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Hand-Held 3D Light Field Photography and Applications
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Abstract We propose a method to acquire 3D light
fields using a hand-held camera, and describe several
computational photography applications facilitated by
our approach. As our input we take an image sequence
from a camera translating along an approximately lin-
ear path with limited camera rotations. Users can ac-
quire such data easily in a few seconds by moving a
hand-held camera. We include a novel approach to re-
sample the input into regularly sampled 3D light fields
by aligning them in the spatio-temporal domain, and
a technique for high-quality disparity estimation from
light fields. We show applications including digital refo-
cusing and synthetic aperture blur, foreground removal,
selective colorization, and others.

Keywords 3D light fields, computational photogra-
phy, disparity estimation, digital refocusing

1 Indroduction

Modern smartphones and tablet computers with their
ever increasing computational power provide fascinat-
ing opportunities to implement computational photog-
raphy applications without resorting to off-line compu-
tation. In this paper, we describe a method for hand-
held 3D light field photography. As input we take image
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sequences captured with a hand-held camera along ap-
proximately linear trajectories. Capturing such data is
a matter of a few seconds and does not require any extra
equipment. At the core of our approach then is an effi-
cient method to resample the input image sequence into
a regularly sampled 3D light field, that is, the light field
corresponds to a linear camera motion with equidistant
views. This light field then opens up the possibility for
a variety of further processing. First, we present a high
quality algorithm for disparity estimation. Based on the
disparity map, we then propose applications for digi-
tal refocusing, foreground removal, segmentation, ob-
ject insertion, and multiview autostereo output.

Our approach shares similarities with recent tech-
niques that attempt to perform multi-view 3D recon-
struction [I] and 4D light field acquisition [2] on mo-
bile devices. The main goal of multi-view reconstruc-
tion techniques is to produce full 3D models, which can
then be used, for example, for 3D printing. While these
techniques produce impressive results, they require sev-
eral minutes of user interaction to obtain high quality
reconstructions. Similarly, unstructured 4D light fields
require the acquisition of many images from viewpoints
distributed over a 2D domain, for example roughly on
a hemisphere around an object of interest. In contrast,
data capturing for our approach takes just a few sec-
onds. The focus of our approach is not on full 3D re-
construction or image based rendering, but on provid-
ing advanced computational photography tools. In sum-
mary, we make the following contributions:

— An efficient technique for resampling image sequences
along an approximately linear camera trajectory into
3D light fields.

— A high quality disparity estimation technique based
on 3D light fields.
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Fig. 1 Overview of our processing pipeline.

— A technique to generate out-of-focus blur leveraging
3D light field data.

— A proof-of-concept implementation demonstrating
feasibility of our approach on a mobile device.

Figure[I]shows an overview of our pipeline. Given an
input image sequence from a hand-held camera under
a roughly linear trajectory, we first resample the data
into a regularly sampled 3D light field (Section |3) and
then perform disparity estimation (Section . Finally,
we leverage this data for several computational pho-
tography applications (Section 7 including digital re-
focusing, foreground removal, segmentation, object in-
sertion, and multiview autostereo output. Finally, we
present results from a proof of concept application for
mobile devices in Section [6l

2 Related Work

Resampling image sequences from approximately linear
camera motions into 3D light fields is similar to video
stabilization. Our approach is most related to the work
by Feng et al. [3]. They proposed to use a linear analysis
of feature tracks in the input video to recover a lower di-
mensional subspace, where the projection into the sub-
space is related to the camera motion. By smoothing
the projection matrix they then obtain smoothed fea-
ture tracks. In contrast to their approach, we solve an
optimization problem to obtain a linear camera trajec-
tory that best approximates the input camera motion.
We also resample the input images temporally to obtain
a camera motion with constant speed. Similarly to their
technique we render the output views using content pre-
serving image warps [4]. Video stabilization can also be
solved by reconstructing the 3D camera path [4], or
by smoothing 2D feature trajectories under additional
constraints [5]. Subspace analysis is attractive for us be-
cause it avoids the complexities and robustness issues
with reconstructing the full 3D camera motion, but it
provides enough information to achieve a linear camera
motion at constant speed.

Our disparity estimation algorithm is inspired by
the recent work of Rhemann et al. [6] and Kim et al. [7],
whereas the latter represents the state-of-the art for dis-
parity estimation from light fields. Kim et al. showed
that very high quality disparity estimation is possible
from light fields with high spatio-angular resolution by

estimating disparity scores for single pixels. We use a
similar approach to obtain initial estimates for dispar-
ity scores. Then we use an efficient edge aware filter
to remove noise in our initial score volume of disparity
hypotheses as proposed by Rhemann et al. While they
apply the guided image filter [8] for this purpose, we are
building on domain transform filtering [9], which allows
us to easily include additional confidence values for the
disparity hypotheses in the filtering process. We present
a comparison of our approach and these techniques us-
ing standard datasets in Section [} demonstrating the
improved quality of our method.

Digital refocusing is one of the main applications of
our framework. Ng [10] and Isaksen et al. [I1] showed
in their seminal work how 4D light fields can be used
to refocus digital images after the fact. Unfortunately,
applying the same techniques directly to 3D light fields
would lead to unnatural one-dimensional out-of-focus
blur. In our approach, we leverage our disparity maps to
combine 3D light field refocusing with an image based
blur to achieve convincing results. An even simpler ap-
proach to achieve digital refocusing would be to use a
focus stack, which has been implemented in commer-
cial mobile applications [I2]. These techniques, how-
ever, cannot increase the defocus beyond the limits im-
posed by the aperture of the camera. Our approach al-
lows for a very large synthetic aperture, and we provide
additional functionality such as completely removing
thin foreground objects, inspired by the work by Joshi
et al. [I3]. Defocus blur can also be manipulated us-
ing image processing techniques [I4], but the quality of
this approach is limited since it is purely image based,
and it produces artifacts in particular when foreground
objects are out of focus.

Beyond refocusing, our technique enables other light
field processing techniques such as alpha matting [I5].
We found, however, that in practice a simpler approach
using edge aware filtering is more robust. Finally, the
3D light fields produced by our technique can also be
used for multiview autostereo displays [16].

3 Spatio-Temporal 3D Light Field Resampling

The input to our method is an image sequence from
a camera sweep, similar to a sweep panorama. The
sweep should be a left-to-right (or right-to-left), ap-
proximately linear camera motion without significant
camera rotation. The user then picks one view as a ref-
erence image, which we will use to resample the 3D
light field as described below, compute a disparity map
(Section, and perform our applications (Section. A
camera sweep acquired using a hand-held device is un-
likely to be perfectly linear, and the images usually are
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Fig. 2 Overview of our resampling. From the input sequence
(top), we first search for a horizontal camera path (middle).
Then, we resample this path regularly and compute equidis-
tant views (bottom).

non-equidistant samples along the camera path. Hence
we perform a linearization of the camera path in a first
step (Figure Sectionsto. In a second step, we
produce new views from equidistant camera positions
along this linear path (Section .

3.1 Feature Trajectory Matrix

Our stabilization and resampling process is based on
Liu et al.’s subspace video stabilization [3]. We begin
with feature tracking and feature matching, and obtain
a collection of feature trajectories {(z%,y!)}, where i is
the feature index, and (z%,y{) are the coordinates of
the feature on frame ¢. We collect the trajectories in a
trajectory matrix,

yi v - Up

M = : ; (1)
e
TN AR TN

where F' is the number of frames of the input sequence
and N the number of trajectories we found. Not all
features can be tracked over the full duration of the
video in general, and for missing features we set their
corresponding entries in M to zero.

3.2 Factorization

The seminal work by Irani [I7] showed that the trajec-
tory matrix M can be approximated by a matrix with
rank 9. Irani factorizes M into two matrices C' and E.
The feature coefficient matrix C' € R2V*? describes the
3D structure of the N feature points, and the camera
matrix £ € R%F represents the F' camera positions

Frames / Time

Fig. 3 We show a part of the feature trajectory matrix.
Trajectories (white) are ordered according to their first ap-
pearance. The initial factorization window is red, and a sec-
ond window is green. With the C® matrix entries from the
first window (green dotted lines) and the additional frames
of these trajectories (solid part of green lines) in the next
window we compute E'. Next we compute coefficients for
trajectories that span the second window, but did not span
the previous one completely (dashed green lines).

and the projections of the features onto the frames. We
will exploit this in Section 3.3 where we search for a new
camera matrix which describes a linear camera motion.
Since C'E is a full matrix, we multiply it element-wise
with a binary matrix W consisting of ones where M
has a non-zero entry, and zeros elsewhere. Hence, the
matrix factorization we look for becomes

M~WoCE, (2)

where ® denotes element-wise multiplication.

We incrementally factorize M with the moving fac-
torization method described by Liu et al. in [3]. In our
approach, we select our initial window such that the ref-
erence frame Fj, is in its center. The initial window is
depicted in red in Figure|3] We then collect all trajecto-
ries that span the whole window in a trajectory matrix
M?°, which we decompose using SVD. By truncating
the resulting matrices to 9 rows resp. columns and dis-
tributing the square roots of the 9 largest eigenvalues to
the left and right matrices we get a camera matrix E°
and a coefficient matrix C°. Next, we move the window
forward as depicted in green in Figure 3] and we search
again for the trajectories that span the whole window.
Since now we have some trajectories that spanned the
previous window, too, we already have coefficients in
C° for them. These cases are depicted with green dot-
ted lines in Figure [3] With these coefficients we can
compute the missing entries for the camera matrix E*,
which corresponds to the frames that are not covered
by the previous factorization windows. The camera ma-
trix is then complete for the current window, and we
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can compute the feature coefficients C! for the new tra-
jectories that completely cover the current factorization
window (and have not been computed before). We mark
these trajectories with green dashed lines in Figure
Finally, we repeat this process forward and backward in
time until all frames are processed. For a more formal
description we refer to [3].

In the process above, we compute the coefficients in
C for each feature with the knowledge of only one fac-
torization window, although most feature tracks extend
beyond a single window. The restriction to single win-
dows may fail if, for example, the camera moves only
very little during this window and does not constrain
C enough. Therefore, we verify the validity of the co-
efficients of each feature by checking if the difference
between the approximation using the factorization and
the input feature location ever exceeds 3 pixels. If this
test fails, we recompute the feature coefficients by tak-
ing into account the whole feature trajectory and test
the factorization error again. In the end, we keep only
trajectories for which the approximation never differs
more than 3 pixels.

3.3 Linear Camera Motion

To construct a 3D light field we require a linear camera
path and completely horizontal feature trajectories. In
addition, the camera and the features should stay as
close as possible to the input. Hence we seek trajecto-
ries with constant y-coordinates, and the z-coordinates
along the linearized camera path should stay as close
as possible to the input. Remember that we factorized
the trajectory matrix into a feature coefficient matrix
C and a camera matrix E. Further, we can split the co-
efficient matrix into submatrices C, and C)y, which give
rise to the z- and y-coordinates of the feature trajecto-
ries, respectively. With that in mind, we now search for
a new matrix F, such that CyE is row-wise constant.
Since our desired camera motion is linear, the columns
of E representing the cameras in each frame must fol-
low a linear model. This is, £ = E5T + E®, where E®
and E® are both column vectors of height 9, and T is a
row vector of length F'. Intuitively, the vector T' marks
the points in time each frame was captured. Our goal
is now to determine the unknowns E*, E° and T.

We further reduce the degrees of freedom of the sys-
tem by holding the reference frame F;, fixed. As a con-
sequence, the y-coordinate for all trajectories is given
by that frame. We then create a matrix §M containing
the differences of the feature coordinates in the trajec-
tory matrix M to the location in the reference frame
F,,. Note that the column m of § M is all zero. We con-
clude that T,,, = 0 and M,,, = W,,0CE®. The subscript

Fig. 4 We show the EPI of the input sequence on top. Lines
may become thinner or wider (green box) or may disappear
(red box). In the middle is the EPI after the linearization
of the camera path. The structure of the light field is now
clearly visible. Still, the lines are curved as the comparison
to the blue line shows. In the bottom EPI the lines became

straight after temporal resampling.

m denotes the m-th column of M and W respectively,
and the m-th entry of T. It follows that E° is equal to
the m-th column of E. Hence, our problem reduces to
the minimization

axg win [|Cy (BT + al|5M,. — W, © Co(B°T)||. (3)

The first term pushes the y-coordinates towards the
ones in F,,. The second term keeps the x-coordinates
where they were on the input frames and prevents the
system from returning the trivial solution, and « is a
factor to balance the two terms. We usually obtained
best results with ao = 1.

3.4 Rendering of Output Views

We finally compute the output feature locations and
render the views of the regularly sampled 3D light field.
With 7 and E* given, and {(z¢,,y%,)} the feature lo-
cations on the reference frame, the feature locations on
frame j on a perfectly linearly moving camera are

{(x:nvyvln) + (C;EéTjﬂC;EbT])L (4)

where T); denotes the j-th entry of T'. Still, it is possible
that the camera changes speed along its linear trajec-
tory. This leads to curved lines in the EPI as we show
in Figure [l To avoid this, we manipulate T'. We set

At = min(| min(7)], | max(T)|)/n (5)

where n is an arbitrary number of views we want to
create on each side of the reference frame. For the [-th
output image, with [ € {—n, ...,n}, we compute its time
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t = lAt, and we use ¢t to compute the new z-coordin-
ates. For the y-coordinates we use the location on the
reference frame F), directly. This leads to the output
feature locations {(z%,,v’,) + (CLE®t,0)}.

We render the output view by searching for ¢’s next
smaller and larger entry in 7. We warp the correspond-
ing two input frames with the content-preserving warp
from Liu et al. [4], and linearly blend the two warped
frames to produce the output image. After rendering all
2n images our 3D light field is complete and the EPIs
show straight lines as we show in Figure [

4 Disparity Map

For most of our applications we need a disparity map
for our reference image. We compute this disparity map
using the 3D light fields that we obtain as described in
the previous section. We first construct a score volume
that holds a score for a set of disparity hypotheses at
each pixel, where larger scores indicate higher quality
matches (Section. We then filter each disparity slice
of the score volume using a structure preserving filter
to increase the robustness of our initial score estimates
(Section . We assign a disparity to each pixel with
a winner-takes-all strategy over the filtered disparity
hypotheses at each pixel. Finally, we apply a bilateral
median filter to get our output disparity map.

4.1 Score Volume Computation

We construct our score volume using the stabilized im-
ages I; from the previous section as input. For each
disparity hypothesis from a predetermined set of hy-
potheses, we shift all the images horizontally with re-
spect to the hypothesized disparity. We then compare
the pixels in the shifted images with the reference im-
age I, and compute a score for each pixel. We adopt
the similarity measurement from Kim et al. [7] using
an Epanechnikov kernel. Additionally, we also take into
account the horizontal image gradients.

More precisely, we define the initial score for pixel
(z,y) and disparity hypothesis d as

Q? Y, d ZK xmy = Iy (xay))'
Ji#Em (6)

K(vxlj (ws,y) — Valm(z,y)),

where j is the index of the input image, x5 = x + (j —
m)d is the shifted pixel position under disparity d, and
V. is the horizontal image gradient. The similarity ker-
nel K is the Epanechnikov kernel K (z) = 1 — ||z/h/?
llz/Rh]] < 1 and 0 otherwise. We set the threshold A to
h =9, where pixel values are in the range [0, 255].

Fig. 5 The accumulated score of the red disparity hypoth-
esis is larger than the one of the green one because we find
more pixels with non-zero scores along the red line. On the
other hand, the green hypothesis has fewer but higher non-
zero scores. Our normalization gives preference to the correct
hypothesis in green.

We observe, however, that in regions containing oc-
clusions as in Figurethe raw score from Equation @
is biased towards the foreground disparity. For the pixel
marked in yellow the correct disparity corresponds to
the green ray, which belongs to the background. Along
this ray, however, we have fewer non-zero scores in the
sum of Equation @ because of the occlusion by the
foreground in some of the views. Hence the sum of the
scores of the disparity of the foreground, drawn in red,
is higher, although the value of the individual scores in
Equation @ are smaller. To avoid this effect we include
a normalization step in our approach.

We first define a confidence measure C(z,y), which
captures at each pixel (z, y) the ratio by which the high-
est score outperforms the average score, that is,

maxg(S(z,y,d))

Clow) = DZd S(z,y, )

(7)

This ratio indicates how unique the maximum score is
with respect to the average score. In an ideal case the
score is non-zero only for a single disparity hypothesis
and the confidence takes on the value D, the number of
disparity hypotheses. The confidence goes to 1 as the
maximum score gets closer to the average.

Situations as in Figure [f]lead to low confidence val-
ues, because the scores of the disparity hypotheses of
the yellow pixel exhibit several peaks instead of a single
one. Therefore, if the confidence is low we divide each
score by its corresponding number of non-zero values
in the sum in Equation @ This favors disparity hy-
potheses with fewer, but higher scores, and allows us to
more robustly detect the background disparity. If con-
fidence is high there is likely a single peak in the scores
and the normalization is not necessary. It may even be
counterproductive, since it reduces the prominence of
the peak. Hence in this case we normalize all scores for
a pixel by the same factor, which is the number of non-
zero values in the highest score in Equation @ We
obtained all our results with a threshold of D/4 on the
confidence.
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4.2 Score Volume Filtering

The purpose of the score volume filtering step is to re-
duce the noise in our initial per pixel score estimate de-
scribed above. We apply an edge preserving filter to the
(z,y)-slice of each disparity hypothesis similar as pro-
posed by Rheman et al. [I8]. Instead of the guided im-
age filter, however, we use the domain transform filter
(DTF) introduced by Gastal and Oliveira [19], whose
computational complexity is linear in the number of
pixels to be filtered and independent of the filter sup-
port size, similar as for the guided filter. The most at-
tractive property of the DTF for our problem is that
its support adaptively shrinks or expands according to
the image structure. In particular, in highly uniform ar-
eas where disparity estimation is notoriously difficult,
the filter takes on a large support. In regions with rich
structure, in contrast, the filter support shrinks. Intu-
itively, the DTF weights pairs of pixels by their distance
(according to some metric) along a path connecting
them in the image. This is similar to geodesic filter-
ing, and indeed the domain transform approach can be
interpreted as an iterative approximation of geodesic
filtering. Here we focus on our extensions of DTF for
filtering our score volumes. Please see the original pub-
lication [I9] for more details.

We first give a simplified explanation of the basic
DTF in 1D. Assume the input is a 1D function I(x) :
R — R. The DTF weight for two neighboring pixels
at locations x and x + h is defined as g(|ct(x) — ct(z +
h)|), where g is a filter kernel, and ¢t : R — R is the
domain transform function, which is at the core of the
approach. The main idea is to define ct in a way such
that the absolute value |ct(x) — ct(z + h)| is related to
a [1 distance in 2D between the two 2D points given
by the pixels and their function values. This [; distance
is defined as osh + |0 (I(z) — I(x + h))|, where o5 and
o, are filter parameters similar to the spatial and range
parameters of the bilateral filter. The key observation
is that if these 2D distances are large, ct “scales up”
the argument |ct(x) — ct(xz + h)| to the filter, leading
to a quick fall-off of filter weights, and preserving the
structure in the input. The opposite happens for small
distances. Generalizing to color images with three r, g, b
channels, one can show that the above constraints on
ct lead to the definition

ct(u) = /O“ 14+ 2 Z |I}.(z)|dz, (8)

a
r ker,g,b

where I}, is the derivative of the k-th color channel. In
addition, 2D images can be filtered by iterating over
several 1D passes.

In our application, we filter the disparity hypotheses
scores obtained in the previous section using the color
image of the reference view as a “guide” to define the
domain transform function, which is similar to cross-
bilateral filtering. We observed, however, that we can
improve the quality of our filtered output by includ-
ing the confidence C, Equation , from the previous
Section. The intuition for including the confidence in
the DTF is that if we found a clear winner among the
disparity hypotheses at a pixel, meaning we get a high
confidence value, the filter does not need to extend fur-
ther. On the other hand, if we have low confidence in
the winning disparity hypothesis, the filter should ex-
pand until we accumulated enough evidence.

We include the confidence into the DTF as an addi-
tional channel in the guide, forcing the filter support to
stop where we have enough confidence. We achieve this
by plugging the logarithm of Equation into Equa-
tion ,

ct(u)z/ 1+2 S @)+ 2 10g(C(w)) da.
0 Ir ke{r,g,b} Tec

9)

Due to the non-linearity of our confidence estimate,
we use log(C') as an upper bound on the confidence
of the filtered score volume that will be accumulated
by the filter. We can easily show that using the loga-
rithm guarantees that the filter support never accumu-
lates more than the user specified confidence o.. We use
o, = 178.5, set o to one fifth of the image width, and
o. = log(D) to produce all our results.

After cost volume filtering, we select the disparity
with the highest score in a winner-takes-all manner. We
finally apply a bilateral median filter to remove remain-
ing spike noise within a 9 x 9 block. To compute this
weighted median, we calculate its bilateral weights [20]
according to the corresponding colors in the reference
image. Then a histogram is created using the computed
weights as accumulation factor of the neighboring dis-
parities. The median value of this histogram is assigned
to the pixel’s disparity. We compare our approach to
two other recent methods [2Z11[7] in Figure [6]

5 Applications

In this section we present several applications of our
reconstructed 3D light fields, most of them relying on
disparity maps constructed as described above.



Hand-Held 3D Light Field Photography and Applications

i st

(c¢) Unnormalized

(e) Our confidence map (f) Wanner et al. [21]

(g) Kim et al. [7J (h) QOurs

Fig. 6 Visualization of the disparity map creation: (a) the reference view, (b) parts of four slices of the score volume S for
disparity hypothesis -1.5, 0, 1.5 and 3 (from left to right), (c) the disparity with maximum score in S, (d) the disparity with
the normalized scores, (e) the confidence map, (f) final result of [21I], (g) final result of [7], (h) our final disparity map.

5.1 Refocusing using Synthetic Apertures

Shallow depth of field effects, as often used in profes-
sional portrait photography for example, are beyond
the reach of devices like smart phones because of size re-
strictions on the optical design. Light fields acquired by
translating a camera, however, make it possible to sim-
ulate synthetic apertures whose size is only limited by
the range of camera translations. Light fields also facil-
itate digital refocusing after the fact, that is, changing
the focal depth after image acquisition. We exploit our
3D light fields to achieve refocusing using potentially
large synthetic apertures.

Given a 4D light field, it is straightforward to sim-
ulate a synthetic aperture by simply filtering over its
two angular dimensions, where the filter represents the
shape and extent of the desired aperture. The main
challenge we need to overcome is that in our 3D light
fields we only have one angular dimension, restricting
synthetic apertures to horizontal 1D slits. We solve this
problem by observing that we can model any separable
2D aperture as a superposition of vertical 1D aper-
tures over the 1D angular domain of our 3D light fields.
Hence, we use a two step procedure to obtain synthetic
2D apertures. First, for each view in our 3D light field
we approximate the effect of the vertical 1D aperture.
In the second step, we filter these processed views over
the angular domain of the light field.

We leverage our disparity maps to compute the ver-
tical 1D synthetic apertures using a depth-aware blur.
We assume a two layer model consisting of a foreground
and a background layer at each pixel, where the fore-

ground contains all neighboring pixel closer to the cam-
era, and the background all other pixels. We compute
the colors for both layers separately, and blend them us-
ing alpha compositing. We obtain the depth-aware blur
by splatting each foreground pixel to its vertical neigh-
bors, where the splat size is given by the difference of
the pixel’s disparity to the disparity corresponding to
the desired focal distance, and we use a 1D Gaussian
splat kernel. More precisely, we splat the color of pixel
q to a vertical neighbor p using the Gaussian weight

1 _lp—al?

G(p,%U): \/ﬁe 207 (10)

where the variance

_aldl@) —dyl+1 "
4 21og(255)
is defined by the difference of the disparity d(q) of pixel
q to the disparity d; of the object in focus and the user
given aperture size a.

We compute the foreground color F(p) of a pixel
p by accumulating the splat contributions of all fore-
ground pixels q, that is, pixels with larger disparities
than p,

_ Zdld@>am) G(P 9, 99)1(q)

F , 12
(v) o) (12

where we normalize by the sum of the weights

W)= >  G(p.q0q). (13)

{ald(a)>d(p)}
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(a) Reference Image (b) Vertical 1D Aperture

(d) Background in Focus

(c) Foreground in Focus

Fig. 7 We create our synthetic aperture in two steps. First we enlarge the aperture vertically only (b). This we do for several
views along the horizontal camera path. Summing them up extends the aperture horizontally (c). To get (d) we apply the

same procedure by focusing on the background.

Note that the normalization weight W (p) can be con-
sidered as an opacity value. We similarly compute the
background color using all background pixels, that is,
pixels with the same or smaller disparities than p. Note
that here we calculate the filter size according to the
disparity of p for all background pixels. We do this be-
cause p itself belongs to the background, and it should
not be splatted with colors from pixels which are behind
it when p itself is in focus. Then,

_ Z{qld(q)gd(p)} G(q,p,0p)I(q)
Z{Q|d(q)§d(p)} G(q,p,0p)

B(p) (14)

Finally, we composite the foreground and background
using alpha blending with o = min(1, W(p)),

V(p) =aF(p) + (1 — a)B(p), (15)

where we clamp foreground coverage to one. We show
an example in Figure m(b)

Note that to apply the depth-aware blur to each
light field view, we need a disparity map for each one.
Instead of recomputing disparity maps for each view,
we simply propagate the disparities from the reference
image by following them to the other views. Hence, we
propagate the disparity d of pixel (z,y) on the reference
view m to pixel (x 4+ d(i — m),y) on the i-th disparity
map. For pixels that receive several disparity values we
keep the largest one, since this is the one belonging to
the frontmost object. On the other hand, gaps will ap-
pear in background regions that were occluded in the
reference view. We fill these holes with the lower dis-
parity of its left respectively right border.

Once we computed all the vertically blurred views
Vi, we shift them according to the in-focus disparity dy
and compute a weighted sum

LsynthApp(P) = Z G(i,m,0)V;(ps) (16)

as the output image, where ps = (x5,y) with z, = +
(i—m)dy. We use again the Gaussian weights G(i,m, o),
where 7 is the index of the view, m is the index of the

reference image and o = (a + 1)/4/21og(255).

5.2 Further Applications

In this section we illustrate the usefulness of our pro-
cessing pipeline by discussing further computational pho-
tography applications.

Foreground Removal. We can automatically remove thin
foreground obstacles by exploiting our light field data
and disparity map. This is useful to remove unwanted
objects that may spoil a shot, as illustrated in Figure[§]
Our approach is inspired by previous work that exploits
light fields to “see through” foreground objects that
partially occlude the scene behind [13]. The main idea
is that digitally refocusing on a background layer using
a very large synthetic aperture will make the foreground
almost transparent. Since we have a disparity map at
our disposal in addition to the light field, we are even
able to completely disregard foreground objects based
on their disparity when digitally refocusing on the scene
behind. We simply mask out the disparity map using a
threshold given by the disparity of the obstacle. Then
we refocus the light field on the background and inte-
grate only where the mask is non-zero. We apply the
same disparity propagation to the non-central light field
views as in Section [B.1}

Segmentation and Alpha Matting. We can use our dis-
parity map to segment foreground objects by threshold-
ing the disparities. The user sets the threshold simply
by selecting the desired object. In addition, we obtain
an alpha matte by filtering the resulting binary segmen-
tation mask with the guided image filter as proposed
by He et al. [§]. The filtering step produces a “guided
feathering” effect where alpha values preserve detailed
image structures while smoothly blending between fore-
ground and background. Although algorithms for alpha
matting using light fields have been proposed [15], we
found that these approaches are less robust and more
sensitive to parameter settings and scene characteris-
tics.

We can also use the resulting segmentation and al-
pha matte to generate a selective gray scale effect where
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(a) Reference Image (b) Synthetic Aperture

(c) Large Synthetic Aperture

(d) Infinite Aperture

Fig. 8 We show the user selected reference image in (a). In (b) and (c) we applied our synthetic aperture focusing on the
background with aperture size 5 and 10, respectively. In (d) we show the result of our ”infinite aperture” by removing the

fence.

Fig. 9 An application of our computed alpha matte: For the
reference image (top left) an alpha matte is generated for the
foreground (top right). The object is inserted into the scene
and blended with the foreground (bottom).

(a) Reference Image (b) Grayscale

Fig. 10 An application of image segmentation: pixels with a
disparity value below a threshold are converted to gray scale.

the selected region stays colorful while we convert the
rest of the scene to a gray scale image, as shown in
Figure Leveraging the disparity map, we can fur-
ther provide functionality to insert new objects in the
scene while respecting occlusions and performing alpha
compositing with the foreground and background.

Multiview Autostereo Output. With the method from
Section |3.4] we are able to render views from any point
on the camera baseline. Hence it is straightforward to
produce the appropriate views for autostereoscopic dis-

plays or lenticular prints. We adjust the zero-disparity
plane to focus on desired scene elements by horizontally
shifting the created views, where we read the required
shift directly from the disparity map.

6 Mobile Application

To demonstrate the feasibility of a mobile app targeting
advanced computational photography we implemented
digital refocusing with synthetic apertures on iOS. The
app lets the user record short movies and then processes
the video frames as explained in Section[3] The user can
then refocus the image as described in Section [5.1] using
a touch gesture.

The iOS implementation shares most of the under-
lying source code with its desktop sibling, which keeps
the porting effort at a minimum. To improve perfor-
mance on the mobile device we vectorized the math-
libraries using ARM NEON, perform more complex op-
erations asynchronously to avoid freezing the user inter-
face, and use an OpenGL ES 2 based off-screen renderer
to increase the performance of our image-based warper
(Section . Last but not least, we tuned all quality
settings for speed to minimize the runtime complexity
when computing synthetic apertures aimed at mobile
device screen resolutions. This includes the number of
tracked featuresﬂ the number of rendered views (10),
and the input frame resolution (720p).

We benchmarked our prototype on two devices, an
iPhone 5 powered by Apple’s ARM-v7s A6, and an iPad
Air powered by Apple’s ARM-v8 64bit A7. The results
are shown in Table Apparently, preprocessing the
input material is the most time consuming part, notably
feature detection, whereas refocusing is relatively quick.
It is thus advisable to use as few frames as possible, and
then to store the preprocessed data for later reuse. This
enables us to provide a similar experience as with the
Lytro light field picture files.

1 Using cv::goodFeaturesToTrack()
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