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Abstract—In this paper, we present a framework for high quality splatting based on elliptical Gaussian kernels. To avoid aliasing

artifacts, we introduce the concept of a resampling filter, combining a reconstruction kernel with a low-pass filter. Because of the

similarity to Heckbert’s EWA (elliptical weighted average) filter for texture mapping, we call our technique EWA splatting. Our

framework allows us to derive EWA splat primitives for volume data and for point-sampled surface data. It provides high image quality

without aliasing artifacts or excessive blurring for volume data and, additionally, features anisotropic texture filtering for point-sampled

surfaces. It also handles nonspherical volume kernels efficiently; hence, it is suitable for regular, rectilinear, and irregular volume

datasets. Moreover, our framework introduces a novel approach to compute the footprint function, facilitating efficient perspective

projection of arbitrary elliptical kernels at very little additional cost. Finally, we show that EWA volume reconstruction kernels can be

reduced to surface reconstruction kernels. This makes our splat primitive universal in rendering surface and volume data.

Index Terms—Rendering systems, volume rendering, texture mapping, splatting, antialiasing.
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1 INTRODUCTION

VOLUME rendering is an important technique in visualiz-
ing acquired and simulated datasets in scientific and

engineering applications. The ideal volume rendering
algorithm reconstructs a continuous function in 3D, trans-
forms this 3D function into screen space, and then evaluates
opacity integrals along line-of-sights. In 1989, Westover [1],
[2] introduced splatting for interactive volume rendering,
which approximates this procedure. Splatting algorithms
interpret volume data as a set of particles that are absorbing
and emitting light. Line integrals are precomputed across
each particle separately, resulting in footprint functions. Each
footprint, or splat, spreads its contribution in the image
plane. These contributions are composited back to front into
the final image.

On the other hand, laser range and image-based

scanning techniques have produced some of the most

complex and visually stunning graphics models to date [3],

resulting in huge sets of surface point samples. A

commonly used approach is generating triangle meshes

from the point data and using mesh reduction techniques to

render them [4], [5]. In contrast, recent efforts have focused

on direct rendering techniques for point samples without

connectivity [6], [7], [8]. Most of these approaches are based

on a splatting approach similar to splatting in volume

rendering.
In this paper, we present a framework for high quality

splatting. Our derivation proceeds along similar lines as

Heckbert’s elliptical weighted average (EWA) texture filter [9],

therefore, we call our algorithm EWA splatting. The main

feature of EWA splatting is that it integrates an elliptical
Gaussian reconstruction kernel and a low-pass filter, there-
fore preventing aliasing artifacts in the output image while
avoiding excessive blurring. Moreover, we use the same
framework to derive splat primitives for volume as well as
for surface data.

EWA volume splatting works with arbitrary elliptical
Gaussian reconstruction kernels and efficiently supports
perspective projection. Our method is based on a novel
approach to compute the footprint function, which relies on
the transformation of the volume data to so-called ray space.
This transformation is equivalent to perspective projection.
By using its local affine approximation at each voxel, we
derive an analytic expression for the EWA footprint in
screen space. The EWA volume splat primitive can be easily
integrated into conventional volume splatting algorithms.
Because of its flexibility, it can be utilized to render
rectilinear, curvilinear, or unstructured volume datasets.
The rasterization of the footprint is performed using
forward differencing, requiring only one 1D footprint table
for all reconstruction kernels and any viewing direction.

EWA surface splatting is equivalent to a screen space
formulation of the EWA texture filter for triangle rendering
pipelines [10]. Hence, it provides high quality, anisotropic
texture filtering for point-sampled surfaces. We will show
that EWA surface splatting can be derived from
EWA volume splatting by reducing Gaussian volume
reconstruction kernels to surface reconstruction kernels.
Hence, EWA splats are a universal rendering primitive for
volume and for surface data. For example, we can perform
high quality iso-surface rendering by flattening the
3D Gaussian kernels along the volume gradient.

The paper is organized as follows: We discuss previous
work in Section 2. In Section 3, we review fundamental
results from signal processing theory that are needed to
analyze aliasing. We also present the general concept of an
ideal resampling filter that prevents aliasing during render-
ing by combining a reconstruction kernel and a low-pass
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filter. Next, we describe how to model volume rendering as
a resampling process in Section 4, leading to the formula-
tion of an ideal volume resampling filter. Similarly, we
derive an ideal resampling filter for rendering point-
sampled surfaces in Section 5. In Section 6, we introduce
the EWA resampling filter, which uses elliptical Gaussians
as reconstruction kernel and as low-pass filter. We present
explicit formulas for both the EWA volume resampling
filter and the EWA surface resampling filter. Moreover, we
show how to derive the surface resampling filter as a special
case of the volume resampling filter by flattening the
volume reconstruction kernels. Finally, Sections 7 and 8
discuss our implementation and results and Section 9
concludes the paper.

2 PREVIOUS WORK

The original work on splatting in the context of volume
rendering was presented by Westover [1]. Basic volume
splatting algorithms suffer from inaccurate visibility deter-
mination when compositing the splats from back to front.
This leads to visible artifacts, such as color bleeding. Later,
Westover [2] solved the problem using an axis-aligned sheet
buffer. However, this technique is plagued by disturbing
popping artifacts in animations. Recently, Mueller and
Crawfis [11] proposed aligning the sheet buffers parallel to
the image plane instead of parallel to an axis of the volume
data. Additionally, they splat several slices of each
reconstruction kernel separately. This technique is similar
to slice-based volume rendering [12], [13] and does not suffer
from popping artifacts. Mueller and Yagel [14] combine
splatting with ray casting techniques to accelerate rendering
with perspective projection. Laur and Hanrahan [15]
describe a hierarchical splatting algorithm enabling pro-
gressive refinement during rendering. Furthermore, Lippert
and Gross [16] introduced a splatting algorithm that
directly uses a wavelet representation of the volume data.

Additional care has to be taken if the 3D kernels are not
radially symmetric, as is the case for rectilinear, curvilinear,
or irregular grids. In addition, for an arbitrary position in
3D, the contributions from all kernels must sum up to one.
Otherwise, artifacts such as splotches occur in the image.
For rectilinear grids, Westover [2] proposes using elliptical
footprints that are warped back to a circular footprint. To
render curvilinear grids, Mao [17] uses stochastic Poisson
resampling to generate a set of new points whose kernels
are spheres or ellipsoids. He computes the elliptical
footprints very similarly to Westover [2]. As pointed out
in Section 6.2, our technique can be used with rectilinear,
curvilinear, and irregular grids to efficiently and accurately
project and rasterize the elliptical splat kernels.

Westover’s original framework does not deal with
sampling rate changes due to perspective projections.
Aliasing artifacts may occur in areas of the volume where
the sampling rate of diverging rays falls below the volume
grid sampling rate. The aliasing problem in volume
splatting has first been addressed by Swan et al. [18] and
Mueller et al. [19]. They use a distance-dependent stretch of
the footprints to make them act as low-pass filters. In
contrast, EWA splatting models both reconstructing and
band limiting the texture function in a unified framework.

The concept of representing surfaces as a set of points
and using these as rendering primitives has been intro-
duced in a pioneering report by Levoy and Whitted [20].
Due to the continuing increase in geometric complexity,
their idea has recently gained more interest. QSplat [6] is a
point rendering system that was designed to interactively
render large data sets produced by modern scanning
devices. Other researchers demonstrated the efficiency of
point-based methods for rendering geometrically complex
objects [7], [8]. In some systems, point-based representa-
tions are temporarily stored in the rendering pipeline to
accelerate rendering [21], [22]. We have systematically
addressed the problem of representing texture functions
on point-sampled objects and avoiding aliasing during
rendering in [23]. The surface splatting technique can
replace the heuristics used in previous methods and
provide superior texture quality.

We develop EWA splatting along similar lines to the
seminal work of Heckbert [9], who introduced EWA
filtering to avoid aliasing of surface textures. We recently
extended his framework to represent and render texture
functions on irregularly point-sampled surfaces [23] and to
volume splatting [24]. Section 6.4 will show the connection
between EWA volume and surface splatting.

3 IDEAL RESAMPLING

3.1 Sampling and Aliasing

Aliasing is a fundamental problem in computer graphics.
Although, conceptually, computer graphics often deals with
continuous representations of graphics models, in practice,
computer-generated images are represented by a discrete
array of samples. Image synthesis involves the conversion
between continuous and discrete representations, which may
cause aliasing artifacts such as moiré patterns and jagged
edges, illustrated in Fig. 1, or flickering in animations.

To study aliasing, it is useful to interpret images, surface
textures, or volume data as multidimensional signals. In the
following discussion, we will focus on one-dimensional
signals and return to multidimensional signals in Sections 4
and 5. When a continuous signal is converted to a discrete
signal it is evaluated, or sampled, on a discrete grid. To analyze
the effects of sampling and to understand the relation
between the continuous and the discrete representation of
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Fig. 1. Aliasing artifacts. Note the moiré patterns and jagged edges.



a signal, we review some definitions and results from
signal processing theory.

A filter is a process that takes a signal as an input and
generates a modified signal or a response as an output. The
easiest class of filters to understand are linear space invariant
filters. A linear space invariant filter L is uniquely
characterized by its impulse response hðxÞ, i.e., its output
resulting from an impulse input. As a consequence, the
response of a linear space invariant filter to any input signal
fðxÞ is given by the convolution of fðxÞ and hðxÞ:

LffðxÞg ¼
Z þ1
ÿ1

fðtÞhðxÿ tÞdt ¼ ðf 
 hÞðxÞ:

A fundamental approach to analyze a filter is to compute
its eigenfunctions and eigenvalues. The eigenfunctions of
linear time invariant filters are complex exponentials and the
eigenvalues are given by the Fourier transform of its
impulse response, which is called frequency response. The
Fourier transform of a signal fðxÞ is called the spectrum of
the signal, denoted by F ð!Þ, where ! is the angular
frequency. We write fðxÞ $ F ð!Þ to relate the spatial and
the frequency domain representation of the signal. One of the
most useful properties of the Fourier transform is that the
Fourier transform of the convolution of two signals is the
product of their Fourier transforms, i.e., f 
 g$ FG and
vice versa, i.e., fg$ F 
G=2�.

We analyze the sampling of a continuous signal using
the Fourier transform and frequency domain representa-
tions, shown in Fig. 2. Sampling a continuous signal acðxÞ
is performed by multiplying it with an impulse train iðxÞ,
which is a sum of unit-spaced impulses, i.e., iðxÞ ¼P

n �ðxÿ nÞ (Fig. 2b). This yields the discrete signal
aðxÞ ¼ acðxÞiðx=T Þ, where T is the sample distance. In
the frequency domain, this results in the spectrum of the
discrete signal Að!Þ given by the convolution
Að!Þ ¼ Acð!Þ 
 Ið!Þ=2�. Since the Fourier transform of
the impulse train iðx=T Þ is another impulse train
Ið!Þ ¼ !sið!=!sÞ, !s ¼ 2�=T , the spectrum of the discrete
signal consists of a superposition of replicas of the spectrum
of the continuous signal spaced at a distance !s (Fig. 2c).

To reconstruct the continuous signal, we have to
eliminate all replicas of Ac from A except the central one.
If the replicas do not overlap, this is achieved by multi-
plying Að!Þwith a box function H!sð!Þ ¼ 1 for ! � !s and 0
otherwise. H!s is called an ideal low-pass filter with cutoff
frequency !s, where !s=2 is also called the Nyquist
frequency of the sampling grid. In the spatial domain, the
impulse response of H!s is a sinc function. However, if the
maximum frequency !a in the spectrum of Ac is higher than
!s as shown in Fig. 2, the replicas overlap and it is
impossible to reconstruct the original spectrum Ac from A
(Fig. 2c). High frequencies from the replicas appear as low
frequencies in the original spectrum (Fig. 2e), which is
called aliasing.

3.2 Antialiasing

From the above discussion, we conclude that there are two
approaches to reduce aliasing problems: We can either
sample the continuous signal at a higher frequency or we
eliminate frequencies above the Nyquist limit before

sampling, which is called prefiltering. Since most signals of
interest are not band limited, sampling at a higher
frequency will alleviate, but not completely avoid, aliasing.
Moreover, increasing the sampling frequency leads to
higher memory and computational requirements of most
algorithms. On the other hand, prefiltering is performed by
applying a low-pass filter to the signal before sampling,
hence it is the more theoretically justified antialiasing
method. Using an ideal low-pass filter with cutoff
frequency !s=2, the filtered signal will be band limited to
the Nyquist frequency of the sampling grid and, thus, it can
be reconstructed exactly. In practice, prefiltering is im-
plemented as a convolution in the spatial domain, hence
prefilters with a small support are desirable for efficiency
reasons. However, the widths of a filter in the spatial and
frequency domains are inversely related; therefore, some
aliasing will be inevitable during sampling.

3.3 Rendering and Ideal Resampling Filters

In our framework, graphics models are represented as a set
of irregularly spaced samples of multidimensional func-
tions describing object attributes such as volume opacity
(Section 4) or surface textures (Section 5). We reconstruct
the continuous attribute functions by computing a weighted
sum
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Fig. 2. Frequency analysis of aliasing.



fcðuÞ ¼
X
k2IN

wkrkðuÞ; ð1Þ

where rk is called a reconstruction kernel centered at the

sample position uk and wk is a sample value, e.g., the

diffuse color at uk. We use the term source space to denote

the domain of fcðuÞ.
We interpret rendering an attribute function (1) as a

resampling process, involving the three steps illustrated in

Fig. 3:

1. Project fcðuÞ from source to screen space, yielding
the continuous screen space signal gcðxÞ:

gcðxÞ ¼ fPðfcÞgðxÞ; ð2Þ

where x are 2D screen space coordinates and

projection is denoted by the projection operator P.

Note that the operators P used for rendering

(Sections 4 and 5) are linear in their arguments

(however, this does not imply that the projection

performed by P is a linear mapping). Therefore, we

can reformulate (2) by first projecting the reconstruc-

tion kernels before computing the sum:

gcðxÞ ¼ P
X
k2IN

wkrk

0@ 1A8<:
9=;ðxÞ ¼ X

k2IN

wkpkðxÞ; ð3Þ

introducing the abbreviation pk ¼ Prk for the pro-

jected reconstruction kernels.
2. Band limit the screen space signal using a prefilter h,

resulting in the continuous output function g0cðxÞ:

g0cðxÞ ¼ gcðxÞ 
 hðxÞ ¼
Z

IR2
gcð��Þhðxÿ ��Þd��: ð4Þ

3. Sample the continuous output function by multi-
plying it with an impulse train i to produce the
discrete output gðxÞ:

gðxÞ ¼ g0cðxÞiðxÞ:

An explicit expression for the projected continuous
output function can be derived by expanding the above
relations in reverse order:

g0cðxÞ ¼
Z

IR2
P

X
k2IN

wkrk

0@ 1A8<:
9=;ð��Þhðxÿ ��Þ d��

¼
X
k2IN

wk

Z
IR2

pkð��Þhðxÿ ��Þ d��

¼
X
k2IN

wk�kðxÞ;

ð5Þ

where �kðxÞ ¼ ðpk 
 hÞðxÞ: ð6Þ

We call a projected and filtered reconstruction kernel �kðxÞ
an ideal resampling kernel, which is expressed here as a
convolution in screen space. Exploiting the linearity of the
projection operator, (5) states that we can first project and
filter each reconstruction kernel rk individually to derive
the resampling kernels �k and then sum up the contribu-
tions of these kernels in screen space.

In the following Sections 4 and 5, we will model the
rendering process for volume data and for point-sampled
surfaces, respectively, as a resampling problem by expres-
sing it in the form of (5) and (6). Since this resampling
technique is based on the prefiltering approach to antialias-
ing, it leads to high image quality with few aliasing
artifacts, irrespective of the spectrum of the unfiltered
screen space signal.

4 VOLUME RESAMPLING

We distinguish two fundamental approaches to volume
rendering: backward mapping algorithms that shoot rays
through pixels on the image plane into the volume data and
forward mapping algorithms that map the data onto the
image plane. In the following discussion, we will describe a
forward mapping technique. Mapping the data onto the
image plane involves a sequence of intermediate steps
where the data is transformed to different coordinate
systems, as in conventional rendering pipelines. We
introduce our terminology in Fig. 4. Note that the terms
space and coordinate system are synonymous. The figure
summarizes a forward mapping volume rendering pipeline,
where the data flows from the left to the right.

As an overview, we briefly describe the coordinate
systems and transformations that are relevant for our
technique. We will deal in detail with the effect of the
transformations in Section 6.2. The volume data is initially
given in source space, which is usually called object space in
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Fig. 3. Projection, filtering, and sampling of a 1D attribute function.

Fig. 4. The forward mapping volume rendering pipeline.



this context. To render the data from an arbitrary viewpoint,
it is first mapped to camera space using the viewing
transformation. The camera coordinate system is defined
such that its origin is at the center of projection.

We further transform the data to ray space, which is
introduced in Section 4.1. Ray space is a non-Cartesian
coordinate system that enables an easy formulation of the
volume rendering equation. In ray space, the viewing rays are
parallel to a coordinate axis, facilitating analytical integration
of the volume function. We present the transformation from
camera to ray space in Section 6.2; it is a key element of our
technique. Since its purpose is similar to the projective
transform used in rendering pipelines such as OpenGL, it is
also called the projective mapping.

Evaluating the volume rendering equation results in a
2D image in screen space. In a final step, this image is
transformed to viewport coordinates. Focusing on the
essential aspects of our technique, we are not covering the
viewport transformation in the following explanations.
However, it can be easily incorporated in an implementa-
tion. Moreover, we do not discuss volume classification and
shading in a forward mapping pipeline, but refer to [25] or
[26] for a thorough discussion.

4.1 Splatting Algorithms

We review the low albedo approximation of the volume
rendering equation [27], [28] as used for fast, direct volume
rendering [2], [29], [25], [30]. The left part of Fig. 5 illustrates
the corresponding situation in 2D. Starting from this form of
the rendering equation, we discuss several simplifying
assumptions leading to the well-known splatting formula-
tion. Because of their efficiency, splatting algorithms [2],
[25] belong to the most popular forward mapping volume
rendering techniques.

We slightly modify the conventional notation, intro-
ducing our concept of ray space. We denote a point in
ray space by a column vector of three coordinates
x ¼ ðx0; x1; x2ÞT . Given a center of projection and a
projection plane, these three coordinates are interpreted
geometrically as follows: The coordinates x0 and x1 specify
a point on the projection plane. The ray intersecting the

center of projection and the point ðx0; x1Þ on the projection
plane is called a viewing ray. Using the abbreviation
x ¼ ðx0; x1ÞT , we also refer to the viewing ray passing
through ðx0; x1Þ as x. The third coordinate x2 specifies the
Euclidean distance from the center of projection to a point
on the viewing ray. Note that our notation does not
distinguish between a ray x and a point in ray space x;
however, it will be clear from the context which one is
meant. Furthermore, to simplify the notation, we will use
any of the synonyms x, ðx; x2ÞT , or ðx0; x1; x2ÞT to denote a
point in ray space.

The volume rendering equation describes the light
intensity I�ðxÞ at wavelength � that reaches the center of
projection along the ray x with length L:

I�ðxÞ ¼
Z L

0

c�ðx; �Þf 0cðx; �Þe
ÿ
R �

0
f 0cðx;�Þ d� d�; ð7Þ

where f 0cðxÞ is the extinction function that defines the rate of
light occlusion and c�ðxÞ is an emission coefficient. The
exponential term can be interpreted as an attenuation factor.
Finally, the product c�ðxÞf 0cðxÞ is also called the source term
[28], describing the light intensity scattered in the direction
of the ray x at the point x2. In the following equations, we
will omit the parameter �, implying that (7) has to be
evaluated separately for different wavelengths.

Now, we assume that the extinction function in object
space (i.e., source space) fcðuÞ is given in the form of (1) as a
weighted sum of coefficients wk and reconstruction kernels
rkðuÞ. This corresponds to a physical model where the
volume consists of individual particles that absorb and emit
light. The reconstruction kernels rk reflect the position and
shape of individual particles. The particles can be irregu-
larly spaced and may differ in shape; hence, the model is
not restricted to regular data sets. Note that the extinction
function in ray space f 0cðxÞ is computed by concatenating a
mapping ’ from object space to camera space and a
mapping � from camera space to ray space (see Fig. 4),
yielding:

f 0cðxÞ ¼ fcð’ÿ1ð�ÿ1ðxÞÞÞ ¼
X
k

wkr
0
kðxÞ; ð8Þ

where r0kðxÞ ¼ rkð’ÿ1ð�ÿ1ðxÞÞÞ is a reconstruction kernel in
ray space. The mappings � and ’ will be discussed in detail
in Section 6.2.

Because of the linearity of integration, substituting (8)
into (7) yields

IðxÞ ¼
X
k

wk

�Z L

0

cðx; �Þr0kðx; �ÞY
j

e
ÿwj
R �

0
r0jðx;�Þ d� d�

�
;

ð9Þ

which can be interpreted as a weighted sum of projected
reconstruction kernels. So, in terms of (3), we have the
correspondence I ¼

P
k wkpk ¼ gc and, for consistency with

Section 3, we will use gc from now on.
To compute gc numerically, splatting algorithms make

several simplifying assumptions, illustrated in the right part
of Fig. 5. Usually, the reconstruction kernels r0kðxÞ have local
support. The splatting approach assumes that these local
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Fig. 5. Volume rendering. Left: Illustrating the volume rendering equation

in 2D. Right: Approximation in typical splatting algorithms



support areas do not overlap along a ray x and the

reconstruction kernels are ordered front to back. We also

assume that the emission coefficient is constant in the

support of each reconstruction kernel along a ray; hence, we

use the notation ckðx0; x1Þ ¼ cðx0; x1; x2Þ, where ðx0; x1; x2Þ is

in the support of r0k. Moreover, we approximate the

exponential function with the first two terms of its Taylor

expansion, thus eÿx � 1ÿ x. Finally, we ignore self-occlu-

sion. Exploiting these assumptions, we rewrite (9), yielding:

gcðxÞ ¼
X
k

wkckðxÞqkðxÞ
Ykÿ1

j¼0

1ÿ wjqjðxÞ
ÿ �

; ð10Þ

where qkðxÞ denotes an integrated reconstruction kernel,

hence:

qkðxÞ ¼
Z

IR
r0kðx; x2Þ dx2: ð11Þ

Equation (10) is the basis for all splatting algorithms.

Westover [2] introduced the term footprint function for the

integrated reconstruction kernels qk. The footprint function

is a 2D function that specifies the contribution of a 3D kernel

to each point on the image plane. Since integrating a

volume along a viewing ray is analogous to projecting a

point on a surface onto the image plane, the coordinates

x ¼ ðx0; x1ÞT are also called screen coordinates and we say

that gcðxÞ and qkðxÞ are defined in screen space.
Splatting is attractive because of its efficiency, which it

derives from the use of preintegrated reconstruction

kernels. Therefore, during volume integration, each sample

point along a viewing ray is computed using a

2D convolution. In contrast, ray-casting methods require a

3D convolution for each sample point. This provides

splatting algorithms with an inherent advantage in render-

ing efficiency. Moreover, splatting facilitates the use of

higher quality kernels with a larger extent than the trilinear

kernels typically employed by ray-casting. On the other

hand, basic splatting methods are plagued by artifacts

because of incorrect visibility determination. This problem

is unavoidably introduced by the assumption that the

reconstruction kernels do not overlap and are ordered back

to front. It has been successfully addressed by several

authors, as mentioned in Section 2. In contrast, our main

contribution is a novel splat primitive that provides high

quality antialiasing and efficiently supports elliptical

kernels. We believe that our novel primitive is compatible

with all state-of-the-art splatting algorithms.

4.2 The Volume Resampling Filter

The splatting equation (10) represents the output image as a

continuous screen space signal gcðxÞ. In order to properly

sample this function to a discrete output image without

aliasing artifacts, it has to be band limited to match the

Nyquist frequency of the discrete image. According to (4),

we achieve this band limitation by convolving gcðxÞ with an

appropriate low-pass filter hðxÞ, yielding the antialiased

splatting equation

g0cðxÞ ¼ ðgc 
 hÞðxÞ ¼
X
k

wk

Z
IR2

ckð�Þqkð�Þ

Ykÿ1

j¼0

1ÿ wjqjð�Þ
ÿ �

hðxÿ �Þ d�:
ð12Þ

Unfortunately, the convolution integral in (12) cannot be
computed explicitly because of the emission and attenua-
tion terms. Hence, we make two simplifying assumptions to
rearrange it, leading to an approximation that can be
evaluated efficiently.

First, we assume that the emission coefficient is
approximately constant in the support of each footprint
function qk, hence ckðxÞ � ck for all x in the support area.
Together with the assumption that the emission coefficient
is constant in the support of each reconstruction kernel
along a viewing ray, this means that the emission coefficient
is constant in the complete 3D support of each reconstruction
kernel. In other words, this corresponds to per-voxel
evaluation of the shading model or preshading [25],
ignoring the effect of shading for antialiasing. Note that
prefiltering methods for surface textures usually ignore
aliasing due to shading, too.

Additionally, we assume that the attenuation factor has
an approximately constant value ok in the support of each
footprint function. Hence:

Ykÿ1

j¼0

1ÿ wjqjðxÞ
ÿ �

� ok ð13Þ

for all x in the support area. A variation of the attenuation
factor indicates that the footprint function is partially
covered by a more opaque region in the volume data.
Therefore, this variation can be interpreted as a “soft” edge.
Ignoring such situations means that we cannot prevent edge
aliasing. Again, this is similar to rendering surfaces, where
edge and texture aliasing are handled by different algo-
rithms as well.

Exploiting these simplifications, we can rewrite (12) to:

ðgc 
 hÞðxÞ �
X
k

wkckok

Z
IR2

qkð�Þhðxÿ �Þ d�

¼
X
k

wkckokðqk 
 hÞðxÞ:

Following the terminology of Section 3.3 (see (6)), we call

�kðxÞ ¼ ckokðqk 
 hÞðxÞ ¼ ðpk 
 hÞðxÞ ð14Þ

an ideal volume resampling filter, combining a projected
reconstruction kernel pk ¼ ckokqk and a low-pass kernel h.
Hence, we can approximate the antialiased splatting
equation (12) by replacing the footprint function qk in the
original splatting equation (10) with the resampling filter �k.
This means that, instead of band limiting the output
function gcðxÞ directly, we band limit each footprint
function separately. Under the assumptions described
above, we get a splatting algorithm that produces a band
limited output function respecting the Nyquist frequency of
the raster image, therefore avoiding aliasing artifacts.
Remember that the reconstruction kernels are integrated
in ray space, resulting in footprint functions that vary
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significantly in size and shape across the volume. Hence,
the resampling filter in (14) is strongly space variant.

Swan et al. presented an antialiasing technique for
splatting [18] that is based on a uniform scaling of the
reconstruction kernels to band limit the extinction function.
Their technique produces similar results as our method for
radially symmetric kernels. However, for more general
kernels, e.g., elliptical kernels, uniform scaling is a poor
approximation of ideal low-pass filtering. Aliasing artifacts
cannot be avoided without introducing additional blurri-
ness. On the other hand, our method provides nonuniform
scaling in these cases, leading to superior image quality, as
illustrated in Section 8. Moreover, our analysis above shows
that band limiting the extinction function does not
guarantee alias free images. Because of shading and edges,
frequencies above the Nyquist limit persist. However, these
effects are not discussed in [18].

5 SURFACE RESAMPLING

When rendering point-sampled surfaces, the data flows
through a similar pipeline as in forward mapping volume
rendering (Fig. 4). In Section 5.1, we first explain how
continuous attribute functions are conceptually defined on
point-sampled surfaces. Then we introduce an expression
similar to (7) for the continuous output function (i.e., the
rendered image) in Section 5.2.

5.1 Attribute Functions on Point-Sampled Surfaces

We represent point-sampled surfaces as a set of irregularly
spaced points fPkg in three-dimensional object space
without connectivity. A point Pk has a position and a
normal. It is associated with a reconstruction kernel rk and
samples of the attribute functions, e.g., wrk; w

g
k; w

b
k that

represent continuous functions for red, green, and blue
color components. Without loss of generality, we perform
all further calculations with scalar coefficients wk. Note that
the basis functions rk and coefficients wk can be determined
in a preprocessing step as described in [23].

We define a continuous function on the surface
represented by the set of points, as illustrated in Fig. 6.
Given a point Q anywhere on the surface in object space,
shown left, we construct a local parameterization of the
surface in a small neighborhood of Q, illustrated on the
right. The points Q and Pk have local source space coordinates

u and uk, respectively. Using the parameterization, we can

define the continuous attribute function fcðuÞ on the surface

as in (1):

fcðuÞ ¼
X
k2IN

wkrkðuÞ: ð15Þ

We will choose basis functions rk that have local support or

that are appropriately truncated. Then, u lies in the support

of a small number of basis functions. Note that, in order to

evaluate (15), the local parameterization has to be estab-

lished in the union of these support areas only, which is

very small. Furthermore, we will compute these local

parameterizations on the fly during rendering, as described

in Section 7.2.

5.2 The Surface Resampling Filter

Rendering a parameterized surface involves mapping the

attribute function fcðuÞ from parameter, i.e., source space,

to screen space. As illustrated in Fig. 7, we denote this 2D to

2D mapping by x ¼mðuÞ. It is composed of a 2D to

3D parameterization from source to object space and a 3D to

2D projection from object to screen space, which are

described in more detail in Section 6.3. Using m, we can

write the continuous output function as

gcðxÞ ¼
X
k

wkcðxÞr0kðxÞ; ð16Þ

where r0kðxÞ ¼ rkðmÿ1ðxÞÞ is a reconstruction kernel

mapped to screen space. As in Section 4, c is the emission

term arising from shading the surface.
Again we assume that emission is constant in the

support of each r0k in screen space, which is equivalent to

per-point shading, therefore ignoring aliasing due to

shading. So, the band limited output function according

to (4) is

ðgc 
 hÞðxÞ ¼
X
k

wkckðr0k 
 hÞxÞ: ð17Þ

Similarly as in Section 4.2, we call

�kðxÞ ¼ ckðr0k 
 hÞðxÞ ¼ ðpk 
 hÞðxÞ ð18Þ
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Fig. 6. Defining a texture function on the surface of a point-based object.

Fig. 7. Mapping a surface function from parameter space to screen

space.



an ideal surface resampling filter, combining a projected
surface reconstruction kernel pkðxÞ ¼ ckrkðmÿ1ðxÞÞ and a
low-pass kernel hðxÞ.

6 EWA RESAMPLING FILTERS

For both volume and surface rendering, we choose elliptical
Gaussians as reconstruction kernels and low-pass filters
since they provide certain features that are crucial for our
technique: Gaussians are closed under affine mappings and
convolution and integrating a 3D Gaussian along one
coordinate axis results in a 2D Gaussian. These properties
enable us to analytically compute the volume and surface
resampling filters ((14) and (18), respectively) as a single 2D
Gaussian, as will be shown in Sections 6.2 and 6.3. In
Section 6.1, we summarize the mathematical features of the
Gaussians that are exploited in our derivation in the
following sections. More details on Gaussians can be found
in Heckbert’s master’s thesis [9].

6.1 Elliptical Gaussian Filters

We define a 3D elliptical Gaussian G3
Vðxÿ pÞ centered at a

point p with a variance matrix V as:

G3
Vðxÿ pÞ ¼ 1

ð2�Þ3=2jVj
1
2

eÿ
1
2ðxÿpÞTVÿ1ðxÿpÞ; ð19Þ

where jVj is the determinant of V. In this form, the
Gaussian is normalized to a unit integral. In the case of a
3D Gaussian, V is a symmetric 3� 3 matrix and x and p are
column vectors ðx0; x1; x2ÞT and ðp0; p1; p2ÞT , respectively.
Similarly to (19), an elliptical 2D Gaussian G2

Vðxÿ pÞ is
defined as:

G2
Vðxÿ pÞ ¼ 1

2�jVj
1
2

eÿ
1
2ðxÿpÞTVÿ1ðxÿpÞ; ð20Þ

where V is a 2� 2 variance matrix and x and p are
2D vectors. Note that the normalization factor is different
for 2D and 3D Gaussians.

We can easily apply an arbitrary affine mapping u ¼
�ðxÞ to a Gaussian of any dimension n, denoted by GnV. Let
us define the affine mapping as �ðxÞ ¼Mxþ c, where M is
an n� n matrix and c is a vector ðc1; . . . ; cnÞT . We substitute
x ¼ �ÿ1ðuÞ, yielding:

GnVð�ÿ1ðuÞ ÿ pÞ ¼ 1

jMÿ1j
Gn

MVMT ðuÿ �ðpÞÞ: ð21Þ

Moreover, convolving two Gaussians with variance ma-
trices V and Y results in another Gaussian with variance
matrix VþY:

ðGnV 
 GnYÞðxÿ pÞ ¼ GnVþYðxÿ pÞ: ð22Þ

Finally, integrating a normalized 3D Gaussian G3
V along one

coordinate axis yields a normalized 2D Gaussian G2
V̂V

, hence:Z
IR
G3

Vðxÿ pÞ dx2 ¼ G2
V̂V
ðx̂xÿ p̂pÞ; ð23Þ

where x̂x ¼ ðx0; x1ÞT and p̂p ¼ ðp0; p1ÞT . The 2� 2 variance
matrix V̂V is easily obtained from the 3� 3 matrix V by
skipping the third row and column:

V ¼
a b c
b d e
c e f

0@ 1A, a b
b d

� �
¼ V̂V: ð24Þ

In the following, we will use GV to denote both 2D and
3D Gaussians, with the context clarifying which one is
meant.

6.2 The EWA Volume Resampling Filter

In this section, we first describe how to map arbitrary
elliptical Gaussian volume reconstruction kernels from
object to ray space. Our derivation results in an analytic
expression for the kernels in ray space r0kðxÞ as in (8). We
will then be able to analytically integrate the kernels
according to (11) and to convolve the footprint function qk
with a Gaussian low-pass filter h as in (22), yielding an
elliptical Gaussian resampling filter �k.

6.2.1 The Viewing Transformation

The reconstruction kernels are initially given in source
space, or object space, which has coordinates
u ¼ ðu0; u1; u2ÞT . As in Section 4.1, we denote the Gaussian
reconstruction kernels in object space by:

rkðuÞ ¼ GVk
ðuÿ ukÞ; ð25Þ

where uk are the voxel positions in object space. For regular
volume datasets, the variance matrices Vk are usually
identity matrices. For rectilinear datasets, they are diagonal
matrices, where the matrix elements contain the squared
distances between voxels along each coordinate axis.
Curvilinear and irregular grids have to be resampled to a
more regular structure in general. For example, Mao et al.
[31] describe a stochastic sampling approach with a method
to compute the variance matrices for curvilinear volumes.

We denote camera coordinates by a vector t ¼ ðt0; t1; t2ÞT .
Object coordinates are transformed to camera coordinates
using a mapping t ¼ ’ðuÞ, called viewing transformation. The
viewing transformation is usually an affine mapping
defined by a matrix W and a translation vector d as
’ðuÞ ¼Wuþ d.

6.2.2 The Projective Transformation

We will concatenate the viewing transformation with a
projective transformation that converts camera coordinates
to ray coordinates, as illustrated in Fig. 8. Camera space is
defined such that the origin of the camera coordinate
system is at the center of projection and the projection plane
is the plane t2 ¼ 1. Camera space and ray space are related
by the mapping x ¼ �ðtÞ. Using the definition of ray space
from Section 4.1, �ðtÞ and its inverse �ÿ1ðtÞ are therefore
given by:

x0

x1

x2

0@ 1A ¼ �ðtÞ ¼ t0=t2
t1=t2

kðt0; t1; t2ÞTk

0@ 1A ð26Þ

t0
t1
t2

0@ 1A ¼ �ÿ1ðxÞ ¼
x0=l � x2

x1=l � x2

1=l � x2

0@ 1A; ð27Þ

where l ¼ kðx0; x1; 1ÞTk.
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Unfortunately, these mappings are not affine, so we
cannot apply (21) directly to transform the reconstruction
kernels from camera to ray space. To solve this problem, we
introduce the local affine approximation �k of the projective
transformation. It is defined by the first two terms of the
Taylor expansion of � at the point tk:

�kðtÞ ¼ xk þ Jk � ðtÿ tkÞ; ð28Þ

where tk is the center of a Gaussian in camera space and
xk ¼ �ðtkÞ is the corresponding position in ray space. The
Jacobian Jk is given by the partial derivatives of � at the
point tk:

Jk ¼
@�

@t
ðtkÞ ¼

1=tk;2 0 ÿtk;0=t2k;2
0 1=tk;2 ÿtk;1=t2k;2

tk;0=l
0 tk;1=l

0 tk;2=l
0

0@ 1A; ð29Þ

where l0 ¼ kðtk;0; tk;1; tk;2ÞTk.
The local affine approximation of the compound map-

ping from source to ray space x ¼mkðuÞ is given by the
concatenation of t ¼ ’ðuÞ and x ¼ �kðtÞ:

x ¼mkðuÞ ¼ �kð’ðuÞÞ
¼ JkWuþ xk þ Jkðdÿ tkÞ:

We substitute u ¼mÿ1
k ðxÞ in (25) and apply (21) to map

the reconstruction kernels to ray space, yielding the desired
expression for r0kðxÞ:

r0kðxÞ ¼ GVk
ðmÿ1ðxÞ ÿ ukÞ

¼ 1

jWÿ1Jÿ1
k j
GV0k
ðxÿmðukÞÞ;

ð30Þ

where V0k is the variance matrix in ray coordinates.
According to (21), V0k is given by:

V0k ¼ JkWVkW
TJTk : ð31Þ

Note that, for uniform or rectilinear datasets, the
product WVkW

T has to be computed only once per
frame since Vk is the same for all voxels and W only

changes from frame to frame. Since the Jacobian is
different for each voxel position, V0k has to be recalcu-
lated for each voxel, requiring two 3� 3 matrix multi-
plications V0k ¼ JkðWVkW

T ÞJTk . In the case of curvilinear
or irregular volumes, each reconstruction kernel has an
individual variance matrix Vk. Our method efficiently
handles this situation, requiring only one additional 3� 3
matrix multiplication, i.e., V0k ¼ ðJkWÞVkðJkWÞT . In con-
trast, previous techniques [2], [31] cope with elliptical
kernels by computing their projected extents in screen space
and then establishing a mapping to a circular footprint
table. However, this procedure is computationally expen-
sive. It leads to a bad approximation of the integral of the
reconstruction kernel, as pointed out in [14], [18].

As illustrated in Fig. 9, the local affine mapping is exact
only for the ray passing through tk or xk, respectively. The
figure is exaggerated to show the nonlinear effects in the
exact mapping. The affine mapping essentially approxi-
mates the perspective projection with an oblique ortho-
graphic projection. Therefore, parallel lines are preserved
and approximation errors grow with increasing ray diver-
gence. However, the errors do not lead to visual artifacts in
general [14] since the fan of rays intersecting a reconstruc-
tion kernel has a small opening angle due to the local
support of the reconstruction kernels.

A common approach of performing splatting with
perspective projection is to map the footprint function onto
a footprint polygon in camera space in a first step. In the next
step, the footprint polygon is projected to screen space and
rasterized, resulting in the so-called footprint image. As
mentioned in [14], however, this requires significant
computational effort. In contrast, our framework efficiently
performs perspective projection by mapping the volume to
ray space, which requires only the computation of the
Jacobian and two 3� 3 matrix multiplications. For spherical
reconstruction kernels, these matrix operations can be
further optimized, as shown in Section 7.1.
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Fig. 8. Transforming the volume from camera to ray space. Top: camera

space. Bottom: ray space.
Fig. 9. Mapping a reconstruction kernel from camera to ray space. Top:

camera space. Bottom: ray space. Left: local affine mapping. Right:

exact mapping.



6.2.3 Integration and Band Limiting

We integrate the Gaussian reconstruction kernel of (30)

according to (11), resulting in a Gaussian footprint

function qk:

qkðxÞ ¼
Z

IR

1

jWÿ1Jÿ1
k j
GV0k
ðxÿ xk; x2 ÿ xk2Þ dx2

¼ 1

jWÿ1Jÿ1
k j
G

V̂V
0
k
ðxÿ xkÞ;

ð32Þ

where the 2� 2 variance matrix V̂V
0
k of the footprint function

is obtained from V0k by skipping the last row and column, as

shown in (24).
Finally, we choose a Gaussian low-pass filter

hðxÞ ¼ GVhðxÞ, where the variance matrix Vh 2 IR2�2 is

typically the identity matrix. With (22), we compute the

convolution in (14), yielding the EWA volume resampling

filter, or EWA volume splat:

�kðxÞ ¼ ðpk 
 hÞðxÞ

¼ ckok
1

jWÿ1Jÿ1
k j
ðG

V̂V
0
k

 GVhÞðxÿ xkÞ

¼ ckok
1

jWÿ1Jÿ1
k j
G

V̂V
0
kþVhðxÿ xkÞ:

ð33Þ

6.3 The EWA Surface Resampling Filter

In this section, we first describe how to construct the local

parameterizations that are needed to define surface

attribute functions fcðuÞ (Section 5.1). Then, we derive a

mapping x ¼mðuÞ involving parameterization, viewing

transformation, and perspective projection that transforms

the attribute function from source to screen space, similarly

to Section 6.2.

6.3.1 Local Surface Parameterizations

At each point Pk, a local surface parameterization  k is

defined by two orthogonal unit vectors e0
k and e1

k in the

tangent plane of the surface. The tangent plane is given by

the surface normal nk stored with each point Pk. Hence,

each point u ¼ ðu0; u1ÞT in the parameter domain corre-

sponds to a point ûu ¼ ðûu0; ûu1; ûu2ÞT on the surface in object

space:

ûu ¼  kðuÞ ¼ Pk þ Sku;

where Sk is a 3� 2 matrix consisting of the column vectors

e0
k and e1

k.
We denote the Gaussian surface reconstruction kernels in

the parameter domain by rkðuÞ ¼ GVk
ðuÞ. The variance

matrix Vk has to be chosen appropriately to match the local

density of points around Pk. Restricting ourselves to

radially symmetric kernels, Vk is a 2� 2 identity matrix I

scaled by a factor �2, i.e., Vk ¼ �2I. The scaling � depends

on the distance between Pk and its nearest neighbors, e.g.,

we choose � as the average distance to the six nearest

neighbors. A more sophisticated analysis of the point

distribution around Pk could be used to find suitable

variance matrices of general elliptical kernels.

6.3.2 The Viewing Transformation

The viewing transformation that maps object coordinates ûu
to camera coordinates t is defined as in Section 6.2, i.e.,
t ¼ ’ðûuÞ ¼Wûuþ d.

6.3.3 Perspective Projection

Surface points t in 3D camera space are projected to 2D screen
space x by dividing by the depth coordinate t2. Hence, we use
the same mapping � (see (26)) as for volumes, except that we
do not need the third coordinate x2:

x0

x1

� �
¼ �ðtÞ ¼ t0=t2

t1=t2

� �
:

We use the same local affine approximation �k as in (28).
Note that here the Jacobian Jk is a 2� 3 matrix:

Jk ¼
@�

@t
ðtkÞ ¼

1=tk;2 0 ÿtk;0=t2k;2
0 1=tk;2 ÿtk;1=t2k;2

� �
: ð34Þ

Concatenating  k, ’, and �k, we get the local affine
approximation mk of the mapping from source space to
screen space:

x ¼mkðuÞ ¼ �kð’ð kðuÞÞÞ
¼ JkWSkuþ xk:

Substituting u ¼mÿ1
k ðxÞ and applying (21) we get the

Gaussian surface reconstruction kernel in screen space:

r0kðxÞ ¼ GVk
ðmÿ1

k ðxÞ ÿ ukÞ

¼ 1

jMÿ1
k j
GV0k
ðxÿmkðukÞÞ;

with the variance matrix V0k ¼MkVkM
T
k and

Mk ¼ JkWSk 2 IR2.

6.3.4 Band Limiting

With a Gaussian low-pass filter h ¼ GVh and using (18), the
EWA surface resampling filter, or EWA surface splat, is:

�kðxÞ ¼ ckðr0k 
 hÞðxÞ

¼ ck
1

jMÿ1
k j
GV0kþVhðxÿmkðukÞÞ:

ð35Þ

In (35), the resampling filter is a function in screen space.
Since the mapping mk is affine and invertible, we can
alternatively express it as a function in source space, too.
We use

xÿmkðukÞ ¼ JkJ
ÿ1
k ðxÿmkðukÞÞ ¼ Jkðmÿ1

k ðxÞ ÿ ukÞ;

and substitute this into (25), yielding:

�kðxÞ ¼ ckGVkþMÿ1
k VhMÿ1T

k

ðuÿ ukÞ: ð36Þ

This is the well-known source space EWA method [9] extended
for irregular sample positions, which is mathematically
equivalent to our screen space formulation. However, (36)
involves backward mapping a point x from screen to the
object surface, which is impractical for interactive rendering.
It amounts to ray tracing the point cloud to find surface
intersections. Additionally, the locations uk are irregularly
positioned such that the evaluation of the resampling kernel
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in object space is laborious. On the other hand, (35) can be

implemented efficiently for point-based objects, as described
in Section 7.2.

6.4 Reduction from Volume to Surface
Reconstruction Kernels

Since our EWA volume resampling filter can handle
arbitrary Gaussian reconstruction kernels, we can represent

the structure of a volume data set more accurately by

choosing the shape of the reconstruction kernels appro-

priately. For example, we can improve the precision of
isosurface rendering by flattening the reconstruction ker-

nels in the direction of the surface normal. We will show

below that an infinitesimally flat Gaussian volume kernel is
equivalent to a Gaussian surface texture reconstruction

kernel. In other words, we can extract and render a surface

representation from a volume data set directly by flattening

volume reconstruction kernels into surface reconstruction
kernels. Our derivation is illustrated in Fig. 10.

We construct a flattened Gaussian reconstruction kernel

in object space by scaling an arbitrary Gaussian with

variance matrix V along the third coordinate axis, i.e., using
a scaling matrix diagð1; 1; 1=sÞ. Applying (21), we find that

the variance matrix Vs of the scaled Gaussian is:

Vs ¼
v0;0 v0;1 v0;2=s

2

v1;0 v1;1 v1;2=s
2

v2;0=s
2 v2;1=s

2 v2;2=s
2

0@ 1A:
In the limit, if s ¼ 1, Vs is equivalent to a 2D Gaussian with
variance matrix V̂V that is parameterized onto the plane

perpendicular to the third coordinate axis, where

V̂V ¼ v0;0 v0;1

v1;0 v1;1

� �
is the upper left 2� 2 matrix in V. Since the plane is defined
by basis vectors ð1; 0; 0ÞT and ð0; 1; 0ÞT , parameterization

yields:

1 0
0 1
0 0

0@ 1AV̂V
1 0 0
0 1 0

� �
¼ Vs for s!1: ð37Þ

In the limit, the third row and column of Vs contain only

zeros. Therefore, projecting a Gaussian GVs to screen space

via mapping to ray space (30) and integration (32), or using

perspective projection as in (35), results in the same

2D variance matrix of the reconstruction kernel in screen

space. In other words, it is equivalent to rendering the

flattened Gaussian as a volume or as a surface reconstruc-

tion kernel.

7 IMPLEMENTATION

7.1 EWA Volume Splatting

We implemented a volume rendering algorithm based on

the EWA splatting equation. Our implementation is

embedded in the VTK (visualization toolkit) framework

[32]. We did not optimize our code for rendering speed. We

use a sheet buffer to first accumulate splats from planes in

the volume that are most parallel to the projection plane [2].

In a second step, the final image is computed by

compositing the sheets back to front. Shading is performed

using the gradient estimation functionality provided by

VTK and the Phong illumination model.

7.1.1 Algorithm

We summarize the main steps that are required to compute

the EWA splat for each voxel in Fig. 11.
First, we compute the camera coordinates tk of the

current voxel k by applying the viewing transformation to

the voxel center. Using tk, we then evaluate the Jacobian Jk
as given in (29). In line 4, we transform the Gaussian

reconstruction kernel from object to ray space. This

transformation is implemented by (31) and it results in

the 3� 3 variance matrix V0k of the Gaussian in ray space.

Remember that W is the rotational part of the viewing

transformation, hence it is typically orthonormal. Addition-

ally, for spherical kernels, Vk is the identity matrix. In this

case, evaluation of (31) can be simplified significantly. Next,

we project the voxel center from camera space to the screen

by performing a perspective division on tk. This yields the

2D screen coordinates xk. Now, we are ready to set up the

resampling filter �k according to (33). Its variance matrix is

derived from V0k by omitting the third row and column and

adding a 2� 2 identity matrix for the low-pass filter. We

compute the determinants 1=jJÿ1
k j and 1=jWÿ1j that are

used as normalization factors and we evaluate the shading

model yielding the emission coefficient ck.
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Fig. 10. Reducing a volume reconstruction kernel to a surface

reconstruction kernel by flattening the kernel in one dimension. Top:

rendering a volume kernel. Bottom: rendering a surface kernel.

Fig. 11. The EWA volume splatting algorithm.



7.1.2 Rasterization

Finally, we rasterize the resampling filter in line 7. As can be
seen from the definition of the elliptical Gaussian (19), we
also need the inverse of the variance matrix, which is called
the conic matrix. Let us denote the 2� 2 conic matrix of the
resampling filter by Q. Furthermore, we define the radial
index function

rð�xxÞ ¼ �xxTQ�xx where �xx ¼ ð�xx0; �xx1ÞT ¼ xÿ xk:

Note that the contours of the radial index, i.e., r ¼ const: are
concentric ellipses. For circular kernels, r is the squared
distance to the circle center. The exponential function in (19)
can now be written as eÿ

1
2r. We store this function in a 1D

lookup table. To evaluate the radial index efficiently, we use
finite differencing. Since r is biquadratic in �xx, we need only
two additions to update r for each pixel. We rasterize r in a
rectangular, axis-aligned bounding box centered around xk,
as illustrated in Fig. 12. Typically, we use a threshold c ¼ 4
and evaluate the Gaussian only if rð�xxÞ < c. Heckbert
provides pseudocode of the rasterization algorithm in [9].

7.2 EWA Surface Splatting

We can perform EWA surface splatting in our volume
renderer using flattened volume reconstruction kernels, as
described in Section 6.4. We have also implemented a
dedicated surface splatting renderer [23]. The EWA surface
splatting algorithm essentially proceeds as described in
Section 7.1.

However, the depth complexity of a scene is greater than
one in general, but only those splats that belong to the
visible surface must be accumulated in a pixel. Since back-
to-front ordering of unstructured point clouds during
rendering is prohibitive, an alternative mechanism is
required that separates the contributions of different
surfaces. We use a z-buffer approach, computing the z

value of the tangent plane at Pk at each pixel that is covered
by the splat. This can be performed efficiently by forward
differencing, similar to the visibility splatting approach of
[8]. To determine whether a new contribution belongs to the
same surface as is already stored in a pixel, the difference
between the new z value and the z value stored in the
frame buffer is compared to a threshold. If the difference
is smaller than the threshold, the contribution is added to
the pixel. Otherwise, given that it is closer to the eye-
point, the data of the frame buffer is replaced by the new

contribution. It is straightforward to extend this approach
to a multilayered z-buffer [33] (similar to an A-buffer
[34]) that allows the display of semitransparent surfaces
and edge antialiasing [23].

8 RESULTS

The EWA resampling filter has a number of useful proper-
ties, as illustrated in Fig. 13. When the projection to screen
space minifies the attribute function (i.e., the volume or
point-sampled surface), size and shape of the resampling
filter are dominated by the low-pass filter, as in the left
column of Fig. 13. In the middle column, the attribute
function is magnified and the resampling filter is domi-
nated by the reconstruction kernel. Since the resampling
filter unifies a reconstruction kernel and a low-pass filter, it
provides a smooth transition between magnification and
minification. Moreover, the reconstruction kernel is scaled
anisotropically in situations where the volume is stretched
in one direction and shrunken in the other, as shown in the
right column. In the bottom row, we show the filter shapes
resulting from uniformly scaling the reconstruction kernel
to avoid aliasing, as proposed by Swan et al. [18].
Essentially, the reconstruction kernel is enlarged such that
its minor radius is at least as long as the minor radius of the
low-pass filter. For spherical reconstruction kernels, or
circular footprint functions, this is basically equivalent to
the EWA resampling filter. However, for elliptical footprint
functions, uniform scaling leads to overly blurred images in
the direction of the major axis of the ellipse.

We compare our method to Swan’s method in Fig. 14.
The images on the left were rendered with EWA volume
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Fig. 12. Rasterizing the resampling filter.

Fig. 13. Properties of the EWA resampling filter.



splats, those on the right with Swan’s uniformly scaled
kernels. We used rectangular zebra textures with x and
y dimensions of 1; 024� 512 (in the first row) and 1; 024�
256 (in the second row) and mapped the textures to a
square. This leads to elliptical reconstruction kernels with a
ratio between the length of the major and minor radii of 2 to
1 and 4 to 1, respectively. Clearly, the EWA filter produces a
crisper image and, at the same time, does not exhibit
aliasing artifacts. As the ratio between the major and minor
radii of the reconstruction kernels increases, the difference
from Swan’s method becomes more pronounced. For
strongly anisotropic kernels, Swan’s uniform scaling pro-
duces excessively blurred images, as shown on the right in
Fig. 14. Each frame took approximately 6 seconds to render
on an 866 MHz PIII processor.

In Fig. 15, we compare EWA splatting using volume
kernels on the left to surface reconstruction kernels on the
right. The texture size is 512� 512 in the x and y direction.
Typically, the perspective projection of a spherical kernel is
almost a circle. Therefore, rendering with volume kernels
does not exhibit anisotropic texture filtering and produces
textures that are slightly too blurry, similar to isotropic
texture filters such as trilinear mipmapping. On the other
hand, splatting surface kernels is equivalent to EWA texture
filtering. Circular surface kernels are mapped to ellipses,

which results in high image quality because of anisotropic
filtering.

In Fig. 16, we show a series of volume renderings of the
UNC CT scan of a human head (256� 256� 225), the UNC
engine (256� 256� 110), and the foot of the visible woman
data set (152� 261� 220). The texture in the last example is
rendered using EWA surface splatting, too. The images
illustrate that our algorithm correctly renders semitranspar-
ent objects as well. The skull of the UNC head, the bone of
the foot, and the iso-surface of the engine were rendered
with flattened surface splats oriented perpendicular to the
volume gradient. All other voxels were rendered with EWA
volume splats. Each frame took approximately 11 seconds
to render on an 866 MHz PIII processor.

Fig. 17 shows results of EWA surface splatting which
were rendered using a dedicated surface splatting renderer
[23]. The face in Fig. 17a was acquired by a laser range
scanner. Fig. 17b illustrates high quality texturing on terrain
data and Fig. 17c shows semi-transparent surfaces on the
complex model of a helicopter. Table 1 shows the
performance of our unoptimized software implementation
of EWA surface splatting. The frame rates were measured
on a 1.1 GHz AMD Athlon system with 1.5 GByte memory.
We rendered to a frame buffer with a resolution of 256�
256 and 512� 512 pixels, respectively.
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Fig. 14. Comparison between EWA volume splatting and Swan et al. Top two rows: 1; 024� 512� 3 volume texture. Bottom two rows: 1; 024�
256� 3 volume texture.

Fig. 15. EWA volume splatting versus EWA surface splatting; 512� 512� 3 volume texture.



9 CONCLUSIONS

We present a new splat primitive, called the EWA

resampling filter. Using a general signal processing frame-

work, we derive a formulation of the EWA resampling filter

for both volume and surface splatting. Our primitive

provides high quality antialiasing, combining an

elliptical Gaussian reconstruction kernel with a Gaus-

sian low-pass filter. We use a novel approach of

computing the footprint function for volume rendering.

Exploiting the mathematical features of 2D and 3D

Gaussians, our framework efficiently handles arbitrary

elliptical reconstruction kernels and perspective projec-

tion. Therefore, our primitive is suitable to render

regular, rectilinear, curvilinear, and irregular volume

data sets. Our formulation of the EWA surface

resampling filter is equivalent to Heckbert’s EWA

texture filter. It provides high quality, anisotropic

texture filtering for point-sampled surfaces. Hence,

we call our primitive universal, facilitating the render-

ing of surface and volume data.
We have not yet investigated whether other kernels

besides elliptical Gaussians may be used with this frame-

work. In principle, a resampling filter could be derived

from any function that allows the analytic evaluation of the

operations described in Section 6.1 and that is a good

approximation of an ideal low-pass filter.
To achieve interactive frame rates, we are currently

investigating the use of graphics hardware to rasterize

EWA splats as texture mapped polygons. Programmable

vertex shaders of modern GPUs (graphics processing units)

provide all operations to compute EWA resampling filters

completely in hardware. To render nonrectilinear data sets,

we are investigating fast back-to-front sorting algorithms.

Furthermore, we want to experiment with our splat

primitive in a postshaded volume rendering pipeline. The

derivative of the EWA resampling filter could be used as a

band-limited gradient kernel, hence avoiding aliasing

caused by shading for noisy volume data.
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Fig. 16. Semitransparent objects rendered using EWA volume splatting. The skull of the UNC head, the iso-surface of the engine, and the bone of

the foot are rendered with flattened surface splats. (a) UNC head. (b) UNC engine. (c) Visible Woman foot.

Fig. 17. EWA surface splatting of a scan of a human face, textured terrain, and a complex point-sampled object with semi-transparent surfaces. (a)

Scanned head. (b) Textured Terrain Data. (c) Semi-transparent surfaces.

TABLE 1
Rendering Performance for Fame Buffer Resolutions

256� 256 and 512� 512
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