
Multidimensional Adaptive Sampling and Reconstruction for Ray Tracing

Toshiya Hachisuka∗ Wojciech Jarosz∗ Richard Peter Weistroffer† Kevin Dale‡

Greg Humphreys† Matthias Zwicker∗ Henrik Wann Jensen∗

∗UC San Diego ‡Harvard University †University of Virginia

Abstract

We present a new adaptive sampling strategy for ray tracing. Our
technique is specifically designed to handle multidimensional sample
domains, and it is well suited for efficiently generating images with
effects such as soft shadows, motion blur, and depth of field. These
effects are problematic for existing image based adaptive sampling
techniques as they operate on pixels, which are possibly noisy results
of a Monte Carlo ray tracing process. Our sampling technique
operates on samples in the multidimensional space given by the
rendering equation and as a consequence the value of each sample
is noise-free. Our algorithm consists of two passes. In the first
pass we adaptively generate samples in the multidimensional space,
focusing on regions where the local contrast between samples is
high. In the second pass we reconstruct the image by integrating the
multidimensional function along all but the image dimensions. We
perform a high quality anisotropic reconstruction by determining
the extent of each sample in the multidimensional space using a
structure tensor. We demonstrate our method on scenes with a 3 to 5
dimensional space, including soft shadows, motion blur, and depth
of field. The results show that our method uses fewer samples than
Mittchell’s adaptive sampling technique while producing images
with less noise.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism

Keywords: Sampling and Reconstruction, Ray Tracing, Rendering
Equation, Global Illumination

1 Introduction

Most image synthesis applications rely heavily on sampling and
reconstruction. Errors introduced by these processes can be visu-
ally distracting, so a large number of samples are typically drawn.
However, there is a tension between computational expense and
image fidelity, as computing the radiance at a sample can be costly.
Adaptive sampling techniques strive to focus effort only where it
is likely to be needed: in areas of rapid change. This approach is
justified because regions where the signal is changing quickly have
high local bandwidth; therefore, more samples are needed in these
regions to adequately capture the higher frequencies (see Landau
and Pollak for a formal analysis of the use of local bandwidth in
sampling [Landau and Pollak 1962]).

Typically, adaptive techniques detect high frequencies of the radiance
function only in the image plane; however, adaptive sampling only

in the image plane poses problems in the context of Monte Carlo ray
tracing. These approaches ignore discontinuities present between
samples that fall into the same pixel, where additional samples
would be of great benefit. Furthermore, image-space algorithms
are often difficult to generalize to ones that consider features of the
input signal in non-image dimensions (e.g., time for motion blur).
Although this does not make them incompatible with a Monte Carlo
ray tracing, the resulting images require more samples to prevent
artifacts in the reconstruction.

In this paper, we present a rendering algorithm based on multidimen-
sional adaptive sampling and integration. Our technique adaptively
distributes a set of samples in the full, multidimensional sampling do-
main. These samples will tend to group around areas of rapid change
in all dimensions, which could be either sharp edges in the scene, or
image areas that are dominated by distribution effects (e.g., soft shad-
ows, motion blur, depth of field) where more samples are required to
adequately reconstruct the correct color for display. We also present
a novel image reconstruction technique designed for these multidi-
mensional samples. Our approach integrates a piecewise constant
function defined by samples to project the multidimensional result
onto the image plane. Our combined approach allows us to render
realistic images with substantially less visual and quantitative error
than previous approaches in the same amount of time.

2 Related Work

Sampling and reconstruction are ubiquitous in computer graphics,
and we will only describe the most relevant prior work here. For a
more comprehensive overview we refer to several excellent surveys
that describe the different algorithms [Mitchell 1990; Glassner 1995;
Dutré et al. 2006; Pharr and Humphreys 2004].

Most adaptive sampling algorithms operate exclusively in the image
plane. Whitted’s pioneering paper on recursive ray tracing suggested
the use of an adaptive sampling scheme, followed by a reconstruction
step [Whitted 1980]. Whitted’s algorithm first coarsely samples
the image on a regular grid, and then recursively subdivides the
squares of this grid if the samples at the corners of the square are
sufficiently different. Although Whitted’s scheme is adaptive, it is
not stochastic, and the rendered images exhibit structured aliasing.
To eliminate aliasing a number of approaches use adaptive stochastic
sampling [Mitchell 1987; Mitchell 1991; Bolin and Meyer 1998;
Rigau et al. 2003], where the samples are generated stochastically
with higher density in regions of the image that exhibit the largest
error (e.g., high contrast or variance). These image based approaches
provide a powerful method for reducing the number of samples
required by normal ray tracing, but they fall short when considering
effects such as motion blur and depth of field. The reason for this is
that pixel values are noisy unless a large number of samples are used
to estimate the true radiance through each pixel. Mitchell [1991]
demonstrated how to compute better sampling patterns for higher
dimensional problems, but the adaptive part of his algorithm still
used the samples in the image plane.

In his seminal paper, Kajiya [1986] described several approaches
for using adaptive and hierarchical sampling for evaluating the ren-
dering equation. He also proposed the use of a k-d tree for sample
placement when performing numerical estimation of high dimen-
sional integrals. However, he ended up not using this approach since



T
im
e

T
im
e

T
im
e

T
im
e

Image-space Adaptive Sampling Multidimensional Adaptive Sampling

ImageImage ImageImage

Figure 1: A 2-D example defined by a 1-D image and time. Image space adaptive sampling approaches (left) collapse the multidimensional
function onto the image before detecting discontinuities. However, nearby image samples my span large regions in the remaining dimensions,
easily missing important features such as fast moving objects. Moreover, pixels chosen for supersampling have additional samples distributed
uniformly within the multidimensional domain. Our approach (right) detects discontinuities in the multidimensional domain, adapting to the
behavior of the full multidimensional function.

his “experiments in finding adaptive criteria have not been terribly
successful.” Our method builds on Kajiya’s work and we show how
to make this idea of multidimensional sampling and reconstruction
practical for rendering.

In the context of Monte Carlo ray tracing [Cook et al. 1984] there
are numerous techniques that use importance sampling in which
knowledge of the reflectance functions or lighting is incorporated
into the sampling scheme (see Dutre et al. [2006] for an overview).
Recent work includes BRDF importance sampling [Lawrence et al.
2004], and BRDF and environment map sampling [Clarberg et al.
2005]. Our method can be used in combination with many of these
techniques and we already use BRDF importance sampling in our
system. One caveat to using adaptive sampling compared with pure
importance sampling methods is that we introduce bias in the final
rendered images [Kirk and Arvo 1991]. In practice this means that
errors due to insufficient sampling appear as artifacts in the image
such as blurry patches rather than the noise seen in pure Monte
Carlo ray tracing based approaches. This is similar to other biased
approaches such as photon mapping [Jensen 2001] and irradiance
caching [Ward et al. 1988].

Metropolis light transport (MLT) [Veach and Guibas 1997] is a
Monte Carlo ray tracing algorithm that uses the history of the pre-
vious ray to sample the bright regions of the scene more densely.
MTL can be thought of as an adaptive sampling technique within
the multidimensional sample space [Kelemen and Szirmay-Kalos
2001]. One key difference between our sampler and MLT is that we
use the entire sample history to generate new samples, which means
that our algorithm is better at detecting multiple disjoint regions of
importance. Furthermore, MLT does not provide any advantages
when it comes to simulating blurry effects such as motion blur and
depth of field. Our sampler adapts based on contrast and it naturally
detects edges in (for example) the space-time domain in scenes with
motion blur.

Multidimensional lightcuts [Walter et al. 2006] is a powerful method
for accelerating lighting calculation in the presence of motion blur,
depth of field, participating media and more. It works by represent-
ing the light transport within the scene by a large number of light and
gather points. The performance gain in multidimensional lightcuts
comes from efficiently culling the lighting computations between
light and gather points. Unfortunately, the generation of the full set
of sample points is still computed in a brute-force fashion, which
may be too costly if a scene requires a large collection of samples
(e.g., due to significant motion blur or depth of field). In contrast,
our sampler does not cull samples, but instead reduces the total
number of generated samples. Although the current implementation
of our sampler does not support indirect illumination, it is possible
to combine our method with other global illumination methods such
as photon mapping.

Multidimensional Adaptive Sampling

Initial Coarse Sampling

Adaptive Refinement

Select Region with 
Highest Error

Generate 
New Sample

Subdivide Region, 
Update Error

Reconstruction

Estimate Sample 
Gradients

Compute Anisotropic 
Distance Metric

Integrate 
onto Image

Figure 2: Our algorithm is split up into two main stages: multidi-
mensional adaptive sampling (described in Section 4) followed by
anisotropic reconstruction and integration (described in Section 5).

Outside computer graphics, the CUHRE technique is a numerical
integration algorithm introduced by Berntsen et al. [1991]. They
adaptively perform axis-aligned subdivision of a hypercubical in-
tegration domain to find a good set of evaluation locations for nu-
merical integration. While we use a similar technique, our sampling
is ultimately guided towards image synthesis by using contrast and
we use a reconstruction step that is optimized for generating two
dimensional images.

The MISER [Press and Farrar 1990] method is closely related to our
approach and has been successfully used in the context of render-
ing [Leeson 2003]. In essence, the MISER method is a stratified
Monte Carlo integration technique where the integration domain is
adaptively subdivided in order to reduce the overall variance. Evalu-
ation of each subdomain is performed using a standard Monte Carlo
method. Though we also uses adaptive Monte Carlo sampling, our
method employs a deterministic integration technique combined
with an anisotropic reconstruction to evaluate the subdomains.

Most adaptive ray tracing algorithms face the problem of recon-
structing the image for a non-uniform distribution of samples. This
is challenging, as most computer graphics scenes contain discontinu-
ities that require a dense sampling to reconstruct. Whitted’s sampling
technique [Whitted 1980] reconstructed an image by summing the
average color of each recursively generated square, weighted by
that square’s proportional area. This scheme is easy to implement,
but it can assign very different weights to sample points that are
close together. Mitchell identified this problem and improved this
technique by using the areas of the Voronoi cell around each sample



as the filter weights [Mitchell 1990]. Although using Voronoi cells
is impractical, this suggestion directly motivated the reconstruction
ideas described in this paper. Mitchell also proposed a new tech-
nique for reconstructing images from sample points with spatially
varying density properties [Mitchell 1987]. He applied multiple box
filters at varying resolutions, yielding good results as long as the
variation in density is not too large. These multi-stage techniques
are hard to generalize to higher-dimensional sample sets unless we
can assume that the non-image dimensions are uncorrelated with the
image itself. While this assumption is true of traditional adaptive
sampling techniques, our proposed algorithm does not have this
property, so a new reconstruction algorithm is required.

3 Overview

Image formation for raytracing evaluates the radiance L(x, y) ar-
riving at a set of discrete sample points on the image plane. In the
absence of any distribution effects, each image-space coordinate
(x, y) uniquely determines a light path, allowing L to be precisely
evaluated by tracing a single ray. Traditional adaptive sampling tech-
niques attempt to carefully choose the samples by detecting areas
of interest in the function L (e.g., high local contrast or brightness)
based on local image-space behavior. Assuming a reasonable ini-
tial coarse sampling, this process works well because L is easy to
evaluate exactly for any given image location.

Physically-based light transport, however, includes effects such as
motion blur, depth-of-field, and soft shadows. When these effects are
considered, there are many light paths that can contribute incoming
radiance to a given image location. These paths can be interpreted
as points in a higher dimensional domain, giving a location on the
aperture, in time, etc. For any class of light paths, the function
L(x, y) is itself an integral:

L(x, y) =

Z
. . .

Z
f(x, y, u1, . . . , un) du1. . .dun, (1)

where the dimensions u1, . . . , un define the class of light paths, and
f is the contribution of each path.

Monte Carlo ray tracing samples f(x, y, u1, . . . , un) and numer-
ically integrates these samples to approximate the desired image-
space function L(x, y). This approximation is often very noisy,
which hampers image-space adaptive sampling techniques because
features and noise are indistinguishable during adaptive sample
refinement. Furthermore, image-space metrics inherently fail to
maintain enough information to properly capture the discontinuities
of the true multidimensional function. Instead, they consider only
the radiance of nearby samples on the image plane, which may
actually represent a large region in the remaining dimensions. If
neighboring image samples do not provide a good estimate of the in-
tegral in Equation 1, the renderer may miss important features. This
limitation leads to sub-optimal sampling of the multidimensional
domain (Figure 1).

Our approach performs adaptive sampling by placing samples near
areas of high frequency in the full multidimensional domain, allow-
ing it to more robustly detect and sample such features. We then
use these samples to create an analytic approximation of the high
dimensional function. After sampling, the image is generated by
integrating this function over all non-image dimensions.

Conceptually, we perform this integration by splitting up the sam-
pling domain into disjoint subdomains. For each continuous coordi-
nate (x, y) on the image plane we construct a partition P (x, y) of
the remaining n dimensions u1 . . . un. Given this decomposition,

the radiance at (x, y) can be computed as

L(x, y) =

Z
. . .

Z
f(x, y, u1, . . . , un) du1. . .dun

=
X

Ω∈P (x,y)

Z
Ω

f(x, y, u1, . . . , un) du1. . .dun. (2)

By assuming that the function value within each subdomain is con-
stant, we can estimate the integral with a simple productZ

Ω

f(x, y, u1, . . . , un) du1. . .dun ≈ VΩfΩ, (3)

where VΩ is the volume of domain Ω and fΩ is the constant recon-
struction of the function within Ω. The radiance on the image plane
can then be computed as a Riemann sum of these estimates

L(x, y) ≈
X

Ω∈P (x,y)

VΩfΩ. (4)

Note that we did not explicitly define subdomains and constant
reconstructions here. We will discuss more details in Section 5.

Our algorithm is split up into two main steps: adaptively sampling
the multidimensional function f , and analytically integrating the
resulting approximation to reconstruct the image radiance L (Fig-
ure 2). The number and distribution of subdomains Ω for each pixel
is determined during sampling, and the function approximations fΩ

are calculated during reconstruction. The goal of our algorithm is to
distribute the samples such that the approximation in Equation 4 is
as close as possible to the true solution while using as few samples
as possible.

4 Multidimensional Adaptive Sampling

The guiding principle of any adaptive sampling algorithm is to
place samples in areas of high local bandwidth while not spend-
ing too much time making decisions about sample locations. We
have developed a multidimensional version of Mitchell’s contrast
function [Mitchell 1987] that we use to guide our adaptive sample
technique.

Algorithm Overview. Our approach starts by placing an initial
coarsely distributed set of samples into an acceleration structure
for fast neighbor searching. We then use a greedy algorithm to
repeatedly add samples in regions with high local error. We illustrate
our algorithm in Figure 3 and explain each step in the following
sections.

4.1 Initial Sampling

In this step we generate an initial coarse sampling by sparsely dis-
tributing sample points within the entire multidimensional domain
(Figure 3a). We use a uniform random sample distribution in all
dimensions, though any technique, such as a quasi-random sequence
or poisson disk points, could be used instead. Each sample stores its
multidimensional coordinate s = (x, y, u1, . . . , un) and its associ-
ated function value f(s). This value is computed by tracing the ray
specified by the sample coordinate.

After all coarse sample points have been computed, we insert them
into a kD-tree for fast neighbor queries. Our kD-tree stores sam-
ples only in leaf nodes which may contain a small, user-defined,
maximum number of samples. We typically use a maximum of
four samples per node. We discuss the effects of this parameter in
Section 6.



T
im

e

Image Image
(a) (b) (c)

Image
(d)

Image

repeat

T
im

e

Image
(e)

Initial Coarse Sampling Select Region with Highest Error Generate New Sample Subdivide Region/Update Error Final Sampling Distribution

T
im

e

T
im

e

T
im

e

Figure 3: To illustrate adaptive sampling in the high-dimensional domain, we use a two-dimensional example with a time axis and a
one-dimensional image axis. Initially, a coarse sampling is distributed in the 2-D domain (a) and stored in a kD-tree data structure. The
kD-tree leaf with the largest sample variance is chosen (b) and several candidate sample points are generated (c). The best-candidate (shown
in red) is selected and the leaf is split if the node capacity is exceeded. This process (steps b through d) repeats until a desired number of
samples is generated.

4.2 Adaptive Refinement

Once the initial samples are computed, we estimate the error in each
leaf node in order to find locations in the sampling domain where
the multidimensional function would benefit most from additional
samples. We define the total error within a leaf node, E(Nj), as the
integral of an error function ε:

E(Nj) =

Z
Nj

ε(f(x), f ′j(x)) dx, (5)

where ε is a function of the actual value f(x) and the reconstructed
value f ′j(x) within the node. For the purposes of this metric we
assume a constant reconstruction f ′j(x) = f̄j and use the average
of all the samples in the node for f̄j . We approximate the above
integral using the computed samples as

E(Nj) ≈ Vj

nj

X
s∈Nj

ε(f(s), f ′j(s))

=
Vj

nj

X
s∈Nj

ε(f(s), f̄j),

(6)

where Vj is the volume of kD-tree node Nj , and nj is the number
of samples contained in that node. For the error function ε, we use
a contrast metric [Mitchell 1987] generalized to multidimensional
neighborhoods. This is defined as1

ε(f(s), f̄j) =

˛̨
f(s)− f̄j

˛̨
f̄j

. (7)

Once an error is computed for all leaves, we place the leaf nodes
into a priority queue based on their estimated error to rapidly find
the node with maximum error.

To insert a new sample, we first pick the leaf node with maximum er-
ror (Figure 3b) and then employ a best-candidate technique [Mitchell
1991] to generate the sample (Figure 3c). We generate several can-
didate samples near the node and compute distances between each
candidate and all of the existing samples. The candidate with the
largest distance to all other samples is selected as the best-candidate,
its contribution is evaluated, and it is added to the kD-tree. This
procedure locally approximates a poisson-disk distribution.

In order to decrease the likelihood of under-sampling important
features, we generate the candidate points in a region slightly larger

1For numerical reasons we add a small constant epsilon to the denomina-
tor to avoid division by zero.

than the node’s extent. For simplicity we use the bounding-sphere of
the node. This allows samples to spill into neighboring nodes and en-
ables our approach to crawl along edges when sharp discontinuities
have been detect.

If the containing node exceeds capacity when a new sample has
been added, we median-split the node along its longest dimension.
After inserting, we recompute the affected error values and update
the priority queue. We repeat this procedure until a user-specified
number of samples are computed. At the end of this process, we
have a distribution of sample points and function values within the
multidimensional domain which is concentrated around edges and
other high-frequency regions of the function (Figure 3d).

5 Reconstruction and Integration

After the sampling step, we must compute a two-dimensional image
from the samples we have evaluated. Conceptually, we first obtain
a continuous reconstruction of the high-dimensional function, and
then compute the value at each image location as the integral of that
functon over all other dimensions. We illustrate the procedure in
Figure 4 and describe each of these steps separately in the following
sections.

5.1 Reconstruction

The goal of the reconstruction step is to convert the sampled values
into a continuous function that matches the true multidimensional
function as closely as possible. To do this, it is important to account
for the anisotropic behavior of the function being approximated. For
instance, consider a scene rendered with motion blur consisting of
one stationary object and one moving object. The three dimensional
function in this scene will have the stationary object’s radiance
extruded along the entire time axis. The moving object, on the other
hand, will look like a sheared extrusion, with the angle of shear
dependent on velocity2. Depth of field and other distribution effects
also create highly anisotropic multidimensional functions. In order
to capture this behavior accurately with the samples available, we use
a reconstruction approach that blurs along edges but not across sharp
boundaries. To handle such highly anisotropic functions, we perform
anisotropic nearest neighbor interpolation. This interpolation uses
a warped distance metric throughout the sampling domain which
stretches each sample’s area of influence along edges and contracts it
across discontinuities. This warping metric is defined by examining
the local behavior of gradients in the neighborhood around each
sample point.

2This is only conceptual; spatial variation in lighting and camera distor-
tion will make the contribution near moving objects more complex.



T
im

e 
(i

nt
eg

ra
tio

n 
ax

is
)

Image pixels
Image

Compute Distance Metric Integrate Pixels
T

im
e

Image

Estimate Gradients

T
im

e

T
im

e

P(x2) P(x3)P(x1)

Domain Partitioning

Image

(a) (b) (c) (d)

Figure 4: During reconstruction, we first estimate a per-sample gradient by performing a least squares fit to the k nearest neighbors (a). Next
we define an anisotropic distance metric (shown in blue) within each kD-tree leaf node by computing a structure tensor using the k nearest
neighbor gradient vectors (b). The integral of the reconstructed function is split up into disjoint partitions P defined by the cross section of the
image coordinate and the kD-tree cells. In (c) we show three example image coordinates and their corresponding partitions P (x1), P (x2),
and P (x3). For each pixel in the image, we assume the function is constant over each subdomain in the partition and compute the value
using anisotropic nearest neighbors at the centroids of these intervals (d). The values are multiplied by the lengths (hypervolumes) of their
corresponding subdomains and accumulated for each pixel.

We start this process by subdividing the kD-tree so that each leaf
node contains exactly one sample point. We then estimate the gra-
dient of the multidimensional function at each sample point s by
performing a k-nearest neighbor lookup and solving a linear least
squares fit to these sample values (Figure 4a). If si is the coordi-
nate of the ith nearest neighbor of s, where (i ∈ 1 . . . k), then the
gradient is computed as the optimal solution to the overconstrained
system 264s1 − s

...
sk − s

375∇f(s) =

264f(s1)− f(s)
...

f(sk)− f(s)

375 . (8)

These gradient estimates are then used to construct warped dis-
tance metrics, where distances are magnified across regions of rapid
change. To capture this distortion property we use local gradient
structure tensors, which are commonly used to perform anisotropic
filtering of 2-D image data and 3-D MR images [San Jose Estepar
2005]. The structure tensor G is defined as the average of the outer
products of the gradient vectors in the local neighborhood:

G(s) =
1

k

kX
i=1

∇f(si)∇f(si)
T (9)

=
1

k

ˆ
∇f(s1) · · ·∇f(sk)

˜ 264∇f(s1)T

...
∇f(sk)T

375 .
For a d-dimensional domain, the structure tensorG is a d×dmatrix.
We compute G(s) for each sample and store it in the leaf node
containing s (Figure 4b).

We use the structure tensor G to compute Mahalanobis distances
between sample points. That is, the difference vector v = (b− a) is
scaled so that its squared distance is vTGv. The matrix G can be
thought of as specifying a general ellipsoid where the eigenvectors
of G serve as the ellipsoid axes and the corresponding eigenvalues
are the amount of stretch along each axis (visualized as blue arrows
in Figure 4b). When G is identity it specifies a sphere and the Maha-
lanobis distance is equivalent to regular Euclidean distance. G can
also be interpreted as computing the average squared scalar projec-
tion of the vector v onto each of the local gradients; hence, distances
are magnified in orientations which contain large gradients. Two
points are considered far apart if the function changes significantly
between them, and close together if the function is slowly varying.

We reconstruct the multidimensional function using nearest neighbor
interpolation in combination with the anisotropic distance metric.

We use nearest neighbor interpolation because it is robust to rapidly
changing sample densities [Amidror 2002]. To evaluate the function
at any point x, we find the sample closest to this point, using dis-
tances defined by the structure tensor G for the node containing x.
The function value is then simply the value of this closest sample. As
an optimization, we compute k candidate nearest neighbors within
the kD-tree using Euclidean distance. We then choose the near-
est neighbor from among these candidates using the Mahalanobis
distance as defined by G.

5.2 Integration

Given the continuous representation of the sampled function over
the multidimensional domain, we evaluate the image-space function
L(x, y) using the Riemann sum from Equation 4. At each location
(x, y), we partition the integration domain into disjoint regions Ω,
where the partitioning, P (x, y), is determined by the continuous
image coordiates (x, y). The number of regions in P (x, y) is equal
to the number of kD-tree leaves spanning the coordinate (x, y) (see
Figure 4c for an illustrative 1-D example). Using this partitioning,
the radiance at each (x, y) is computed as a Riemann sum with
Equation 4. The integral of the function over the cross section
spanned by an image coordinate (x, y) and a leaf node is the product
of the function value fΩ and the hypervolume of the cross section
VΩ. We evaluate fΩ at the centroid of region Ω using the anisotropic
nearest neighbor interpolation described in the previous section.
Because the leaf nodes are disjoint, we can compute the full integral
by summing over all nodes spanning the coordinate (x, y). The
final pixel intensity is an integral of Equation 4 over the pixel filter;
however, for simplicity we use a box filter and evaluate this equation
once at the center of each pixel. This approach is illustrated in
Figure 4d.

6 Implementation and Results

We have implemented the multidimensional adaptive sampler as
two plugins for the PBRT rendering system [Pharr and Humphreys
2004]; one plugin for sampling and one for reconstruction. In this
section, we explain the parameters used by our implementation as
well as the settings used in our results.

6.1 Sampling Implementation

The sampling algorithm as described in Section 4 is controlled
by a number of parameters. The two parameters that have the



Our Method Mitchell Low Discrepancy
Sa

m
pl

es
 / 

pi
xe

l

1

4

16

1 4 16 64 256
0

5

10

15

20

 

 Our Method

Low Discrepancy

Mitchell

64

Figure 5: A motion blurred sphere is moving horizontally across the image. Note how our sampler is able to achieve a significantly better
sampling distribution and reconstruction as it is able to track the surface of the moving sphere accross both time and space. For this scene the
Mitchell sampler requires roughly an order of magnitude more sampler to produce an image with the same MSE.

 

Scene Setup

Occluders

Ground Plane

Our Method Mitchell Low Discrepancy

Reference Solution

A
re

a 
Li

gh
t S

ou
rc

e

Metropolis

8

64 M
ea

n 
Sq

ua
re

 E
rr

or
 (x

 1
0-1

)

Number of Samples
1 4 16 64 256

Our Method
Mitchell
Low Discr.

Figure 6: An occluded area light source. Our technique adaptively samples the openings in the blocker where the light source is visible, and
it produces images with the same MSE as Mitchell’s sampler with nearly two orders of magnitude fewer samples. We only provide a visual
comparison to Metropolis Light Transport because we render it with a different rendering system.

highest impact on image quality are the number of initial samples
and the desired average number of samples per pixel in the final
distribution. Additionally, the number of samples per kD-tree leaf
influences the accuracy of our error metric and the adaptivity of the
final distribution: more samples per node results in smoother and
more robust error estimates but also results in a more uniform sample
distribution. Since the error metric requires each node split to result
in at least 2 sample per node, the minimum value for this parameter
is 4. We have used this minimum value in most of our test scenes as
it gives a good overall performance, with the exception of Figure 6
which uses 8. When adding new samples using the best-candidate
approach, we use 4 candidates for all our results. When nodes are
subdivided in the kD-tree we also use an axis-scaling parameter. This
parameter controls the relative scaling of the different dimensions in
our sampling space. This parameter is shared with the reconstruction
implementation and it is described in more detail the next section.

6.2 Reconstruction Implementation

The reconstruction pass relies on one main parameter k: the number
of nearest neighbors to use for estimating the gradients, for comput-
ing the anisotropic distance metric, and for finding candidates for
the nearest neighbor interpolation. We set k = 12 unless otherwise
noted. Making k much smaller can introduce some artifacts in the
reconstruction such as noise due to inaccurate statistics. We have
found that for our scenes increasing k beyond 20 does not make a
difference in the quality of the results. Making k larger increases
render time without improving image quality.

Additionally, we use a parameter to define the relative scale of the
image axes with respect to all other dimensions. The splitting of
the kD-tree during adaptive sampling, the contrast error metric, the
gradient and tensor computations, and the k-nearest neighbor candi-

dates for interpolation are all computed using un-warped Euclidean
distances. Because of this, the relative scale of axes in the multidi-
mensional domain have an influence on the sampling distribution
and reconstruction of our algorithm. Since our results here are fo-
cused on sampling domains of medium (3–5) dimensionality, we
have found it sufficient to specify the relative scale of the different
types of dimensions manually. For images containing only motion
blur, depth of field, or soft shadows a single parameter is sufficient
to specify the scale of the image axes relative to the other dimen-
sions. The smallest dimension of the image is always mapped to
an interval of [0 . . . 1] in the multidimensional hypervolume and the
other image axis is scaled to maintain the aspect ratio. A scaling
factor of 2 for the motion blur axis means that time samples are dis-
tributed within a range of [0 . . . 2] in the multidimensional domain.
We report the scaling parameters individually for each of our results
in the following section.

6.3 Memory Usage

Memory usage is an important consideration since we store and
maintain each sample in a kD-tree. In our implementation, each
sample requires about 400 bytes of storage. This includes the mem-
ory overhead of the kD-tree structure, the priority queue, gradient
information, and structure tensors. This comes out to 400 MB for
a 1K x 1K image with an average of 1 sample per pixel. However,
we have not yet optimized the memory consumption in our imple-
mentation. To reduce memory requirements for images requiring
many samples, we currently divide the image into disjoint tiles. We
have found this method to work well, though it does introduce sub-
tle tiling artifacts that are visible in the visualizations of sample
density. These artifacts are, in practice, not noticeable in the final
reconstructed image.



Our Method MitchellReference

Render time: 672.2s (8 samples/pixel) Render time: 676.4s (12.67 samples/pixel) Render time: 27,488s (512 samples/pixel) 

Figure 7: Pool scene showing motion blur. Given equal time, our sampler generates an image with significantly less noise and an MSE that is
9 times lower than Mitchell’s adaptive sampler. The sample density image shows how our sampler is able to find and sample the regions with
strong motion. These regions are problematic for the Mitchell sampler as shown in the error images.

Our Method MitchellReference

MSE: 1.73 * 10-4 MSE: 3.65 * 10-4
Render time: 993s (16 samples/pixel) Render time: 980s (38.25 samples/pixel)Render time: 11,960s (512 samples/pixel)

Figure 8: Chess scene showing depth of field. Our technique is able to sample and reconstruct the regions that are out of focus while the
Mitchell sampler is noisy in these regions. Even though the out of focus areas are a small part of the image our sampler is able to produce
an image with an MSE that is two times lower than the equal time rendered image with Mitchell’s adaptive sampler. Due to our anisotropic
reconstruction technique we can successfully reconstruct both blurry, out-of-focus regions (red), and sharp, in-focus regions (green). Without
anisotropic reconstruction, the MSE of our method more than doubles to 3.85 ∗ 10−4.

6.4 Results

We have applied our adaptive sampling scheme to a number of
multidimensional sampling domains, including motion blur, soft
shadows, and depth-of-field. All results were rendered on an 2.4GHz
Intel Core 2 Q6600 using one core. We compare our technique to
Mitchell’s adaptive sampling technique [Mitchell 1991]. We chose
Mitchell’s sampler because it performed as well, or better than other
image-space adaptive sampling techniques that we tried including
Whitted adaptive sampling. For all results we tuned the Mitchell
parameters to give the best quality for the given render time or total
number of samples.

Figure 5 compares our method to both uniform sampling (using low
discrepancy points) and Mitchell’s image-space adaptive sampling
technique in a scene of a fast moving sphere on a white background.
Motion blur constitutes a 3-D sampling domain: 2 for the image
dimensions, and 1 for time dimension. Using only 2 samples per
pixel, our technique is able to produce images with a lower error
than Mitchell sampling with 16 samples per pixel.

In Figure 6 we apply our technique to a 4-D domain by adaptively
sampling soft shadows across the image plane. The scene contains
four pillars blocking a large area light source which is illuminating
a plane. Our algorithm is able to detect the discontinuities caused by
the occluders and adaptively samples these high frequency regions

in the multidimensional domain. For these two results, we used a
value of k = 15 and set the time and lighting axes scaling factors to
1/2 and 1/3 respectively. We use 1024 initial samples for our method
in both results. We also provide a comparison to Metropolis Light
Transport (MLT). We only include a visual comparison since our
MLT implementation uses a different rendering system. The result
using 8 samples with our method has similar quality as MLT with
64 samples.

Both of these examples demonstrate the challenges of image-space
adaptive sampling in the presence of even a simple multidimensional
domain. Mitchell’s adaptive sampling provides little benefit in these
scenes since each individual image-space sample is a poor estimate
of the integral of scene radiance along all non-image dimensions,
making it difficult to detect important features. Furthermore, due
to the extent of the motion blur and size of the area light, nearby
image samples span a large multidimensional domain leading to
gaps in the motion blurred sphere and scattered dots in the penumbra
of shadows. Our approach, on the other hand, is able to distribute
sample contribution over large pixel regions, resulting in much less
noise and more efficient sample placement.

Figure 7, another motion blur example, shows an updated version
of the classic billiard ball scene from Cook et al. [1984]. The time
axis scaling factor is set to 1/16 and we use 10K initial samples.
A visualization of sample density using our approach is shown in



Figure 9: Car showing a 5-D sampling domain including both
motion blur and depth-of-field. We use 10K initial samples and 32
samples per pixel in the final distribution. This scene renders in
2884 seconds and reconstruction takes 22% of total render time.

Figure 10. Notice that in regions where the balls are stationary, our
technique does an excellent job of placing samples around image
discontinuities (e.g., texture edges), while simultaneously allocating
samples to areas with considerable motion, resulting in considerably
reduced noise and mean square error (Figure 11) with no increase
in rendering time. For the pool image the reconstruction stage took
25% of total render time.

Figure 8 shows a chess scene with substantial focus effects due to a
shallow depth of field; we perform adaptive sampling across both
the image plane and the lens aperture and visualize the projected
sample density in Figure 10. The dimensions corresponding to
the aperture are scaled by a factor of 1/48 and we use 10K initial
samples. In this 4-D sampling space, we again correctly reconstruct
both discontinuities in the image plane (e.g., the edges of the in-
focus foreground object), as well as discontinuities in the non-image
dimensions, resulting in smoothly blurred out-of-focus regions. For
this scene reconstruction takes 34% of total render time. Omitting
the anisotropic distance metric calculation results in a reconstruction
with more than twice the mean square error (MSE) of our approach.

Finally, Figure 9 shows a car speeding down a highway. This scene
features both motion blur and depth of field, resulting in a combined
sampling domain of 5 dimensions. In this scene we set the scale of
all non-image axes to 1/64 and use 10K initial samples.

We explore the effects of different parameter settings for the pool
scene and provide numerical results in Figure 12. In these exper-
iments we kept the total number of samples constant and varied
one sampling or reconstruction parameter at a time. The number of
nearest neighbors for reconstruction involves a trade-off between
error and reconstruction time. Increasing the number of nearest
neighbors results in smaller errors as shown in Figure 12a. However
reconstruction time also increases linearly (Figure 12b). Figure 12c
shows that the number of candidate samples has little influence on
the error. Since it linearly increases the sampling time (Figure 12d),
we prefer to use few candidates for performance reasons. In Fig-
ure 12e we see that the optimal scaling factor for the image axis
is about 16, but our method is not very sensitive to this parameter.
The number of samples per cell also has rather little influence on the
error (Figure 12f). For this particular scene, increasing the number
of samples per cell to more than 4 increases the reconstruction error.
This is because samples within each cell do not adapt to the underly-
ing function within the cell. Increasing the number of samples per
cell is probably beneficial for higher dimensional functions to obtain
a better error estimate during adaptive sampling.

Sa
m

pl
in

g 
D

en
si

ty

Figure 10: Visualizations of projected sample distributions using
our method for the chess scene from Figure 8 and the pool scene from
Figure 7. Our adaptive sampler places samples both around high
frequency image discontinuities (in focus chess piece and stationary
pool ball) as well as in regions which exhibit significant motion blur
or depth of field effects.

7 Discussion and Future Work

In this section we discuss limitations of our method. We relate our
approach mathematically to traditional randomized sampling, and
present ideas that we feel are fruitful for future exploration.

7.1 Limitations

Similar as other adaptive techniques our method may miss small
features of a scene. For example, our method may miss features
not captured by the initial sampling. Furthermore, the error metric
during the adaptive sampling may become zero if all samples in
a cell happen to have the same radiance, even if the underlying
function varies within the cell. In these cases our method will not
place a new sample to capture a region where the function exhibits
variation unless a neighboring cell generates this sample. Figure 13
shows an example of the same scene as in Figure 6, but with a
reduced the size of the gaps between occluders. Depending on the
initial samples and parameter settings, our method may not detect
illumination coming through a gap. Similar effects can occur if the
scene geometry has lots of small features such as hair, foliage, or
grass.

It should be noted that our method is more robust than most 2D
sampling methods. Suppose that all initial samples in Figure 1 fell
in the same region (e.g., the grey region). In this case, Mitchell’s
adaptive sampling method does not place new samples at all be-
cause all regions satisfy its adaptive sampling criterion. On contrast,
our method places new samples even in this case because it always
choses a cell with the largest error (in this case, any of the cells)

MSE: 1.14 * 10-5 MSE: 9.83 * 10-5

Our Method Mitchell

M
ea

n 
Sq

ua
re

 E
rr

or

Figure 11: Mean square error visualizations for the pool scene.
Given equal time, our sampler generates an image with an MSE
that is 9 times lower than Mitchell’s adaptive sampler. Isotropic
reconstruction results in an MSE of 2.1 ∗ 10−5.



0

1

2

3

4

5

1 6 11 16 21 26

(a) Number of Nearest Neighbors

M
ea
n
S
qu
ar
e
E
rr
or
(x
10
^-
5)

0

1

2

3

4

5

1 6 11 16 21 26

(e) Scaling Factor for Image Axes

M
ea

n
S
qu

ar
e
E
rr
or

(x
10

^-
5)

0

1

2

3

4

5

4 8 12 16 20

(f) Maximum Number of Samples in Cell

M
ea

n
S

qu
ar

e
E
rr

or
(x

10
^-

5)

0

1

2

3

4

5

1 5 9 13 17

(c) Number of Candidates

M
ea

n
S
qu

ar
e
E
rr
or

(x
10

^-
5)

0

200

400

600

800

1000

1200

1 6 11 16 21 26

(b) Number of Nearest Neighbors

T
im
e
(s
)

Reconstruction
Sampling
Total

0

200

400

600

800

1000

1200

1 5 9 13 17
(d) Number of Candidates

T
im
e
(s
)

Reconstruction
Sampling
Total

(a) Number of Nearest Neighbors

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
x 

10
e-

5) 5

4

3

2

1

0

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
x 

10
e-

5) 5

4

3

2

1

0

(c) Number of Candidates

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
x 

10
e-

5) 5

4

3

2

1

0 M
ea

n 
S

qu
ar

e 
E

rr
or

 (
x 

10
e-

5) 5

4

3

2

1

0

(e) Scaling Factor for Image Axes (f) Maximum Number of Samples in Cell

(d) Number of Candidates

(b) Number of Nearest Neighbors

1 266 1611 21 1 266 1611 21

1 266 1611 21

1 5 139 17 1 5 139 17

4 8 12 16 20

T
im

e 
(s

)
T

im
e 

(s
)

Reconstruction
Sampling
Total

Reconstruction
Sampling
Total

1200

1000

800

600

400

200

0

1200

1000

800

600

400

200

0

Figure 12: Effect of parameters. We rendered the billiard ball
scene in Figure 7 by varying: (a) the number of nearest neighbors
for reconstruction, (c) the number of candidates during sampling
(i.e., the number of candidates for new sample placement), (e) the
scaling factor for image axes (i.e., the reciprocal of the scaling
factor for the other axes), (f) the maximum number of samples per
cell. The graphs (b) and (d) show the corresponding rendering time.

to place a new sample. In addition, our method is able to exploit
coherency beyond the image space which improves robustness fur-
ther. For example, consider the moving sphere scene in Figure 5.
In this case, the 3D function of the sphere using pixel position and
time becomes a cylinder. Our method captures this coherency in the
three dimensional function and focuses samples around surface of
the cylinder. A two dimensional adaptive sampling method cannot
exploit this coherency and may miss part of the cylinder if this is not
captured by its adaptive sampling metric on image space.

7.2 Comparison to Monte Carlo Integration

Although our method is a Monte Carlo method as it uses random
numbers to place samples, our approach is not a standard Monte
Carlo integration method. Instead, we use a Riemann sum for inte-
gration, similar to numerical integration methods based on quadra-
ture rules. Furthermore, we are able to determine the relative weight-
ing of the samples after they have been computed. In standard
Monte Carlo integration methods, relative weighting of the samples
are usually fixed by the probability density function. It essentially
means that standard Monte Carlo integration methods do not use
information obtained by samples have been observed so far. Markov
Chain Monte Carlo methods including Metropolis method use infor-
mation from just one previous sample, whereas our method uses all
previous samples to generate a new sample.

7.3 Generalizing to Higher Dimensional Domains

We have shown results for sampling domains of three (Figure 7),
four (Figures 8 and 6), and five (Figure 9) dimensions, although
the theory behind the technique extends to any number of dimen-

Low Discrepancy Mitchell Our Method Metropolis

Figure 13: A failure case. All images are rendered using 64 samples
per pixel. The only difference from Figure 6 is that the size of the
gaps between occluders is significantly smaller. Our method may
miss illumination coming through one of the gaps depending on
the parameters. Note that this scene is equally challenging for
Metropolis Light Transport.

sions. Of course, a medium-dimensional (e.g., 5-D) version of our
approach could always be used within a higher dimensional space
by adaptively sampling along only a 5-D subset of the full domain
(much in the same way that image-space adaptive sampling performs
adaptive decisions on a 2-D subset). However, as the number of
dimensions increases, as it will for effects such as glossy reflec-
tion/transmission, global illumination, and participating media, new
issues will arise that provide exciting areas for future exploration.

Neighbor Searching and Anisotropy The most significant chal-
lenge that arises when generalizing our technique to higher dimen-
sions is the cost of computing nearest neighbors, which is expo-
nentially related to the dimensionality of the search. We intend to
explore the use of nearest-neighbor approximation algorithms to al-
leviate the curse of dimensionality for neighbor searches [Indyk and
Motwani 1998]. In addition, we do not know how many neighbors
will be required to generate robust local function statistics in very
high dimensional space.

As the number of dimensions increases, accurately detecting the
anisotropic behavior becomes more challenging because there are
more degrees of freedom. One possible solution would be to store
or compute additional per-sample information. For instance, we
could compute gradient information directly for a subset of the di-
mensions, using techniques explored by previous researchers [Ward
and Heckbert 1992; Ramamoorthi et al. 2007], or we could store
local frequency content [Durand et al. 2005] with each sample. Sam-
ple points could also be tagged with auxiliary data such as motion
vectors to analytically compute appropriate anisotropic kernels.

Nonuniform Dimension Scaling Because the non-image dimen-
sions can all have different units, determining the relative scale of
each axis is important. Moreover, scaling factors directly affect
resulting image quality as in Figure 12. As a general principle, the
scale of each axis should be set such that the maximum frequency
in each direction is the same. For motion blur, the scale should be
set such that the maximum motion in one unit of time is equal to
one pixel. This cannot be predicted exactly because of highlights,
shadows, and other lighting effects, but using the motion of objects
in the scene may provide a good first-order approximation. For
depth of field, the expected frequencies can be computed based on
depth using light field analysis [Chai et al. 2000]. Such an approach
is theoretically justified only for diffuse surfaces but could provide
a good starting point. Frequency analysis of general light transport
is an area of active research that could be directly applied to our
algorithm.

8 Conclusions

We have developed a new adaptive sampling and reconstruction
technique for sampling domains containing more than two dimen-



sions, such as those that arise in scenes with motion blur, depth of
field, or soft shadows. Sampling directly in the high dimensional
space has several advantages: the samples returned by the ray tracer
are deterministic, our sampler can track discontinuities in the high
dimensional function, and our reconstruction can take advantage of
smooth regions within the function by using each sample in these re-
gions to reconstruct the final radiance value for several neighboring
pixels. We have demonstrated several scenes with complex geome-
try, lighting, and camera effects for which our technique outperforms
traditional adaptive sampling in both visual quality and quantitative
error.

9 Acknowledgements

This work was supported in part by NSF grant CPA 0701992 and the
UCSD FWGrid Project, NSF Research Infrastructure Grant Number
EIA-0303622. We would also like to thank UCSD graphics lab
members for fruitful discussion.

References

AMIDROR, I. 2002. Scattered data interpolation methods for elec-
tronic imaging systems: a survey. Journal of Electronic Imaging
11, 2 (April), 157–176.

BERNTSEN, J., ESPELID, T. O., AND GENZ, A. 1991. An adaptive
algorithm for the approximate calculation of multiple integrals.
ACM Transactions on Mathematical Software 17, 4, 437–451.

BOLIN, M. R., AND MEYER, G. W. 1998. A perceptually based
adaptive sampling algorithm. Computer Graphics 32, Annual
Conference Series, 299–309.

CHAI, J.-X., CHAN, S.-C., SHUM, H.-Y., AND TONG, X. 2000.
Plenoptic sampling. In SIGGRAPH ’00: Proceedings of the
27th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 307–318.

CLARBERG, P., JAROSZ, W., AKENINE-MÖLLER, T., AND
JENSEN, H. W. 2005. Wavelet importance sampling: Efficiently
evaluating products of complex functions. ACM Trans. Graph.
24, 3, 1166–1175.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Distributed
ray tracing. In Computer Graphics (SIGGRAPH ’84 Proceedings),
vol. 18, 137–45.

DURAND, F., HOLZSCHUCH, N., SOLER, C., CHAN, E., AND
SILLION, F. X. 2005. A frequency analysis of light transport.
1115–1126.

DUTRÉ, P., BALA, K., BEKAERT, P., AND SHIRLEY, P. 2006.
Advanced Global Illumination. AK Peters Ltd.

GLASSNER, A. 1995. Principles of Digital Image Synthesis. Morgan
Kaufmann.

INDYK, P., AND MOTWANI, R. 1998. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In Pro-
ceedings of the Symposium on Theory of Computation (STOC),
604–613.

JENSEN, H. W. 2001. Realistic Image Synthesis Using Photon
Mapping. A. K. Peters, Ltd., Natick, MA.

KAJIYA, J. T. 1986. The rendering equation. In Computer Graphics
(SIGGRAPH ’86 Proceedings), D. C. Evans and R. J. Athay, Eds.,
vol. 20, 143–150.

KELEMEN, C., AND SZIRMAY-KALOS, L. 2001. Simple and
robust mutation strategy for metropolis light transport algorithm.
Tech. Rep. TR-186-2-01-18, Institute of Computer Graphics and
Algorithms, Vienna University of Technology, Favoritenstrasse 9-
11/186, A-1040 Vienna, Austria, July. human contact: technical-
report@cg.tuwien.ac.at.

KIRK, D., AND ARVO, J. 1991. Unbiased sampling techniques for
image synthesis. In Proceedings of SIGGRAPH ’91, ACM Press,
New York, NY, USA, 153–156.

LANDAU, H., AND POLLAK, H. 1962. Prolate spheroidal functions,
Fourier analysis and uncertainty, III. the dimension of the space
of essentially time- and band-limited signals. Systems Technical
Journal 41, 4 (July), 1295–1336.

LAWRENCE, J., RUSINKIEWICZ, S., AND RAMAMOORTHI, R.
2004. Efficient brdf importance sampling using a factored repre-
sentation. ACM Trans. Graph. 23, 3, 496–505.

LEESON, W. 2003. Rendering with adaptive integration. In Graph-
ics programming methods, Charles River Media, Inc., Rockland,
MA, USA, 271–278.

MITCHELL, D. P. 1987. Generating antialiased images at low
sampling densities. In Computer Graphics (Proceedings of SIG-
GRAPH 87), vol. 21, 65–72.

MITCHELL, D., 1990. The antialiasing problem in ray tracing, Aug.
SIGGRAPH 1990 Course Notes.

MITCHELL, D. P. 1991. Spectrally optimal sampling for distributed
ray tracing. In Computer Graphics (Proceedings of SIGGRAPH
91), vol. 25, 157–164.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann.

PRESS, W. H., AND FARRAR, G. R. 1990. Recursive stratified
sampling for multidimensional monte carlo integration. Comput.
Phys. 4, 2, 190–195.

RAMAMOORTHI, R., MAHAJAN, D., AND BELHUMEUR, P. 2007.
A first-order analysis of lighting, shading, and shadows. ACM
Trans. Graph. 26, 1, 2.

RIGAU, J., FEIXAS, M., AND SBERT, M. 2003. Refinement criteria
based on f-divergences. In Rendering Techniques, 260–269.

SAN JOSE ESTEPAR, R. 2005. Local Structure Tensor for Multi-
dimensional Signal Processing. Applications to Medical Image
Analysis. PhD thesis, University of Valladolid, Spain.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport.
In Computer Graphics (SIGGRAPH Proceedings), 65–76.

WALTER, B., ARBREE, A., BALA, K., AND GREENBERG, D. P.
2006. Multidimensional lightcuts. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers, ACM, New York, NY, USA, 1081–
1088.

WARD, G. J., AND HECKBERT, P. 1992. Irradiance Gradients. In
Third Eurographics Workshop on Rendering, 85–98.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988.
A ray tracing solution for diffuse interreflection. In Computer
Graphics (SIGGRAPH ’88 Proceedings), J. Dill, Ed., vol. 22,
85–92.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6, 343–349.


