyze the probability density of the
scale selector S using an empirical experiment. We use indepen-
dent and identically distributed samples s; that sample a constant
1D function with value zero and additive noise, for simplicity. The
1D function consists of one million “pixels”. We use Gaussian fil-
ters for f and c with a fixed relative scale of two. The free input
parameters of our experiment are:
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Figure 4: Histograms of bias, variance, and scale selector S,
which is the convolution of the former two. The horizontal axes
indicate the values of the random variables, and the vertical axes
the relative frequencies of the corresponding values. The parame-
ters are: normally distributed samples with variance 10, number of
samples per pixel | P| = 32, and a filter scale factor r = 1.

e The noise variance of the random samples s;.

e A radius r for the fine filter, which determines the weights w;
and wzf .

e The number of samples per pixel | P| used to estimate empir-
ical sample variance Var [s;].

For this experiment, the ideal decision of the scale selector S is to
always select the coarse scale (i.e., S is negative), since the true bias
for all filters is zero and going to a coarser scale reduces variance.
Because of the noisy s;, however, the scale selector will occasion-
ally make a wrong decision. We call the probability that the selector
is positive and makes a wrong decision the error rate of the selector.
Our goal now is twofold: First, to understand how the error rate is
related to the parameters of the experiment; and second, to derive a
single user specified parameter that directly controls the error rate,
independent of the input parameters.

Before discussing the results of the experiment, we point out that
the bias and variance terms in the scale selector are independent
random variables, because a weighted sum of samples (as in the bias
term) is independent from the empirical variance of the samples (as
in the variance term). Therefore, the probability density of the scale
selector is a convolution of the densities of the bias and the variance
term, and we can study these separately. In Figure 4 we plot the
histograms of the bias and variance terms and the histogram for the
scale selector. The histograms are collected from the one million
1D “pixels” in our experiment. The error rate is simply the area
under the histogram of the scale selector over the positive part of
the horizontal axis, indicated by the area shaded in gray. We now
summarize the observations we made in our experiment by varying
the input parameters.

Sample Variance. The error rate remains constant under differ-
ent variances of the random samples s;. This is because the bias and
variance terms are both proportional to the variance of the samples.
Consequently, the scale selector, which is the sum of the two, is
scaled as well. But scaling a random variable does not change the
probability that it is larger (or smaller) than zero, hence the error
rate remains constant.

Filter Radius. The error rate depends weakly on the filter radius
r. Larger scales lead to slightly lower error rates. We observed that
the bias term is scaled inversely proportional to r. The variance
term, however, is not scaled exactly the same. Instead, the density
of the variance term becomes slightly sharper with larger radii as
illustrated in Figure 5(a). Because the error rate is based on the
convolution of the densities of the bias and variance terms, it will

(a) Varying radii (b) Varying sample count
r={red=1, green=1.4, blue=2} |P|={red=4,green=8,blue=16}
10 1
5 A 0.5
0 0
-15 -1 -05 O -10 -5 0

Figure 5: Histograms for the variance term under varying (a) radii
r and (b) sample count |P|. In (a) we illustrate that the variance
distribution is not inversely proportional to the radii. We scale the
distributions for radii v = 1.4 and r = 2 with factors 1.4 and 2
to match the distribution of r = 1. We depict the result with dot-
ted lines, showing that the variance distribution becomes slightly
sharper for larger filters. In (b) we provide a similar visualiza-
tion for different sample counts |P|. We scale the histograms for
|P| = 4 and |P| = 8 with factors 1/4 and 1/2 to match the his-
togram for | P| = 16. The results (dotted lines) show that the scaled
distributions are less sharp than the true distribution.

be slightly reduced for larger filters due to the sharpening of the
variance term.

Number of Samples per Pixel. The error rate remains largely
constant under different numbers of samples per pixel | P|, except
for low sample counts, where the error rate increases. We observed
that the bias term is again scaled inverse proportionally to | P|. The
variance term is scaled similarly, but for low sample counts the
shape of its density is significantly different as visualized in Fig-
ure 5(b). We have observed that this mismatch leads to significantly
higher error rates for low sample counts.

Intuitive Parameterization. Based on the above observations,
we introduce an intuitive user specified parameter vy that allows
the user to directly indicate the desired error rate for constant in-
puts. This can be achieved easily by weighting (i.e., scaling) the
bias and variance terms relative to each other. We apply a weight
consisting of two factors p and z(7y) to the bias term. The factor
p compensates for low sample counts, while z(y) controls the er-
ror rate. Both are empirically determined. We found that a fac-
tor p = (1 — 1/|P|) works well in practice to compensate for
the effect of low sample counts. Using experimentation, we deter-
mined the factor z(-y) such that the user parameter y approximately
achieves the desired error rate. We manually found an appropriate
mapping to be z(y) = — log(1 — (1.94)*/¥?) valid in the range
v € 0 < 7 < 0.4. Error rates above 0.4 are not interesting in
practice. An alternative would be to tabulate the relation between ~y
and the error rate to provide an intuitive user parameter.

4.4 Post-Processing the Filter Selection

Controlling the error rate is useful to adjust the trade-off between
bias and variance, but any non-zero error rate will produce a given
percentage of wrong filter selection decisions that will be noticeable
as spikes in the reconstructed image. Therefore, we post-process
the filter selections to remove these outliers. We illustrate the pro-
cess in Figure 6, where we filter a 1D signal consisting of two boxes
with uniform noise, evaluated at 250 1D pixels. Each pixel received
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Figure 6: [llustration of outlier removal during post-processing:
(a) noisy input with 8 filter scales, (b) reconstructions (including
average over 200 runs) of our approach and wavelet soft thresh-
olding, (c) binary stopping maps for each pair of scales.

32 samples that we used to estimate empirical pixel variance. Our
filter set consists of Gaussian filters at eight scales related by scal-
ing factors of /2. Figure 6(a) depicts the noisy input signal and the
8 filtered inputs. We show the reconstructed signal in Figure 6(b).

We represent the results of our scale selectors as binary stopping
maps for each pair of scales at each pixel. This is shown as one row
per filter pair in Figure 6(c). A value of 1 (shaded gray) means that
we should stop and use the fine scale, and O (black) indicates that
going to the coarse scale is estimated to reduce MSE. An impor-
tant observation is that outliers appear as isolated clusters of zeros
or ones, where the size of the clusters is related to the size of the
pair of filter scales. Hence, we can remove outliers by additionally
filtering each map (row), where we choose the size of the outlier
removal filter according to the size of the pair of scales. In practice
we obtained good results with Gaussian filters of the same size as
the coarse scale. Then we round the filtered map back to binary.
In practice, we ignore the center pixel of the outlier filter, because
this dominates the result too much for small outlier removal fil-
ters. A more thorough investigation to determine optimal outlier
removal filters is an interesting topic for future research. The final
filter selection at each pixel is the finest scale with value 1 (gray in
the figure). This process works well in practice because the scale
selector guarantees a low outlier rate.

Figure 6 also includes a comparison to soft wavelet thresholding
using Daubechies wavelets as used by Overbeck et al. [2009]. For
both methods we show the reconstruction of the noisy signal on the
left, and the average reconstruction by generating the noisy signal
200 times. The average per pixel MSE for wavelet thresholding
is 7.6 x 1073, and for our method it is 2.5 x 107>, The average
reconstruction from Wavelet thresholding also contains ringing ar-
tifacts, which stem from aliasing in the wavelet decomposition.

Figure 7 visualizes postprocessing using a 2D example, where we
show the stopping map from scale 2 to 3. The input data uses 32
noisy samples per pixel. We remove most outliers without losing
any features from the unfiltered map. In Figure 8 we compare the
performance of our complete filter selection procedure to selection
maps obtained by minimizing MSE according to empirical ground
truth statistics collected from a large number of samples, similar as

After filtering

Reference

Before filtering

Figure 7: Filtering a binary stopping map from scale 2 to 3 for
the “sibenik” scene. Left: before outlier removal; middle: after
post-processing; right: reference from ground truth statistics.

in Figure 3. We use five filters at dyadic scales. The coarsest scale
is visualized in white, the finest one in black. Note that the black
areas in the map of the leftmost scene correspond to completely
black regions in the image (see also Figure 1). Our maps were
computed using a uniform sample distribution of 32 samples per
pixel. We lose some detail compared to ground truth, but reliably
retain the main features. All maps were obtained by setting the error
rate parameter +y to 0.2 and using outlier removal.

5 Sample Distribution

The goal of the sample distribution is to place new samples in the
image plane, such that the relative MSE given the current per pixel
filter selection is reduced as much as possible. The idea is to select
the m pixels, whose relative MSE can be improved the most by
distributing n new samples over the support of their selected filters.

We estimate the MSE of a selected filter based on the same ap-
proach as in Section 4. We simply accumulate the estimated MSE
differences until we reach the selected filter. The MSE of the finest
scale is estimated as its variance, since the finest scale is considered
unbiased as it uses the pixel filter requested by the user. We com-
pute relative MSE by dividing the estimated MSE by the squared
value of the selected scale plus a small constant e = 0.001 to pre-
vent overemphasizing very dark image areas. Because (relative)
MSE is inversely proportional to the number of samples contribut-
ing to a filter, adding n samples over the support of a filter that
received a total of ns samples from previous iterations reduces (rel-
ative) MSE by a factor ns/(n + ns). Therefore, after some alge-
braic manipulation we find that the reduction in relative MSE after
adding n samples is (relative MSE) - n/(n + ns).

We maintain a priority queue of pixels according to their poten-
tial error reduction. In each iteration, we retrieve m pixels from
the queue and distribute samples over their filters. The assumption
behind our computation of potential MSE improvement is that the
filters of these pixels do not overlap, but we do not enforce this.
We randomly select n pixels in the support of each filter, where we
use importance sampling according to the filter weights. We then
draw one (or more, if the pixel was chosen several times) additional
sample for each of the selected pixels. This allows us, if desired,
to sample pixels using per-pixel low discrepancy sequences. We
maintain the total number of samples per pixel to be able to com-
pute the potential MSE improvement as required above.

Figure 9 visualizes the sample distribution generated by our al-
gorithm using an error rate of v = 0.2 and with an average of
32 samples per pixel. We compare our sample map to a “ground
truth map”, which is obtained using the same algorithm but with
ground truth statistics for MSE estimation, as for the compari-
son in Figures 3 and 8. We also include the distribution obtained
from AWR in the comparison. We observe that our approach ex-
hibits more adaptivity. The AWR algorithm also produces density
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Our method

Ground Truth

Figure 8: Selection maps for five scales using our method (top) and ground truth statistics (bottom). Our method selects filters using statistics
from 32 samples per pixel, while ground truth statistics are collected from a large number of samples. We show final renderings in Figure 12.

peaks aligned with the subsampled wavelet grids. In contrast, our
method operates at full resolution for all filter scales, which leads
to a smoother sample distribution.

AWR OUR Ground truth

Figure 9: Sample densities with an average of 32 samples per pixel
obtained with the AWR algorithm, our scale selection method, and
scale selection using ground truth MSE values. The AWR method
samples smooth regions more densely. Our algorithm better detects
smooth regions and distributes more samples in the high-frequency
regions, approximating the ground truth distribution more closely.

6 Implementation

‘We now detail some important aspects of our implementation: com-
putation of filter scales and their bias and variances, image recon-
struction from a sub-pixel grid to accommodate non-uniform sam-
ple distributions, additional details concerning final reconstruction,
and a brief description how we integrate our method in PBRT.

Computation of Scales and Their Statistics. Computing filter
scales and their variances directly using the Monte Carlo samples
as described in Section 4.3 would be expensive in terms of com-
putation and storage. Instead, we store only the finest filter scale
and the mean of the empirical sample variances in each pixel and
update them in each iteration. Updating the finest filter scale is

straightforward. Since variance decreases linearly with the number
of samples, using Equation 3 the mean variance of pixel p is

11 .
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We update pixel mean variances from one iteration step to the next
by maintaining the necessary terms separately.

In each iteration we compute the coarser scales and their variances
by further filtering the finest scale and the mean pixel variances. For
the variances at a given scale we filter the initial pixel mean vari-
ances Var [p] using the squared version of that scale filter. This
method is valid if the initial pixel mean variances are uncorre-
lated [Overbeck et al. 2009]. Since we estimate these using samples
landing within each individual square pixel, i.e., the estimates do
not share any samples, there is no correlation as required.

In our implementation we use Gaussian filters and their squares.
Since both are separable, filtering is efficient. We do not perform
any local updates but simply filter the complete finest scale and the
pixel mean variances after each iteration. As an important detail,
our implementation also allows us to use an arbitrary pixel filter
employed by the renderer as our finest scale, while only the coarser
scales are Gaussian filtered. We compute the bias term for pairs of
coarser scales as described in Section 4.2. To compute the bias term
for the transition from the pixel filter to the first Gaussian filtered
scale, note that the pixel filter is unbiased by definition. Therefore,
the bias term here is simply the squared difference between the pixel
filter and the first Gaussian filtered scale. In practice, we use the
pixel filter employed by the renderer as the finest scale, in addition
to four Gaussian filters at dyadic scales.

Filtering Non-Uniform Sample Distributions. Our sample den-
sity map has sharp and significant changes across image edges.
Therefore, adjacent pixels may receive significantly different num-
bers of samples, which could severely bias the reconstruction if not
handled correctly. Following the work of Mitchell [1987], we store
samples on a subpixel grid. Each individual subpixel value is ob-
tained using a subpixel box filter, which is valid provided the sam-
ple distribution is uniform over the subpixel. We use a subpixel
grid resolution of 4 x 4. At low sample counts, the subpixel grid
has many holes that we must fill. We use a simple two-step pull-
push strategy, where we fill empty sub-pixels with the mean value
of the samples in the whole pixel. To minimize the number of holes
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in the subpixel grid, we distribute images samples using scrambled
low-discrepancy sequences [Kollig and Keller 2002]. Other dimen-
sions are still sampled using pure uniform random distributions. We
then apply our filters on the subpixel resolution.

Final Reconstruction. To optimize final image quality we use
a slightly modified filter selection procedure in the last iteration of
our procedure (Figure 2). First, we use eight Gaussian filters related
by a factor of v/2, as opposed to four filters related by a factor of 2
during the previous iterations. The standard deviation of the finest
scale is 1.0 during the adaptive phase and v/2 during the final recon-
struction. The increased number of scales reduces seams that may
appear at transitions between scales in the final reconstruction. We
found that using more scales during the adaptive process does not
reduce error, but comes at a performance penalty. Second, we use
a larger Gaussian filter for filtering the binary stopping map during
the final reconstruction. While we use the coarser scale Gaussian
filter during the adaptive phase, we double this size for the final re-
construction. Using smaller filters during the adaptive process bet-
ter samples clusters of outliers, while using larger filters during the
final reconstruction ensures we smooth out most of the remaining
outliers. Third, when filtering the binary stopping maps we use the
filtered binary value only if it leads to selecting the coarser scale.
By disregarding filtered binary values that switch to stopping at the
finer scale we suppress spike noise more effectively.

Integration with PBRT. We have implemented our algorithm us-
ing PBRT to demonstrate its compatibility with standard Monte
Carlo ray tracers. Our implementation consists of a scale selec-
tor and an adaptive sampler. The adaptive sampler implements the
existing PBRT Sampler interface. It has two states: “initialization”
and “adaptive”. Rendering starts with the “initialization” phase,
where each pixel is sampled uniformly using 4 samples per pixel.
After initial sampling, the scale selector first computes the filtered
scales and the corresponding variances as described above. It then
uses the scale selector from Section 4.3 and the post-processing al-
gorithm from Section 4.4 to determine the scale for each pixel that
minimizes the MSE. During the “adaptive” phase of the sampler,
all pixels are first ranked according to their estimated improvement
in relative MSE, which is established as described in Section 5. We
then select the m pixels with the highest estimated improvement.
In our implementation, the user specifies a desired average number
of samples per pixel n that should be distributed over the iterations.
We performed 8 iterations in all our results. Hence, for an image
composed of M pixels, we distribute N = M (n — 4)/8 samples
per iteration, over m = N/n pixels, and each selected pixel re-
ceives n samples. The n samples are distributed over the selected
filter scale as described in Section 5.

7 Results

We generated all results on a dual 4-cores XEON system at
2.50GHz, with 8GB of RAM, using 8 threads. We implemented
both our approach and the AWR algorithm on top of PBRT [Pharr
and Humphreys 2010]. For our method, we set the error rate pa-
rameter -y to 0.1 for all scenes. For the AWR algorithm, we use the
Daubechies 9/7 wavelets, a smoothing constant ¢; = 1, and renor-
malization factor of 1.05 as suggested in the original paper. Due to
the limited amount of samples drawn per iteration with the AWR
algorithm (from 64 to 2048), our implementation scales poorly to
8 cores, which dramatically decreases its performance.

We present results from five test scenes using a wide range of ef-
fects, geometries and materials. The “killeroos” scene showcases
the impact of motion blur. The “plants-dusk” scene uses envi-

ronment lighting with a very complex geometry. The “yeahright”
scene shows glossy materials, a model with fine geometric details,
environment lighting, and one-bounce indirect illumination. The
“plants-dusk”, “toaster” and “sibenik” scenes were used in the orig-
inal AWR paper [Overbeck et al. 2009]. We modified the “sibenik”
scene to have an environment light (seen by refraction through the
windows) and a single environment light over the gargoyle.

We compare the following four methods:

e NAIVE: Uniform sample distribution and filter using finest
kernel. This is the default PBRT behavior.

e AWR: Adaptive sample distribution and reconstruction using
wavelet coefficient shrinkage [Overbeck et al. 2009].

e OUR: Our proposed approach with adaptive sampling and fil-
ter selection.

e OUR-GRD: Our proposed approach with adaptive sampling
and filter selection, but with ground truth bias and variance
values. This is to illustrate the best results we could theoreti-
cally achieve with our technique.

In Figure 10 we illustrate the impact of -, the single user param-
eter of our method, on the “sibenik” scene. Intuitively, v controls
the error rate for filter selection in uniform areas. Lower v values
produces smoother results in uniform areas, but they tend to blur
across edges. Larger  values preserve edges better, but exhibit ar-
tifacts due to outliers in uniform areas. The experiment shows that
the MSE remains relatively constant for a wide range of y values
from about 0.20 to 0.30, meaning that scale selection and outlier re-
moval operate effectively. For lower v values, scale selection tends
to pick filters that are too smooth. For higher values, the error rate
in uniform areas becomes too large, such that we are not able to
remove outliers robustly any more.

In Figure 11 we report on the convergence of the four methods
measured in terms of relative MSE to a reference image pro-
duced with PBRT. We compute relative pixel MSE as (img —
ref)?/(ref? 4 ¢), and we report the average error over the images.
We set e = 0.01 to prevent over-weighting of errors in very dark
regions. Our algorithm explicitly attempts to minimize this error,
which AWR does not. We acknowledge that relative mean squared
error is not a perfect measure for image quality, but we believe it is
still a useful indicator for the convergence rate of a method.

For all scenes, our method consistently improves upon both the
NAIVE and AWR approaches. The AWR method usually improves
the MSE at lower samples counts, however converges slowly to the
right solution. Several factors could cause this behavior. First, the
functional variance estimate in AWR only considers the maximum
and minimum sample values within a pixel. This essentially maxi-
mizes the impact of outliers, both bright and dark. Another source
of error are ringing effects in dark regions, emphasized by the rel-
ative error metric. Finally, using the standard parameters for AWR
tends to overblur images, leading to smooth results, but not neces-
sarily low numerical error. This is apparent as AWR has low error
initially for scenes with large uniform, but noisy areas (“killeroos”,
“sibenik”). In contrast, the error remains high for the “plants-dusk™
scene, which contains a lot of high frequency details.

Figure 11 evaluates the performance of our and AWR’s adaptive
filtering techniques used with standard uniform sampling. In the
“killeroos” and “plants-dusk” scenes, uniform sampling performs
significantly worse than adaptive sampling. Adaptive sampling
only slightly improves the MSE of the “sibenik” scene, despite the
apparent adaptivity of our sample distribution (see Figure 10). Even
with reference statistics we observe a similar behavior. This may
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MSE: 0.004262 MSE: 0.002475

MSE: 0.002081

MSE: 0.002037 MSE: 0.002237

Figure 10: Top: sample densities obtained for the “sibenik” scene by varying ~y. Low values yield a better reconstruction of smooth regions,
which leaves more samples to resolve edges. High values yields more uniform sample densities, since outliers are draining more samples.
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Figure 11: Convergence plots over average number of samples per pixel measured in average per pixel MSE. Top: adaptively distributed
samples; bottom: uniformly distributed samples with adaptive reconstruction only. The NAIVE method is shown as a reference. AWR is the
algorithm proposed by Overbeck et al. [2009], OUR is our proposed approach, and OUR-GRD is our approach using ground truth statistics.
For scenes with a combination of noisy areas and high frequency details, such as the “killeroos” and the “plants-dusk” scenes, adaptive
sampling provides a significant improvement. For the “sibenik” scene, where noise is equally distributed across the image and there are
large uniform areas, adaptive sampling yields only a slight improvement, even with the reference statistics. AWR behaves similarly, but has
consistently lower convergence rates. Results for the “toasters” and “yeahright” scenes are similar but omitted due to space constraints.

be because most of the error is due to variance in uniform regions,
which is filtered effectively without adaptive sampling.

In Figure 12 we present results obtained with the naive approach,
the AWR algorithm, our method and the ground truth adaptive re-
sult obtained by minimizing the ground truth MSE. Results ob-
tained with the AWR algorithm frequently show ringing artifacts
caused by aliasing in the Daubechies wavelet decomposition. Ring-
ing is most evident at the edge between the animal ear and the back-
ground in the “killeroos” scene. AWR tends to oversmooth images
with many details, which is best visible in the “plants-dusk” scene.
The algorithm performs extremely well in uniform regions, which
are reconstructed virtually noise free.

Our method gives high quality results both visually and numeri-
cally, offering a good compromise between noise and sharpness.
We filter more conservatively across edges retaining most high fre-
quency information, but still manages to smooth uniform regions
effectively. The “toaster” scene is a good example: we maintain the
sharp edges of the model, but have slightly noisy smooth shadow

transition on the ground. For all five scenes, our method gives re-
sults which are visually close to the solution obtained using ground
truth statistics.

We evaluated the performance overhead of our method with the
Google CPU Profiler, since this tool supports multi-threaded ap-
plications. For our simplest scene (“toasters”), we spend 4.36%
of rendering time in our adaptive sampler and filter selection algo-
rithms. Since our algorithm is independent of scene complexity,
this is indicative of a worst case scenario. If measured in terms of
samples rendered per second, there is often a larger discrepancy be-
tween our adaptive rendering performance and the uniform one. We
believe the reason for this is that adaptive sampling tends to gener-
ate more “difficult” samples in average than uniform sampling. For
instance, for the “killeroos” scene, our adaptive sampler targets the
animals (~ 33K primitives each) much more than the ground and
back wall, which yields a correspondingly larger cost per sample.
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OUR

NAIVE AWR

OUR OUR-GRD REFERENCE

killeroos 0.001515, 43 spp (227s) 0.001208, 32 spp

plants-dusk 0.000364, 51 spp (303s) 0.000680, 32 spp

N

sibenik

0.004300, 32 spp

0.0013980, 38 spp (112s)
. L

toasters 0.001387, 50 spp (69s) 0.000521, 32 spp

0.001392, 65 spp (82s)

yeahright

0.001649, 32 spp

‘..

0.000142, 32 spp (226s)

0.000173, 32 spp (308s)

Nt

0.002081, 32 spp (113s)

0.000178, 32 spp (68s)
L]

0.000165, 32 spp (82s)

4096 spp

0.000127, 32 spp

0.000136, 32 spp

.

0.001516, 32 spp

4096 spp

0.000153, 32 spp

0.000127, 32 spp 4096 spp

Figure 12: Result images at 1024 x 1024 pixels. The rightmost column “REFERENCE” shows converged renderings. We indicate MSE
and rendering times in seconds. Timing data for the AWR is omitted since our implementation does not scale to multiple CPUs. We adjusted
the number of samples in the “NAIVE” method to match the rendering times of “OUR” method, providing an equal time comparison.

Discussion and Limitations. Our algorithm relies heavily on
the estimated variance to guide the adaptive sampling scheme. In
tests using two samples per pixel in the initialization phase, we ob-
tained very similar results to those reported in Figure 12 (an im-
provement of up to 3% of the MSE, depending on the scene), il-
lustrating our algorithm robustness to noise in the initial variance
estimate. Regardless, our algorithm has difficulties handling re-
gions where light paths are unlikely to be found by brute force sam-
pling. There, it tends to systematically underestimate the variance,
which leads to undersampling and filtering artifacts. The dark re-
gions of the “sibenik” scene, where more than 95% of the samples
carry a null radiance, present such a case. Our method also can-
not reconcile the need to filter overlapping elements in the same
pixel using different kernels. The “killeroos” scene features sharp
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lines which illustrate this fact (Figure 12). One can still faintly
see the lines through the blurred animal head in the 4096 spp ren-
dering, while they are mostly blurred out in our result. Also, the
soft shadow cast by the animal is filtered heavily, except around the
sharp lines, resulting in an increased noise level in our reconstruc-
tion. In other words, given contradictory filtering requirements, our
algorithm preserves the most prominent feature. Nonetheless, the
adaptive process of our method assigns more samples to these dif-
ficult regions, mitigating the problem.
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8 Conclusions

We described a versatile adaptive sampling and reconstruction al-
gorithm that greedily minimizes MSE in Monte Carlo rendering.
The method provides significant improvement in terms of numeri-
cal error and image quality over previous work. A key component
is arobust filter selection procedure that minimizes pixel MSE over
a set of discrete filters. A main limitation of our approach is that,
similar as AWR, our variance estimation assumes that the Monte
Carlo renderer generates random samples. As a consequence, we
will overestimate variances for low discrepancy sequences or strat-
ified samples. One could heuristically reweight our variance term
to account for this, but a more thorough solution would be desir-
able. A weakness of our approach is that we cannot filter noise
close to edges because we only use isotropic filters. With oriented
anisotropic filters we could potentially further improve the effec-
tiveness of filtering in these situations. An interesting avenue for
future work is to extend our approach to more general filters, such
as cross-bilateral kernels. This would require a generalization of the
differential bias estimation procedure. Finally, it would be interest-
ing to adapt our approach to interactive GPU based ray tracing.
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