Pacific Graphics 2013
B. Levy, X. Tong, and K. Yin
(Guest Editors)

Volume 32 (2013), Number 7

Robust Denoising using Feature and Color Information

Fabrice Rousselle

Marco Manzi

Matthias Zwicker

University of Bern

Figure 1: We propose a method to denoise Monte Carlo renderings using noisy color (left) and feature buffers (middle: texture,
caustics, visibility, normals) as an input. We construct a denoising filter by combining color and feature information using a
SURE error estimate. Our results (right) improve visually and quantitatively over the previous state-of-the-art.

Abstract

We propose a method that robustly combines color and feature buffers to denoise Monte Carlo renderings. On
one hand, feature buffers, such as per pixel normals, textures, or depth, are effective in determining denoising
filters because features are highly correlated with rendered images. Filters based solely on features, however, are
prone to blurring image details that are not well represented by the features. On the other hand, color buffers
represent all details, but they may be less effective to determine filters because they are contaminated by the noise
that is supposed to be removed. We propose to obtain filters using a combination of color and feature buffers in an
NL-means and cross-bilateral filtering framework. We determine a robust weighting of colors and features using
a SURE-based error estimate. We show significant improvements in subjective and quantitative errors compared
to the previous state-of-the-art. We also demonstrate adaptive sampling and space-time filtering for animations.

1. Introduction

Monte Carlo rendering suffers from noise artifacts that can
often only be avoided by sampling an excessive number of
light paths. This has slowed the adoption of Monte Carlo
rendering in applications ranging from movie production to
real-time rendering. While a vast variety of variance reduc-
tion and sophisticated sampling techniques have been pro-
posed for Monte Carlo rendering, a renewed interest in im-
age space filtering methods has shown that such methods
can be surprisingly effective. These methods are appealing
because they are relatively easy to implement, mostly or-
thogonal to other variance reduction techniques, applicable
to general light transport effects, computationally efficient,

(© 2013 The Author(s)
Computer Graphics Forum (©) 2013 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

and often competitive with more specialized approaches tar-
geting specific rendering effects. A particularly successful
idea is to use feature buffers, such as per pixel normals, tex-
tures, or depth, to compute denoising filter weights. Feature
buffers are highly correlated with the rendered image, since
they represent most edges in the image, but they are usually
much less noisy than the color output of the Monte Carlo
renderer. Therefore, filters based on feature buffers effec-
tively remove noise while preserving most edges. Unfortu-
nately, they are prone to blurring image details that are not
well represented by the features. Feature buffers have been
used to determine denoising filters in the context of guided
image filtering, which is based on local regression, wavelet
thresholding, and cross-bilateral filtering.



F. Rousselle, M. Manzi & M. Zwicker / Robust Denoising using Feature and Color Information

In this paper we present a method to robustly combine
color and feature buffers to improve denoising performance.
We use a filtering framework based on NL-means filter
weights for color buffers and bilateral weights for feature
buffers. We control the influence of color and feature buffers
by adjusting the parameters of the NL-means and bilateral
filters. To combine color and feature information, we eval-
uate three candidate filters using different parameters de-
signed to provide a trade-off between fidelity to image de-
tail and robustness to noise. Then we compute a weighted
average of the candidate filters on a per-pixel basis using a
SURE-based error estimate to minimize the output error. We
deal with noisy features by denoising them first in a sepa-
rate step using an NL-means filter. This allows us to include
novel features, such as a caustics buffer shown in Figure 1,
and a direct visibility feature. We demonstrate that our ap-
proach leads to significant improvements both in subjective
and quantitative errors compared to the previous state-of-
the-art. In summary, we make the following contributions:

e We propose to combine color and feature buffers to im-
prove image space denoising of Monte Carlo renderings.

e We implement this idea based on NL-means and cross-
bilateral filtering, and a SURE-based error estimate.

e We propose to deal with noisy features by denoising them
in a separate step. This allows us to introduce novel fea-
tures such as caustics and direct visibility.

e We demonstrate significant subjective and numerical im-
provements in image quality over the previous state-of-
the-art.

e We extend our approach to adaptive sampling and space-
time filtering for animations.

2. Previous Work

Image space filtering techniques are often inspired by de-
noising algorithms from the image processing research com-
munity, adapted to the specifics of Monte Carlo rendering.
Early work by McCool [McC99] adapts anisotropic diffu-
sion to filter noisy Monte Carlo images. Xu et al. [XP05]
build on the bilateral filter [TM98]. Overbeck et al. [ODR09]
propose an algorithm based on wavelet shrinkage [DJ94].
Rousselle et al. [RKZ11] use adaptive bandwidth selec-
tion [Kat99] and later [RKZ12] non-local means filter-
ing [BCMO5]. Kalantari et al. [KS13] show that general im-
age denoising algorithms such as BM3D [DFKEOQ7] can be
effectively applied to Monte Carlo renderings. These meth-
ods also include error estimation techniques, which are used
in combination with an adaptive sampling stage.

While the above methods only rely on color samples ob-
tained from Monte Carlo renderers, filtering quality can be
greatly improved by exploiting auxiliary per pixel infor-
mation, which we call features, such as per pixel normals,
depth, or texture. These features can be used to obtain effec-
tive filters because they are highly correlated with the output
image, but they are usually much less noisy. This has first

been explored in the context of real-time rendering. For ex-
ample, Bauszat et al. [BEM11] build on the guided image
filter [HST10], and Dammertz et al. [DSHL10] employ a
fast wavelet transform. A disadvantage of these techniques is
that they assume that the features are not corrupted by noise.
Shirley et al. exploit the depth buffer to denoise motion and
defocus blur [SAC*11].

The current state-of-the-art in off-line rendering combines
feature-based filters with error estimation techniques to drive
adaptive sampling, and includes approaches to deal with
noisy features. Sen and Darabi [SD12] propose a technique
based on cross-bilateral filtering [ED04] using an informa-
tion theoretic approach to deal with noisy features. Li et
al. [LWC12] combine a per-pixel SURE-based error esti-
mate [Ste81] with cross-bilateral filtering. Van De Ville and
Kocher [VDVKO09] propose a SURE-based error estimate for
NL-means denoising, although they used it for parameter se-
lection on a per-image rather than per-pixel basis. Moon et
al. [MJL*13] apply an NL-means filter guided by a virtual
flash image. Our approach is most related to the work by
Li et al., with some significant differences. While they opti-
mize over the spatial filter support size, we find a trade-off
between driving the filter using color or feature information.
We denoise features in a separate step, which allows us to
effectively exploit novel features such as direct light source
visibility or caustics that tend to be noisy. Finally, we add a
second filtering pass based on a variance estimate of the first
pass. Together, this yields significant quality improvements.

An alternative to image space methods are techniques
that attempt to exploit the higher dimensional structure
of light transport effects. Hachisuka et al. [HIW*08] de-
scribe a general framework for multi-dimensional adap-
tive sampling and reconstruction. A number of techniques
build on four-dimensional light field representations to ob-
tain impressive results for specific effects such as motion
blur [ETH*09], motion blur and depth of field [LAC*11],
area lights and complex occluders [EHDRI11], or indirect
illumination [LALD12], without raising any claim to com-
pleteness. The recent work by Mehta et al. [MWR12] on im-
age space filtering of soft shadows explores an interesting
middle ground: combining an accurate analysis in higher-
dimensional space with the efficiency of image space filter-
ing. Since the scope of pure image space methods is more
general compared to these techniques, a direct comparison
would be less meaningful.

3. Overview

Filtering based on feature buffers, such as per pixel normal,
texture, or depth, has proven extremely effective, in particu-
lar for images rendered with very few samples per pixel and
high noise levels in the Monte Carlo output [SD12,LWC12].
On the other hand, image details that are not represented in
the feature buffers tend to be blurred by such approaches.
Hence our main idea is to construct a filter that implements

(© 2013 The Author(s)

Computer Graphics Forum (© 2013 The Eurographics Association and John Wiley & Sons Ltd



F. Rousselle, M. Manzi & M. Zwicker / Robust Denoising using Feature and Color Information

a balance between filtering using color and feature infor-
mation. In general, our filter computes a weighted aver-
age of neighboring pixels. The filtered color values F(p) =
(Fi(p),F2(p),F3(p)) of a pixel p in a color image u(p) =
(u1(p), u2(p),u3(p)) are

Fi(p):% Y wl@w(p,q), (1)

P) oéNtp)

where N(p) is a 2r + 1 X 2r + 1 square neighborhood cen-
tered on p, w(p, q) is the weight of the contribution of neigh-
boring pixel g to p, i is the index of the color channel, and
C(p) = Lgen(p)w(p:q) is a normalization factor. The fun-
damental challenge is to determine suitable weights w(p, q).

In our approach, illustrated in Figure 2, we construct three
candidate filters, which we call the FIRST, SECOND, and
THIRD candidate filter. We design the filters such that the
FIRST filter is most sensitive to details in the color buffer,
but also most sensitive to its noise; the THIRD filter is least
sensitive to noise in the colors, but also least sensitive to
its details; and the SECOND filter is in between. Then we
compute the final filter as a weighted average of the candi-
date filters using a SURE-based per-pixel error estimate. We
build the candidate filters from two types of weights, called
color and feature weights. We obtain the color weights as
NL-means weights from the noisy color output of the Monte
Carlo renderer as described in Section 4. We compute the
feature weights as bilateral weights from the feature buffers,
as presented in Section 5. In Section 6 we then describe how
we construct the FIRST, SECOND, and THIRD candidate
filters from the color and feature weights, and how we com-
pute the candidate filter averaging weights using SURE error
estimation. We provide a summary of our algorithm in Sec-
tion 7, and in Section 8 we present extensions to adaptive
sampling and space-time filtering for animations.

4. NL-means Weights from Color Buffer

Our color weights w, are based on NL-means filter-
ing [BCMOS5], which has proven effective for denoising
Monte Carlo renderings because it can easily be generalized
to spatially varying variances typical in such data [RKZ12].
We compute the NL-means weights from the noisy color
output of the Monte Carlo renderer, and per-pixel variance
estimates. We next review NL-means weights computation
and then describe our per-pixel variance estimates.

NL-Means Weights. NL-means weights for a pixel p
and a neighbor ¢g are determined based on the distance
d*(P(p),P(q)) between a pair of small patches P(p) and
P(q) of size 2f +1 x 2f + 1 centered at p and ¢,

1 3

2 _ 2
d: (P(p),P(q)) = e l_;neg(o)m (p+n,q+n),

where A?(p +n,q+n) is is a per-pixel distance in color
channel i and n € P(0) are the offsets to each pixel within a

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd

v

SURE estimate SURE estimate SURE estimate

Reference

Averaging weights » Filtered output

Figure 2: Our main idea is to filter using a balance of color
and feature information. We evaluate three candidate filters
designed to provide a trade-off between sensitivity to im-
age detail and robustness to noise. We compute averaging
weights for the candidate filters at each pixel using a SURE-
based error estimation. The color coding of the weights cor-
responds to the FIRST, SECOND, and THIRD candidates.

patch. We follow the approach by Rousselle et al. [RKZ12]
and define the per-pixel distance as

(ui(p) — ui(q))* — (Var;[p] + Vari[q, p])
&+ k2 (Var;[p] + Vari[q]) ’

A (p,q) =

The term (u;(p) — u;(¢q))* measures the squared difference
between the color values at pixels p and g. Since u;(p)
and u;(q) are noisy this consistently overestimates the true
squared difference. Hence, we subtract a variance cancel-
lation term (Var;[p] + Var;[g, p]) to remove this bias, simi-
lar as proposed originally for NL-means [BCMO5], where
Var;[p] is a variance estimate for the sample mean in pixel
p, and Var;[q, p] = min(Var;[g], Var;[p]). The denominator



F. Rousselle, M. Manzi & M. Zwicker / Robust Denoising using Feature and Color Information

& + k2 (Var;[p] + Var;[g]) is a normalization factor, where &
is a small value to prevent division by zero, and k. is a user
specified factor that controls the sensitivity of the filter to
color differences. Larger values of k. lead to more aggressive
filtering. Finally, we obtain our color filter weight wc(p, q) of
the contribution of pixel g to p using an exponential kernel,

ax 2
Wg(p,q) — exp7 max(0,d; (P(p),P(q))) . )

Variance Estimation. In the case of random sampling, we
could estimate the variances Var; of pixel means simply by
considering the sample variance within each pixel. This ap-
proach is not suitable, however, to support low-discrepancy
sampling where it will consistently overestimate the vari-
ance. Rousselle et al. [RKZ12] address this problem by split-
ting the noisy color samples into two half-buffers and com-
puting the empirical variance of these half-buffers. While
this is an unbiased estimate of the pixel variance, it is also
very noisy and leads to poor NL-means filtering performance
if used directly. To address this, we observe that the sample
variance exhibits the detailed structure of the actual spatially
non-uniform variance, but with a systematic bias. Hence we
attempt to remove this bias by simply scaling the sample
variance to match the magnitude of the two-buffer variance.
We smooth both the sample variance and the two-buffer vari-
ance with a large, 21 x 21 box filter and then compute the ra-
tio between the two on a per-pixel basis. We then apply this
ratio on the initial unfiltered sample variance. This results in
a variance estimate with the lower noise of the sample vari-
ance, and the correct magnitude of the two-buffer variance.

5. Cross-bilateral Weights from Feature Buffers

We determine the feature weights wy using the feature
buffers and bilateral weights. An important distinction com-
pared to previous work exploiting feature buffers [LWC12,
SD12] is that we deal with noisy features by first prefilter-
ing them separately. We next describe our feature prefiltering
technique, and then the computation of the bilateral weights
using the prefiltered features.

Feature Prefiltering. Our prefiltering approach exploits the
fact that features can be denoised effectively because their
dynamic range, and hence their variance, is typically lim-
ited. We apply an NL-means filter as described in the previ-
ous section including the same method to estimate the input
variance, although using individual features instead of color
as input. We choose window radius r = 5, patch radius f =3,
and sensitivity k. = 1.0 for all features.

Output Variance Estimation. To determine the bilateral
weights we will also require the residual variance of the pre-
filtered features, that is, we need the per-pixel variance of
the prefiltered output. We obtain the output variance using a
two-buffer approach similar to Section 4. We split the feature
data into two half-buffers that we both filter using the same

NL-means weights determined from the complete data, as
described above. Note that given fixed weights, the filter (see
Equation 1) is linear, and averaging the filtered half-buffers
is equivalent to filtering the full data. By processing the half-
buffers, however, we can estimate the residual per-pixel vari-
ance as the squared per-pixel difference between the filtered
half-buffers. We further reduce noise in this two-buffer vari-
ance estimate by smoothing it with a small Gaussian kernel
with standard deviation of 0.5 pixels.

Bilateral Weights. We denote feature buffers such as nor-
mals, textures, or depth, denoised and normalized to unit
range, as f;. The feature distance CI% (p,q) for feature j be-
tween pixels p and ¢ is based on the squared feature differ-
ence including variance cancellation similar to Section 4,

(fi(p) — fi(q))* — (Var;[p] + Var;[p, q])
k7 max (v, max(Var;[p], [|Grad;[p]||?))

@%(p,q) =

normalized by two factors: First, the user parameter k; con-
trols the sensitivity of the filter to feature differences. The
second factor depends on the residual variance of the pre-
filtered feature (as described above) denoted by Var;[p] and
the squared gradient magnitude ||Grad,[p] ||, thresholded to
a minimum value 7. This factor normalizes the feature dis-
tance relative to residual noise left in the filtered feature and
the local feature contrast, measured by its gradient magni-
tude. Finally, we obtain an overall distance d(p,q) by tak-
ing the maximum distance over all M features,
d}(p,q) = argmax ®3(p,q),
JE[L..M]

and the final feature weight wr(p,q) is obtained using an
exponential kernel, similar as in Section 4,

wr(p,q) = expfdfz‘(p’q) . 3)
We illustrate the benefit of our feature prefiltering step in
Figure 3 on a simple scene with depth of field. With prefilter-
ing, we effectively remove noise in out-of-focus regions,
while preserving detail otherwise. Feature prefiltering allows
us to exploit novel types of features that tend to be too noisy
to be useful without prefiltering. For the “rings” scene in Fig-
ure 1 we define a caustics feature as the per-pixel density
of caustic photons. We also introduce a direct illumination
visibility feature as the fraction of shadow rays that hit any
light source over all direct shadow rays evaluated in a pixel.
Figure 4 illustrates how considering the feature gradient in
the distance normalization improves filtering performance.
Without the gradient term feature weights along edges are
too restrictive, preventing effective filtering.

6. Filter Weighting using SURE-based Error Estimate

We use a SURE-based approach [Ste81] to estimate the
mean squared error (MSE) of three candidate filters, which
we design to provide a trade-off between fidelity to image

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd



F. Rousselle, M. Manzi & M. Zwicker / Robust Denoising using Feature and Color Information

input (closeup) reference

no prefiltering
kr=1.0

|

no prefiltering
kr=3.0

with prefiltering
kr=0.6

s - P

Figure 3: We show the effectiveness of feature prefiltering
on a scene with depth-of-field, which leads to noisy features.
We use only the texture feature. The left quad is in-focus and
noise free, while the right quad is out-of-focus and noisy (top
left). Our approach with prefiltering preserves detail in the
in-focus-region while effectively denoising the out-of-focus
region (bottom right). Without prefiltering the bilateral fea-
ture weights fail to distinguish between noise and texture
detail. While smaller ky values preserve texture detail, they
cannot remove the noise (bottom left). Larger k¢ values yield
smoother results but blur out the details (bottom middle).

input

without gradient with gradient

Figure 4: Filtered output for the “conference” scene without
(middle image) and with the feature gradient (right image).
Including the gradient term improves filtering along edges.

detail and robustness to noise. We then leverage the error es-
timate to compute a weighted average of the candidate filters
minimizing the error on a per-pixel basis. We next describe
the candidate filters, the SURE-based error estimate, and the
computation of the per-pixel filter averaging weights.

Candidate Filters. Our FIRST, SECOND, and THIRD
candidate filters (Figure 2) differ in their color sensitivity
ke and patch radius f. The FIRST filter uses kc = 0.45 and a
small patch radius of f = 1, which makes it sensitive to small
image detail but also less robust to noise. The SECOND fil-
ter is the same except that it uses a larger patch radius f = 3.
Hence it is more robust to noise but less effective at filtering
intricate image detail at low noise levels. The THIRD filter

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd

has k. = oo, which means that the color information does
not influence the filter weights and the patch size f is irrele-
vant. This filter is most robust towards noise since its weights
completely ignore color information. However, it fails to re-
cover image detail that is not represented in the features. All
filters use feature sensitivity ky = 0.6 and the same window
radius r, which is the only parameter we expose to the user.
We determine the final filter weights by taking the minimum
of the color and feature weights, that is

w(p,q) = min(we(p,q),wr(p,q)). @)

SURE Error Estimate. We explain the SURE error esti-
mate by extending our notation from Equation 1 for a generic
color image filter. Let us interpret the output Fy,(p) of the
filter at pixel p as a function of the noisy value u; of color
channel i at p. The SURE error estimator at pixel p is then

3
2 2 2 dFy,
SURE(p) = Y. |1F (p) — > ~ oF +20? 217
i=1 i

(&)

where G,-z is the true variance of the pixel mean of color
channel i. Since our color weights w, include discontinuous
terms, they are technically not differentiable. But we found
that a finite difference approximation of the derivatives still
leads to reliable error estimates in practice. Hence we ap-
proximate dFy, (p)/du; as,

dF,(p) _ Fuvs(p) — Fu(p)
du; 3

, where 6 = 0.01 X u;.

Candidate Filter Averaging. While SURE provides an un-
biased error estimate, it is very noisy and needs to be filtered
for per-pixel error minimization. A straightforward approach
would be to spatially smooth the error estimate until its vari-
ance is low enough to reliably determine the best candidate
filter on a per-pixel basis. Unfortunately, in our typical data
the SURE estimate tends to be contaminated by strong out-
liers. This requires large spatial smoothing filters, introduc-
ing bias in the per-pixel error estimates.

Instead, we achieved better results with a two-step strat-
egy that is more robust to outliers in the initial error estimate.
In a first step, we smooth the error estimate with a small ker-
nel and obtain three binary selection maps for the candidate
filters, containing a 1 in each pixel if the filter had lowest
error, and O otherwise. Since the FIRST candidate filter is
most sensitive to noise it may occur that it preserves noise,
but the SURE estimate does not register the error. We avoid
such residual noise by selecting the FIRST candidate only
if it filters more than the SECOND, that is, the derivative
term in the SURE estimate is lower for the FIRST candi-
date. In the second step we smooth the binary maps with
a larger kernel. This approach has the advantage that the bi-
nary selection maps suppress outliers, which allows us to use
smaller smoothing kernels in the second step. We found that
the smoothing step of the initial error estimate is necessary
to obtain sufficiently discriminatory binary maps.



F. Rousselle, M. Manzi & M. Zwicker / Robust Denoising using Feature and Color Information

7. Algorithm

We summarize our algorithm in Algorithm 1. The workhorse
of our filtering pipeline, which we use to compute the three
candidate filters and some auxiliary filtering, is the function

[out,d_out_d_in] = flt(in,u,var_u, f],var_f]],p).

It filters an input in by constructing color weights (Equa-
tion 2) from a color buffer u with variance var_u, and fea-
ture weights (Equation 3) from a set of feature buffers f]]
with variances var_f{], and taking their minimum as in Equa-
tion 4. The function also returns the derivative d_out_d_in
that is needed for the SURE estimate (Equation 5). The pa-
rameter values are specified in the structure p. We further
assume that the input in and output out of the filter consist
of two half-buffers to support two-buffer output variance es-
timation (Section 5, output variance estimation). We imple-
ment the SURE error estimate (Equation 5) in a function

SURE (u,var_u,F,dF_du)

that takes a noisy buffer # with its variance var_u, and
its filtered version F' with derivative dF_du as input. The
algorithm also uses an auxiliary function scale_svar that
takes a buffer (consisting of two half-buffers) and its sam-
ple variance as input and implements the sample variance
scaling technique described in Section 4. Finally, the func-
tion buffer_var computes the two-buffer variance of a buffer
(consisting of two half-buffers) smoothed with a Gaussian
kernel (Section 5, output variance estimation). In addition
to the steps described so far, our algorithm includes a fi-
nal filtering pass that removes residual noise (lines 27 — 29),
which we detect by computing the two buffer variance of the
output. This residual noise is typically located along edges,
where the filter is more constrained.

8. Extensions

Adaptive Sampling. We follow the adaptive sampling strat-
egy proposed by Rousselle et al. [RKZ12] which we sum-
marize here. We distribute samples over multiple iterations,
each having an equal share of the sample budget. The first it-
eration performs uniform sampling, and the subsequent ones
perform adaptive sampling. In the adaptive iterations, the
sampling density is proportional to the estimated relative
MSE returned by SURE, scaled by a weight W. The weight
W represents the error reduction potential of a single sample,
and accounts for the number of samples used in the filter, as
well as the filter support,

_ Lyenp w(p:9)

Wir) 1+np

where p is a pixel, N(p) the filter window around p, w(p, q)
the weight of a neighbor ¢ within the window, and 7, the
number of samples already contributing to the filtered value
of p. The resulting weighted error is quite noisy, so we filter
it aggressively with our fIr function and parameters r = 10,

Algorithm 1: DENOISE
Input: Noisy color buffer ¢ with sample variance
svar_c; set of M noisy feature buffers f[] with
sample variances svar_f[]; window radius R
Output: Denoised image pass2

1 begin
/* Sample variance scaling. */
2 var_c = scale_svar(svar_c,c)

3 for all features j=1...M do
4 L var_f[j] = scale_svar(svar_fj], f[j])
/* Feature prefiltering. */
p={ke=1,kf=o00,f=3,r=5}
for all features j=1...M do
L Ju_f[j) = fie(fLj1, fUl, var_f1j]nil,nil, p)

e 9 !

var_flt_f[j| = buffer_var(flt_fj])
/* Candidate filters. */
9 p=1{ke=0.45k;=0.6,f=1,r=R,1=10E -3}
10 [r,d_r] =flt(c,c,var_c,flt_f]],var_flt_f]],p)
u | p={k=045k; =06,f=3,r=R1=10E—3}
2 | [g.d_g]=fit(c,c,var_c fit_f[|,var_fit_f[],p)
13 p={ke=00,kf=0.06,f=1,r=R,1=10E —4}
14 [b,d_b] = fit(c,c,var_c,flt_f[],var_flt_f[],p)
/* Filtered SURE error estimates. */
15 | p={ke=10ky=oco,f=1,r=1,1=10E—3}
16 e_r = flt(SURE(c,var_c,r,d_r),c,var_c,nil,nil,p)
17 e_g = flti(SURE(c,var_c,g,d_g),c,var_c,nil,nil, p)
18 e_b=fli(SURE(c,var_c,b,d_b),c,var_c,nil,nil,p)
/* Binary selection maps. */
19 sel r=er<e g&&e_r<e_b
&&d_r<d g?1:0
20 sel g=e g<er&&e g<eb?1:0
21 sel b=e b<er&&e g<eb?1:0

/* Filter selection maps. */
22 p:{kL:17kf=OO7f=1,r:5,T:10E73}
23 sel_r = flt(sel_r,c,var_c,nil,nil,p)

24 sel_g = flt(sel_g,c,var_c,nil,nil,p)
25 sel_b = flt(sel_b,c,var_c,nil,nil,p)

/* Candidate filter averaging. */
26 passl =rxsel_r+gxsel_g-+bx*sel_b
/* Second pass filtering. i

2 | p={ke=045ks=o00,f=1r=R1=10E—4}
28 var_passl = buffer_var(passl)
29 pass2 = flt(passl,passl,var_passl,nil,nil, p)

ke = 1.0, and ky = oo. Lastly we clamp the number of sam-
ples allocated to each pixel to a fixed value to prevent spend-
ing too many samples on outliers.

Space-time Filtering for Animations. Filtering animations
on a per-frame basis suffers from disturbing flickering arti-
facts due to low-frequency residual noise. We can greatly
mitigate these problems by space-time filtering. We imple-
ment space-time filtering in our framework by extending

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd



F. Rousselle, M. Manzi & M. Zwicker / Robust Denoising using Feature and Color Information

our filtering window from a spatial to a spatio-temporal
window across several frames, as proposed by Buades et
al. [BCMOS]. Otherwise our algorithm remains the same
as before. We provide animations for the “conference” and
“sanmiguel” scenes in our supplemental material, demon-
strating both spatial and space-time filtering. While there is
hardly any noticeable difference on still frames, the space-
time filtered output exhibits significantly less flickering, es-
pecially in the “conference” scene.

9. Results

We integrated our method as an extension of the PBRT ren-
dering framework [PH10] and implemented the filtering op-
erations themselves in CUDA for GPU acceleration. The
complexity of each filtering step is proportional to image res-
olution, window radius f, and patch radius r. For an image
resolution of 1024 x 1024 pixels and user specified window
radius r = 10, the complete filtering pipeline summarized in
Algorithm 1 takes 5.4 seconds on an NVidia GeForce GTX
TITAN GPU, and 8.0 seconds on a Geforce GTX 580 GPU.
All timings reported below were measured on a workstation
with dual 6-core Intel Xeon processor at 2.3 GHz, 12 ren-
dering threads, and a Geforce GTX TITAN GPU.

The “rings” scene in Figure 1 is rendered using PBRT’s
photon mapper using 32 samples per pixel, 450k caustic pho-
tons, 1000k indirect photons, and 4 final gather rays per sam-
ple. It took 869s to render, and 19.5s to filter with a window
radius r = 20 (the filtering cost is higher for this scene, since
we have the additional caustics buffer and a larger window
radius). It uses our novel caustics feature, which stores the
density of caustics photons. We use ray differentials to com-
pute pixel-sized radiance estimation radii to avoid blurring
of caustics. Figure 5 further highlights the contribution of
our novel features. We show closeups of the “sanmiguel”
scene filtered with and without the visibility feature, and the
“rings” scene with and without the caustics feature. Includ-
ing the novel features clearly improves our results.

Figure 6 contains log-log convergence plots for the
“sibenik”, “conference”, and “sanmiguel” scenes. We show
results for our complete filter using uniform sampling (OUR
in cyan) and adaptive sampling (dotted cyan), our candi-
date filters (red, green, and blue), and the work by Li et
al. [LWC12] (SBF in magenta). The plots indicate that our
SURE-based weighted averaging of the candidate filters
consistently improves the error of the individual candidate
filters. It is also interesting that both our FIRST and SEC-
OND filters generally outperform SBF, which underlines the
usefulness of including color weights in the filter.

In Figure 7 (last page) we compare rendering with low-
discrepancy sampling and no filtering (LD), the approach by
Li et al. [LWCI12] (SBF) using the implementation provided
by the authors, and our technique (OUR) at roughly equal
render time. We also include a reference image (REFER-
ENCE). We use uniform sampling in this comparison since

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd

input no visibility  with visibility feature
~Thasl il il
r " ] ]
. ..I:::. -::l i _|'I..-. } f .Ill'l-. L
b A ¥
it A ] L B - L
input no caustics with caustics feature

S | |

Figure 5: Closeups of “sanmiguel” filtered with and with-
out the visibility feature, and “rings” with and without the
caustics feature. The features shown on the right (before pre-
filtering) help preserving important details.

we found that SBF often gave worse results with adaptive
sampling. Our feature buffers include texture, depth, normal,
and visibility. We attribute our improvements over previous
work to three main factors: the consideration of the color
buffer to construct the final filter, the use of the visibility fea-
ture, and the improved handling of noisy features. The “con-
ference” scene highlights the benefits of the visibility fea-
ture. We preserve the shadows, while SBF, which does not
use visibility features, is not able to do so. For this scene we
used a larger window radius of r = 20 to remove spike noise.
In the comparison with SBF we obtain a much lower MSE.
In the “sanmiguel” scene, our filter yields a smoother result
while preserving the foliage details as well as the small di-
rect shadow details, which SBF blurs because of the absence
of the visibility feature. In the “sibenik” scene we obtain re-
sults largely free of artifacts in out-of-focus regions, where
typically all features are noisy. In contrast, SBF suffers from
residual noise in these areas. In the “teapot-metal” scene, our
filter can better preserve the chaotic structure of the floor, as
well as the glossy highlights that are not captured in the fea-
ture buffers. The “dragonfog” scene includes participating
media to demonstrate the flexibility of our approach in deal-
ing with a variety of rendering effects, and was also filtered
with a window radius r = 20. We also provide comparisons
to the methods of Dammertz et al. [DSHL10], Bauszat et
al. [BEM11], Kalantari and Sen [KS13], and Rousselle et
al. [RKZ12] in the supplemental material.

Figure 8 illustrates our adaptive rendering scheme on the
“sibenik” scene with an average of 16 samples per pixels. We
also compare to SBF using the original authors’ implementa-
tion. Adaptive sampling improves our MSE by roughly 18%
compared to the result presented in Figure 7 with uniform
sampling. The convergence plots of Figure 6 also indicate
the MSE obtained with adaptive sampling with dotted lines,
showing a consistent improvement over uniform sampling.

In Figure 9 we use the mean of the BRDF samples as a



F. Rousselle, M. Manzi & M. Zwicker / Robust Denoising using Feature and Color Information

sibenik

conference

sanmiguel

8.0e-03

4.0e-03

2.0e-03

2.5e-04 |~ i i i - 1.0e-03 [

6.4e-02

3.2e-02

1.6e-02

8.0e-03

16 32 64 128 256
Samples per Pixel

Samples per Pixel

Samples per Pixel

Figure 6: Convergence plots for some of the scenes of Figure 7 (last page) for our method and the SURE-based approach by Li
etal. [LWCI2]. For our method, we show the errors of the FIRST, SECOND, and THIRD candidate filters and the final output.

We indicate results from adaptive sampling with dotted lines.

Full: 38.8; Inset: 44.9 Full: 1.10; Inset: 1.63 Full: 2.71; Inset: 4.27

35 spp (35.2s)

16 spp (36.5s) 15.49 spp (38.2s)

Figure 8: Adaptive rendering of the “sibenik” scene at an
average of 16 spp using both our method and SBEF, includ-
ing MSE values (multiplied by 10E3) and sampling density
maps. The bottom left image is the reference.

feature buffer instead of a texture. The BRDF value is readily
available in a raytracer independent of rendered materials,
whereas a texture may not be well-defined or easily extracted
for many materials. While the mean of the BRDF samples is
typically noisier than a texture, we can still handle this case
with our feature prefiltering approach, although finer details
may not be preserved as well.

A limitation of our approach is that at very low sampling
rates, typically less than 10 spp, the color weights tend to
become less useful and SURE-error estimation less reliable
because of excessive variance in the color buffer. In such
situations it is possible that our final filter using candidate
filter averaging fails to improve the global MSE over the best
candidate filter. At such low sampling rates it also becomes
challenging to prefilter noisy features such as the visibility.
In these cases the filter parameters need to be adjusted to
obtain reasonable results. It is important to note, however,

texture

e,

Cerg

Full: 290E-3
Inset: 311E-3

Full: 28.0E-3
Inset: 21.7E-3

Full: 28.3E-3
Inset: 22.4E-3

Figure 9: Using the mean of BRDF samples instead of tex-
tures as a feature, with the “sanmiguel” scene at 32 sam-
ples per pixel. The feature buffers are given in the top row,
with the corresponding filtered output and MSE values be-
low. Noise in the BRDF samples may lead to loss of some
fine texture details at low sampling rates.

that all images in the paper and supplemental materials were
rendered using fixed parameters as in Algorithm 1.

10. Conclusions

We have presented a method for denoising Monte Carlo ren-
derings by constructing filters using a combination of color
and feature information. We construct three candidate fil-
ters based on NL-means weights for color buffers and cross-
bilateral weights for feature buffers. We determine robust
averaging weights of the three candidate filters on a per-
pixel basis using SURE error estimation. We also introduce
a novel approach to dealing with noisy features using a pre-
filtering step, and we apply it to new caustics and visibility
features. Together, candidate filter weighting including color
information, feature prefiltering, and the novel caustics and
visibility features provide significant improvements in terms

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd



F. Rousselle, M. Manzi & M. Zwicker / Robust Denoising using Feature and Color Information

of both visual and numerical quality over the previous state-
of-the-art. While the computational cost of our filter is in-
significant in the context of off-line rendering, the technique
is not suitable for interactive rendering. In the future, we will
explore extensions of our approach targeted at real-time ap-
plications. It would also be interesting to further improve
methods targeted at extremely low sampling rates.

Acknowledgements

This project was funded in part by the Swiss National
Science Foundation under grant no.200021_143886. San
Miguel model by Guillermo M. Leal Llaguno of Evolucién
Visual, dragon from the Stanford 3D Scanning Repository,
Sibenik cathedral by Marko Dabrovic and Mihovil Odak,
gargoyle from INRIA via the AIM@SHAPE repository, and
conference scene by Anat Grynberg and Greg Ward.

References

[BCMO5] BUADES A., COLL B., MOREL J.: A review of image
denoising algorithms, with a new one. SIAM Journal on Multi-
scale Modeling and Simulation 4, 2 (2005), 490-530. 2, 3

[BCMO08] BUADES A., COLL B., MOREL J.: Nonlocal image
and movie denoising. International Journal of Computer Vision
76,2 (2008), 123-139. 7

[BEM11] BAUSZAT P., EISEMANN M., MAGNOR M.: Guided
image filtering for interactive high-quality global illumination.
Computer Graphics Forum (Proc. of Eurographics Symposium
on Rendering (EGSR)) 30, 4 (June 2011), 1361-1368. 2, 7

[DFKEO7] DABoOV K., For A., KATKOVNIK V., EGIAZARIAN
K.: Image denoising by sparse 3-d transform-domain collabo-
rative filtering. Image Processing, IEEE Transactions on 16, 8
(Aug. 2007), 2080 —2095. 2

[DJ94] DONOHO D. L., JOHNSTONE I. M.: Ideal spatial adapta-
tion by wavelet shrinkage. Biometrika 81,3 (1994), pp. 425-455.
2

[DSHL10] DAMMERTZ H., SEWTZ D., HANIKA J., LENSCH
H. P. A.: Edge-avoiding a-trous wavelet transform for fast
global illumination filtering. In Proceedings of the Conference
on High Performance Graphics (2010), Eurographics Associa-
tion, pp. 67-75. 2,7

[ED0O4] EISEMANN E., DURAND F.: Flash photography enhance-
ment via intrinsic relighting. ACM Trans. Graph. 23, 3 (Aug.
2004), 673-678. 2

[EHDRI11] EGAN K., HECHT F., DURAND F., RAMAMOORTHI
R.: Frequency analysis and sheared filtering for shadow light
fields of complex occluders. ACM Trans. Graph. 30, 2 (Apr.
2011), 9:1-9:13. 2

[ETH*09] EGANK., TSENG Y.-T., HOLZSCHUCH N., DURAND
F., RAMAMOORTHI R.: Frequency analysis and sheared recon-
struction for rendering motion blur. ACM Trans. Graph. 28 (July
2009), 93:1-93:13. 2

[HIW*08] HACHISUKA T., JAROSZ W., WEISTROFFER R. P.,
DALE K., HUMPHREYS G., ZWICKER M., JENSEN H. W.:
Multidimensional adaptive sampling and reconstruction for ray
tracing. ACM Trans. Graph. 27 (August 2008), 33:1-33:10. 2

[HST10] HE K., SUN J., TANG X.: Guided image filtering.
In Proceedings of the 11th European conference on Computer
vision: Part I (Berlin, Heidelberg, 2010), ECCV’10, Springer-
Verlag, pp. 1-14. 2

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd

[Kat99] KATKOVNIK V.: A new method for varying adaptive
bandwidth selection. Signal Processing, IEEE Transactions on
47,9 (1999), 2567-2571. 2

[KS13] KALANTARI N. K., SEN P.: Removing the noise in
Monte Carlo rendering with general image denoising algorithms.
Computer Graphics Forum (Proceedings of Eurographics 2013)
32,2(2013). 2,7

[LAC*11] LEHTINEN J., AILA T., CHEN J., LAINE S., DU-
RAND F.: Temporal light field reconstruction for rendering dis-
tribution effects. ACM Trans. Graph. 30 (August 2011), 55:1—
55:12.2

[LALDI12] LEHTINEN J., AILA T., LAINE S., DURAND F.: Re-
constructing the indirect light field for global illumination. ACM
Trans. Graph. 31,4 (July 2012), 51:1-51:10. 2

[LWC12] LI T.-M., WU Y.-T., CHUANG Y.-Y.: Sure-based op-
timization for adaptive sampling and reconstruction. ACM Trans.
Graph. 31, 6 (Nov. 2012), 194:1-194:9. 2,4, 7, 8, 10

[McC99] McCooL M. D.: Anisotropic diffusion for monte carlo
noise reduction. ACM Trans. Graph. 18, 2 (April 1999), 171-
194. 2

[MJL*13] MooN B., JUNJ. Y., LEE J., KiM K., HACHISUKA
T., YOON S.-E.: Robust image denoising using a virtual flash
image for monte carlo ray tracing. Computer Graphics Forum
32,1(2013), 139-151. 2

[MWRI12] MEHTA S. U., WANG B., RAMAMOORTHI R.: Axis-
aligned filtering for interactive sampled soft shadows. ACM
Trans. Graph. 31, 6 (Nov. 2012), 163:1-163:10. 2

[ODR09] OVERBECK R. S., DONNER C., RAMAMOORTHI R.:
Adaptive wavelet rendering. ACM Trans. Graph. 28 (December
2009), 140:1-140:12. 2

[PH10] PHARR M., HUMPHREYS G.: Physically Based Render-
ing: From Theory To Implementation, 2nd ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2010. 7

[RKZ11] ROUSSELLE F., KNAUS C., ZWICKER M.: Adaptive
sampling and reconstruction using greedy error minimization.
ACM Trans. Graph. 30, 6 (Dec. 2011), 159:1-159:12. 2

[RKZ12] ROUSSELLE F., KNAUS C., ZWICKER M.: Adaptive
rendering with non-local means filtering. ACM Trans. Graph.
31,6 (Nov. 2012), 195:1-195:11. 2, 3,4, 6,7

[SAC*11] SHIRLEY P., AILA T., COHEN J., ENDERTON E.,
LAINE S., LUEBKE D., MCGUIRE M.: A local image recon-
struction algorithm for stochastic rendering. In Symposium on In-
teractive 3D Graphics and Games (New York, NY, USA, 2011),
13D ’11, ACM, pp. 9-14 PAGE@5. 2

[SD12] SEN P., DARABI S.: On filtering the noise from the ran-
dom parameters in monte carlo rendering. ACM Trans. Graph.
31,3 (June 2012), 18:1-18:15. 2, 4

[Ste81] STEIN C. M.: Estimation of the mean of a multivari-
ate normal distribution. The Annals of Statistics 9, 6 (1981), pp.
1135-1151. 2,4

[TM98] ToMmAsI C., MANDUCHI R.: Bilateral filtering for gray
and color images. In Computer Vision, 1998. Sixth International
Conference on (1998), IEEE, pp. 839-846. 2

[VDVK09] VAN DE VILLE D., KOCHER M.: Sure-based non-
local means. Signal Processing Letters, IEEE 16, 11 (2009), 973—
976. 2

[XP05] XU R., PATTANAIK S.: A novel monte carlo noise reduc-
tion operator. Computer Graphics and Applications, IEEE 25, 2
(2005), 31-35. 2



F. Rousselle, M. Manzi & M. Zwicker / Robust Denoising using Feature and Color Information

OUR LD SBF OUR REFERENCE

152 spp (100s) 128 spp (104s) 128 spp (104s) 256000 spp
Full: 208; Inset: 134 Full: 4.56; Inset: 8.15
.- L N .‘ '. I

Full: 1.70; Inset: 5.81

4

; . R - - L
sanmiguel 36 spp (55s) 32 spp (67s) 32 spp (57s) 64000 spp
Full: 283; Inset: 319 Full: 43.3; Inset: 71.8 Full: 28.4; Inset: 39.0

sibenik 25 spp (24s) 16 spp (34s) 16 spp (25s) 32000 spp

Full: 59.0; Inset: 51.0 Full: 2.07; Inset: 4.37 Full: 1.32; Inset: 3.02
e .- i e

teapot-metal 33 spp (19s) 16 spp (29s) 16 spp (19s) 4000 spp

~

Full: 179; Inset: 148 Full: 89.2; Inset: 105 Full: 64.0; Inset: 50.1

dragonfog 51 spp (62s) 32 spp (58s) 32 spp (59s) 32000 spp
Full: 46.0; Inset: 138 Full: 2.35; Inset: 3.44 Full: 1.56; Inset: 1.72

Figure 7: Comparison of our approach (OUR) to path tracing with low-discrepancy (LD) and the SURE-based approach by Li
etal. [LWCI12] (SBF). All images are rendered at a resolution of 1024 x 1024 using PBRT at roughly equal render time for all
methods. At the bottom of the images we give the number of samples per pixel (spp), rendering time in seconds, and MSE values
multiplied by 10E3.We provide consistently better MSE values, which we attribute to three main factors: the consideration of
the color buffer to construct the final filter, the use of visibility features, and the improved handling of noisy features.

(© 2013 The Author(s)
Computer Graphics Forum (© 2013 The Eurographics Association and John Wiley & Sons Ltd



