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Abstract—Learning 3D global features by aggregating multiple
views has been introduced as a successful strategy for 3D shape
analysis. In recent deep learning models with end-to-end training,
pooling is a widely adopted procedure for view aggregation.How-
ever, pooling merely retains the max or mean value over all views,
which disregards the content information of almost all views
and also the spatial information among the views. To resolve
these issues, we propose Sequential Views To Sequential Labels
(SeqViews2SeqLabels) as a novel deep learning model with an
encoder-decoder structure based on Recurrent Neural Networks
(RNNs) with attention. SeqViews2SeqLabels consists of two
connected parts, an encoder-RNN followed by a decoder-RNN,
that aim to learn the global features by aggregating sequential
views and then performing shape classification from the learned
global features, respectively. Specifically, the encoder-RNN learns
the global features by simultaneously encoding the spatialand
content information of sequential views, which captures the
semantics of the view sequence. With the proposed prediction
of sequential labels, the decoder-RNN performs more accurate
classification using the learned global features by predicting se-
quential labels step-by-step. Learning to predict sequential labels
provides more and finer discriminative information among shape
classes to learn, which alleviates the overfitting problem inherent
in training using a limited number of 3D shapes. Moreover,
we introduce an attention mechanism to further improve the
discriminative ability of SeqViews2SeqLabels. This mechanism
increases the weight of views that are distinctive to each shape
class, and it dramatically reduces the effect of selecting the first
view position. Shape classification and retrieval results under
three large-scale benchmarks verify that SeqViews2SeqLabels
learns more discriminative global features by more effectively
aggregating sequential views than state-of-the-art methods.

Index Terms—3D feature learning, Sequential views, Sequen-
tial labels, View aggregation, RNN, Attention.
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T HE 2D views taken around 3D shapes have been shown
to be effective for learning 3D global features for

3D shape analysis, such as 3D shape classification and re-
trieval [1]–[8]. View-based methods understand a 3D shape by
learning its global feature via aggregating the multiple views
taken around it. Due to their independence of 3D geometry
processing, view-based methods are capable of understanding
both manifold and non-manifold 3D shapes. More importantly,
this advantage also alleviates the difficulty of learning features
directly from irregular 3D shapes (i.e., arbitrary vertex reso-
lution, irregular vertex topology and orientation ambiguity on
3D surface) [9]–[12], especially for deep learning models [9],
[10], [12]. Therefore, how to aggregate multiple views for 3D
feature learning has become an important research topic in 3D
shape analysis and understanding.

Recently, deep learning models have been very successful
at learning 3D features by aggregating the information of
multiple views. To perform end-to-end optimization in deep
learning models, max pooling or mean pooling [3], [4], [6]–
[8], [13] is always used to aggregate the content information
of multiple views into global features. Although pooling can
make global features invariant to the rotation of 3D shapes to a
certain extent, it was designed as a procedure of information
abstraction in deep learning models, and it inevitably loses
the content information of almost all views and the spatial
information among the views. Thus, it remains a research
challenge to learn 3D global features by more effectively
aggregating the content and spatial information of multiple
views using deep learning.

To tackle this challenge, we proposeSequential Views To
Sequential Labels(SeqViews2SeqLabels), a novel deep learn-
ing model that learns 3D global features by simultaneously
aggregating the content and spatial information of multiple
views of a 3D shape. To enhance the discriminability of
learned features via efficiently using the spatial information
among views, multiple views are taken from a circle sur-
rounding the 3D shapes. This forms the sequential views to
be learned from in our work. SeqViews2SeqLabels forms an
encoder-decoder structure based on Recurrent Neural Network
(RNN) [14]. Specifically, an encoder-RNN learns the global
feature of a 3D shape by simultaneously aggregating the
content information of all sequential views and the spatial
information among them. In this way, the semantics of the
view sequence, which is robust to the first view position, can
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be learned. Subsequently, an decoder-RNN maps the learned
feature into sequential labels, which are also organized ina
sequential manner for shape classification. The learning of
sequential label prediction is proposed to present more and
finer discriminative information among different shape classes
for the decoder-RNN to capture. This alleviates the overfitting
problem inherent in training using a limited number of 3D
shapes. Moreover, the decoder-RNN also introduces an atten-
tion mechanism to further increase the discriminative ability
of SeqViews2SeqLabels. The attention mechanism adaptively
learns to weigh the content information of sequential viewsto
predict each sequential label. The attention weight highlights
the views that are distinctive to the shape class indicated by
a sequential label and suppresses other views. This assists
the encoder-RNN to learn the semantic meaning of the view
sequence and dramatically reduces the effect of choosing the
first view position. In summary, our main contributions are as
follows:

i) We propose SeqViews2SeqLabels as a novel deep learn-
ing model for 3D global feature learning by more ef-
fectively aggregating sequential views, preserving the
content information of all sequential views and the spatial
information among the views.

ii) To the best of our knowledge, SeqViews2SeqLabels is the
first fully RNN-based 3D global feature learning method
based on aggregating multiple views, which verifies the
usefulness of RNN for 3D global feature learning.

iii) We propose to perform shape classification by predicting
sequential labels in a step-by-step way, where the task
of predicting sequential labels provides more and finer
discriminative information among the shape classes to
learn. This alleviates the overfitting problem inherent in
training using a limited number of 3D shapes.

iv) We propose an attention mechanism to further increase the
discriminative ability of SeqViews2SeqLabels by increas-
ing the weight of distinctive views for each shape class.
This also assists the encoder-RNN to learn the semantic
meaning of the view sequence and it dramatically reduces
the effect of choosing the first view position.

This paper is organized as follows: We review the re-
lated work in Section II, and present the details of Se-
qViews2SeqLabels in Section III. We describe our experimen-
tal setup and results in Section IV and Section V, respectively.
Finally, we draw conclusions in Section VI.

II. RELATED WORK

In this section, the methods of learning 3D features by deep
learning models are reviewed. These methods are categorized
in terms of different raw 3D representations that are learned
from, including meshes, voxels and views. In addition, the
existing view aggregation procedures are emphasized in the
reviewed methods, which highlights the novelty of our RNN-
based view aggregation employed in SeqViews2SeqLabels.
Finally, we also review the methods with similar structure of
SeqViews2SeqLabels in other applications.

A. Mesh-based methods

3D mesh is an important raw representation for 3D shapes.
A 3D mesh is composed of vertices which are connected by
edges. To learn features from 3D meshes directly, several deep
learning models have been proposed. Han et al. [9] proposed
circle convolutional restricted boltzmann machine to learn
3D local features based on a novel circle convolution in an
unsupervised way. To learn global features via hierarchically
abstracting from local information, Han et al. [10] further
proposed mesh convolutional restricted boltzmann machine,
which simultaneously encodes the geometry of local regions
and the spatiality among them. With heat diffusion based
descriptor, Jin et at. [15] proposed DeepShape to learn 3D
global features. Similarly, Jonathan et al. [16] learned 3D
features from hand-crafted features on 3D surface by a novel
geodesic convolutional neural network. To explore the feasibil-
ity of learning features in spectral domain, Davide et al. [17]
proposed localized spectral convolutional network to perform
supervised local feature learning. Also in the spectral domain,
Jin et al. [18] learned binary spectral shape descriptor for3D
shape correspondence. By encoding the spatial relationships
among virtual words on 3D meshes, Han et al. proposed deep
spatiality [19] to simultaneously learn 3D global and local
features with novel coupled softmax. However, these methods
can only be used to learn features from smooth manifold
meshes.

B. Voxel-based methods

Voxel-based methods learn 3D features from voxels which
represent 3D shapes by the distribution of corresponding
binary variables. Wu et al. [20] proposed 3D ShapeNets
to learn global features from voxelized 3D shapes based
on convolutional restricted boltzmann machine. Sharma et
al. [21] employed fully convolutional denoising autoencoder
to robustly perform unsupervised global feature learning via
decomposing and reconstructing voxelized 3D shapes. Girdhar
et al. [22] combined voxels and the corresponding images to
learn global features by a novel T-L network based on CNN.
To employ the generative adversarial training manner, Wu et
al. [23] learned 3D global features by a novel 3DGAN which
is composed of a generator and a discriminator. By analysing
the reason why the performance of voxel-based methods are
always not as good as view-based methods, Qi et al. [13]
employed CNN to learn global features from novel voxel
representations, where max pooling is used to aggregate the
information captured from different orientations. To speed up
the learning from voxels by deep learning models, Wang et
al. [24] proposed O-CNN to learn global features based on a
novel octree data structure. To learn local features from voxles,
Han et al. [12] proposed a novel voxelization permutation
strategy to eliminate the effect of rotation and orientation
ambiguity on the 3D surface. Although voxel-based methods
have the advantage of generating 3D shapes, they not only
need heavy computational cost but also require 3D shapes to
be aligned. In addition, this kind of methods always perform
discriminating shapes worse than the following view-based
methods.
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C. View-based methods

Light Field Descriptor (LFD) [25] is the pioneer view-based
3D descriptor, which employs features of 2D silhouettes in
multiple views of 3D shapes. Instead of aggregating multi-
view information into global features, LFD evaluates the
dissimilarity between two shapes via comparing 2D features
of their corresponding two view sets in a greedy way. By the
same strategy, GIFT [5] measures the difference between two
shapes by the Hausdorff distance between their corresponding
view sets. To bridge 2D sketches and 3D shapes for shape
retrieval, barycentric representations of 3D shapes were pro-
posed to be learned from multiple views [26].

DeepPano [6] was proposed to learn features from
PANORAMA views using CNN, where a PANORAMA view
can be regarded as the seamless aggregation of multiple views
captured on a circle. To eliminate the effect of rotation about
the up-oriented direction, row-wise max pooling was intro-
duced in DeepPano. With pose normalization, Sfikas et al. [27]
used CNN to learn 3D features from multiple PANORAMA
views which were stacked together in a consistent order.
Similarly, using another hand-crafted feature, geometry image,
Sinha et al. [28] proposed to learn 3D features from geometry
images. In addition, RotationNet [29] is proposed to learn
global features by treating pose labels as latent variableswhich
are optimized to self-align in an unsupervised manner.

Recently, Su et al. [3] proposed Multi-View CNN to learn
3D global features from multiple views. To describe a 3D
shape by multiple views, the content information within mul-
tiple views is aggregated into the global feature through max
pooling. Similarly, max pooling is also employed to aggregate
multiple views to learn local features for shape segmentation
or correspondence [4]. To employ more content information in
each view, Li et al. [30] concatenated all view features for hier-
archical abstraction in the CNN-based model. By decomposing
a view sequence into a set of view pairs, Johns et al. [31]
classified each view pair independently, and then, learned
an object classifier by weighting the contribution of each
view pair, which allowed 3D shape recognition over arbitrary
camera trajectories. To perform pooling more efficiently, Wang
et al. [8] proposed dominant set clustering to cluster views
token form each shape, where pooling is performed in each
cluster.

Although pooling resolves the effect of rotation of 3D
shapes, it still suffers from two kinds of information loss,
i.e., the content information of almost all views and the
spatial information among the views. The spatial information
between pairwise views is also disregarded by the view pair
decomposition [31]. In [30], Li et al. compensated these two
kinds of loss by concatenation of all views, however, it is
sensitive to the first view position.

To resolve the aforementioned issues, SeqViews2SeqLabels
is proposed to learn 3D features via aggregating sequential
views by RNN. The RNN-based aggregation not only pre-
serves the content information of all views and the spatial
information among the views, but also becomes capable of
learning the semantics of view sequence, which is robust to
the first view position.

D. CNN-RNN based and RNN-RNN based models

SeqViews2SeqLabels is similar to CNN-RNN based and
RNN-RNN based models. Different from multiple views,
Miyagi et al. [32] employed multiple voxel slices to learn 3D
global features. They used CNN to extract the feature of each
voxel slice, and then, used RNN for view aggregation, where
a softmax was employed to conduct 3D shape classification.
Using a two-layer RNN, Truc et al. [33] proposed a CNN-RNN
model to segment 3D shapes, where multiple edge images
were predicted to estimate the different parts on a 3D shape.
In addition, RNN-RNN based models, especially seq2seq
models, were originally proposed for text understanding. Due
to their powerful learning ability, they have been successfully
employed for image and speech understanding, such as scene
text recognition [34], [35], image caption generation [36]
and speech recognition [37]. The models in [34]–[36] were
proposed to recognize what are in a single image. For ex-
ample, [34], [35] focused on how to recognize the characters
in an image, [36] focused on how to recognize the concepts
in an image. Different from their tasks, SeqViews2SeqLabels
recognize what a view sequence of multiple views is. This
difference makes the involved attention play different roles. In
our method, we want to use attention to highlight the views
with distinctive characteristics to each shape class and depress
the views with ambiguous appearance. Thus, our attention
weights are computed at the image level. In the methods
of [35], [36], attention is used to highlight the parts with a
specified meaning in an image, although multiple feature maps
are involved. Thus, their attention weights are computed at
the part level. To represent the characteristics of each shape
class at each step of decoder, we propose a novel attention
mechanism which is different from the one employed in [35],
[37].

III. SEQV IEWS2SEQLABELS

In this section, SeqViews2SeqLabels is introduced in detail.
First, we provide an overview and then describe the key
elements, including capturing sequential views, view feature
extraction, the encoder-RNN, the decoder-RNN, and the at-
tention mechanism in the subsequent five subsections.

A. Overview

The framework of SeqViews2SeqLabels is illustrated in
Fig. 1, where SeqViews2SeqLabels consists of the encoder-
RNN and the decoder-RNN as shown in Fig. 1 (b). First, a
view sequencevi is captured on a circle around each 3D shape
mi in a set ofM 3D shapes, wherei ∈ [1,M ], as shown in
Fig. 1 (a). The view sequencevi is composed ofV sequential
views vij , such thatvi = [vi1, ..., v

i
j ] and j ∈ [1, V ]. Then,

the global featureof mi, namelyF i, is learned fromvi by
the encoder-RNN. Finally, the decoder-RNN classifiesmi into
one ofC shape classes based on the global featureF i learned
by the encoder-RNN.

To learn F i, the encoder-RNN not only aggregates the
content information of each single viewvij in vi, but also
preserves the spatial information between successive views,
such asvij and vij+1. This enables the learning of semantics



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

... ...

VGG

... ...

Encoder

  RNN

Decoder

  RNN

..

.

.

. . .
.
.

.
.

.
Sequential direction

The first view

sequential views

AirplaneBathtubLampWardrobeXbox

Yes/NoYes/NoYes/NoYes/No

E
m

be
dd

in
g

Yes/No
10000

sequential labels

E
m

be
dd

in
g

E
m

be
dd

in
g

E
m

be
dd

in
g

AttentionAttention

...... ......

...... ......

.
Up-orientation

(a) Sequential view capture (b) SeqViews2SeqLabels

F

i

i

i
f

l
i

E
m

be
dd

in
g

E
m

be
dd

in
g

E
m

be
dd

in
g

v
V

C

im

Fig. 1. The framework of SeqViews2SeqLabels. The sequential views are first captured around each up-oriented 3D shapes on a circle in (a). Then, they are
learned by SeqViews2SeqLabels which consists of encoder-RNN and decoder-RNN.

of the view sequencevi, which makes SeqViews2SeqLabels
robust to the first view position with the assistance of the
attention mechanism introduced later. The content information
of vij is described by its low-level featuref i

j , which is
extracted by the fined-tuned VGG19 [38] deep neural network.

In addition, the decoder-RNN classifies shapemi into one
of C shape classes by predicting alabel sequenceli based
on F i learned by the encoder-RNN. The label sequenceli is
composed ofC sequential labelslic, such thatli = [li1, ..., l

i
c],

where c ∈ [1, C], lic ∈ {0, 1} and
∑C

c=1 l
i = 1. lic = 1

indicates the positive prediction of thec-th label formi, which
meansmi is classified into thec-th shape class, whilelic = 0
indicates the negative prediction of thec-th label formi.

We employ sequential labels inli to provide more and
finer discriminative information among different shape classes.
Sequential labels change the traditional classification task of
learning a mapping from a sequence (sequential views) to a
scalar (shape class index) to an extended mapping of learning
a mapping from a sequence (sequential views) to another se-
quence (sequential labels). This extended mapping effectively
alleviates the overfitting problem inherent in training under
a limited number of 3D shapes. The prediction oflic is only
conducted at thec-th step of the decoder-RNN. The prediction
of sequential labels in a step-by-step manner enables to
comprehensively refer to view aggregation at each step of the
encoder-RNN, the characteristics of forward (from the1-th to
the (c − 1)-th) shape classes, the characteristics of backward
(from the (c+ 1)-th to theC-th) shape classes, and the label
predictionlic−1 at the previous(c − 1)-th step. Note that the
order of shape classes to be predicted in the decoder-RNN does
not affect the discriminative ability of SeqViews2SeqLables,
because the prediction of each sequential label is always
conducted based on the characteristics of all shape classes.

More importantly, we also introduce an attention mech-
anism to further increase the discriminative ability of Se-

qViews2SeqLabels for higher classification accuracy than
merely using the encoder-decoder structure. The attention
mechanism is implemented by weighting the low-level feature
f i
j of all sequential views for each shape class. That is, the

views that are distinctive to one shape class are emphasized,
and otherwise the views are suppressed. This ability of observ-
ing all views for each sequential label prediction also assists
the encoder-RNN to learn the semantic meaning of the view
sequence by dramatically reducing the effect of choosing the
first view position.

B. Capturing sequential views

The sequential views are captured around each 3D shape on
a circle, which forms a view sequence, as shown in Fig. 1 (a).
The sequential views are formed byV views in order which
are uniformly distributed on the circle. Here, the cameras are
elevated30◦ from the ground plane, pointing to the centroid
of the 3D shape. The first view in the view sequence is taken
from a fixed position that can be randomly selected on the
circle. Then, the subsequent views are taken with an angle
interval of 360◦/V in a consistent sequential direction. The
sequential direction is determined by the right hand rule, that
is, it is along the direction of wrapping one’s right hand when
the thumb is in the same direction of the up-orientation, as
demonstrated by the green arrow surrounding the 3D shape in
Fig. 1 (a).

Different from traditional multiple view capture [5], [25],
the sequential views are captured on a circle rather than a
unit sphere. Although the sequential views cannot fully cover
the top or the bottom of 3D shapes, the low-level features
of sequential views can be more efficiently aggregated while
preserving the spatial information among the views for 3D
global feature learning.
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C. Low-level view feature extraction

The low-level feature of each single view can be extracted
through fine-tuning existing deep neural networks, such as
VGG19 [38] and Alexnet [39]. In our work, we employ
VGG19 to extract the low-level featuref i

j of each single view
vij in vi, since VGG19 and its pre-trained parameters are easy
to access. VGG19 is originally trained under the ImageNet
benchmark for large scale image classification [38].

VGG19 is formed by 19 weight layers including 16 convo-
lutional layers and 3 fully connected layers. With a softmax
layer, VGG19 is capable of classifying images belonging to
1000 categories. In our work, the VGG19 pre-trained under
ImageNet is fine-tuned by all sequential views of 3D shapes
in the training set, where each view is classified into one of
C shape classes by another softmax layer. When a viewvij is
forwarded through the fine-tuned VGG19, its low-level feature
f i
j is extracted as a 4096 dimensional vector from the last fully

connected layer of the VGG19.

D. Encoder-RNN

To benefit from the powerful ability of learning sequential
data, SeqViews2SeqLabels employs an RNN as the encoding
procedure to learn 3D global featureF i. The encoder-RNN
learnsF i via aggregatingf i

j of all sequential viewsvij in
the view sequencevi while preserving the spatial information
among them.

i
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Fig. 2. The structure of the encoder-RNN aggregates low-level features of
views while preserving the spatial information among them.

The general structure of the encoder-RNN for aggregating
sequential views invi is illustrated in Fig. 2, where the RNN
cell shown as a blue square at each step can be a Long
Short Term Memory (LSTM) [14] or Gated Recurrent Unit
(GRU) [40]. The encoder-RNN learns from the sequential
views vij in vi step-by-step, where all low-level features of
vij , i.e., [f i

1, ...,f
i
j , ...,f

i
V ], are sequentially aggregated while

preserving the spatial information among them.
An f i

j is conveyed to the encoder-RNN as the input at the
j-th step. At thej-th step, ahidden statehe

j plays the role of
“memory” of the encoder-RNN, where the superscript,e, is the
abbreviation of the encoder. This is becausehe

j is calculated
based on the hidden statehe

j−1 at the previousj − 1-th step
and the inputf i

j at the current stepj, as defined in Eq. (1),

he
j = ReLU(Uef i

j +W
ehe

j−1), (1)

whereReLU(·) is a non-linear function defined asmax(0, ·),
U

e andWe are learnable parameters.he
0 required to calculate

he
1 is initialized to all zeros.
In addition, an output is obtained at each step of the encoder-

RNN. The output at the j-th step,oe
j , is provided to the

decoder-RNN for the prediction of sequential labels, andoe
j

can be calculated as in Eq. (2),

oe
j = O

ehe
j + be. (2)

whereOe andbe are learnable weight parameters. Moreover,
the hidden state at the last step, he

V , describesmi as its global
featureF i after aggregating all sequential views invi, such
thatF i = he

V .

E. Decoder-RNN

Overview. Similar to the encoder-RNN, the decoder-RNN is
also implemented by an RNN, which leads to the encoder-
decoder structure of SeqViews2SeqLabels. According to the
global featureF i of mi provided by the encoder-RNN, the
decoder-RNN aims to classifymi into one ofC shape classes
by predicting the sequential labelslic in li step by step, as
shown in Fig. 1 (b).

Based on sequential labels, the decoder-RNN regards the
shape classification as finding a mapping from a view sequence
vi to a label sequenceli, which is different from the traditional
mapping fromvi to a shape class index. This facilities the
decoder-RNN to learn from more and finer discriminative
information among different shape classes, which effectively
alleviates overfitting inherent in training a powerful RNN-
based model under a limited number of 3D shapes.

The decoder-RNN predicts one labellic in lic at eachc-
th step. The prediction oflic indicates whether the shapemi

belongs to thec-th shape class. The positive prediction (lic = 1)
indicates thatmi belongs to thec-th shape class. Otherwise,
the negative prediction (lic = 0) is provided.
Structure. The details of the decoder-RNN are briefly il-
lustrated in Fig. 3, where only two steps for predicting the
sequential labels of “Airplane” and “Bathtub” shape classes are
demonstrated. Generally, each sequential labellic is predicted
according to several aspects of information, such as the view-
level information (gc) combined by the attention mechanism
at the current step, the information (kc−1) of the sequential
label predicted at the previous step, the characteristics (hd

c−1)
of forward shape classes, and the characteristics of backward
shape classes.
The hidden state at the current step.For the prediction of
label lic at thec-th step,the hidden stateat thec-th step,hd

c , is
first computed, where the superscript,d, is the abbreviation of
the decoder. To computehd

c , the hidden state at the previous
stephd

c−1 and the embeddingkc−1 of label lic−1 predicted
at the previous step are employed.hd

c−1 comprehensively
encodes the characteristics of forward shape classes, while
kc−1 especially highlights the label prediction at the previous
step, as defined as follows,

hd
c = ReLU(Udkc−1 +W

dhd
c−1). (3)
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Fig. 3. We illustrate the structure of the decoder-RNN, where only two steps
of the decoder-RNN for predicting the sequential labels of “Airplane” and
“Bathtub” shape classes are shown.

whereUd andWd are learnable parameters.
Note that, for the prediction of the first labelli1, the hidden

state at the previous step is replaced by the global featureF i

of mi. Moreover, a special embedding,kstart, is employed to
indicate the start of the prediction of sequential labels. Then,
Eq. (3) is rewritten to calculate the hidden state at the first
stephd

1, as defined below,

hd
1 = ReLU(Udkstart +W

dF i). (4)

The prediction vector. The prediction of sequential labellic
also considers the view-level information at each step of the
encoder-RNN, which is represented by theattention vectorgc.
gc is obtained through the attention mechanism as detailed in
the following subsection. We expect sequential labellic can
be predicted through simultaneously observing the view-level
information and the class-level information. Therefore, the
prediction oflic is carried out based on aprediction vectorsc
that is formed by the concatenation of the attention vectorgc
and the characteristics of forward shape classeshd

c , as defined
below,

sc = O
d[gc hd

c ] + bd, (5)

whereOd and bd are learnable parameters. To represent the
characteristic of each shape class at each step, the view-level
information is not directly involved in producing the class-
level information as in other methods [35], [37]. This design
makes the decoder-RNN learn the distribution of sequential
labels mainly based on the characteristics of shape classes.

Similar to rewriting Eq. (3) as Eq. (4), Eq. (5) can be
rewrittern as Eq. (6) for the prediction of the first labelli1,

s1 = O
d[g1 hd

1] + bd. (6)

Sequential label prediction. In our scenario, thec-th label
lic can only be predicted at thec-th step of the decoder-RNN.
Thus, the sum of probabilities over both positive and negative

predictions oflic is supposed to be one, wherelic only equals
to either one or zero to indicate whether shapemi belongs
to the c-th shape class. Thus, the probability of positive
prediction of lic can be obviously computed by a sigmoid
function according to the prediction vectorsc, while the
probability of negative prediction oflic is the supplementary.
However,sc merely considers the characteristics of forward
shape classes, which means the sigmoid function can not
observe the characteristics of backward shape classes. As a
result, there is a loss of discriminative information among
shape classes when predicting sequential labels, resulting in
low classification accuracy.

To resolve this issue, the characteristics of all shape classes
are comprehensively considered when predicting each label
at each step by a softmax layer, as shown in Fig. 3. The
softmax layer captures more discriminative information among
different shape classes via minimizing the probabilities that
a shape belongs to wrong shape classes and maximizing
the probabilities that it belongs to the correct shape class
in the training procedure. More importantly, the softmax
layer also efficiently employs the characteristics of backward
shape classes, which overcomes the disadvantage that only
the characteristics of forward shape classes are encoded asthe
hidden statehd

c−1 for the c-th label prediction.
Specifically, the softmax layer regards the positive and

negative label predictions of each shape class as two inde-
pendent categories, that is, the sum of probabilities over both
positive label prediction and negative label prediction isnot
guaranteed to be one. Thus, there are totally2C categories
for the softmax layer to classify at each step of predicting
sequential labels. With the softmax layer, the probabilities of
positive and negative predictions oflic are respectively defined
based on the prediction vectorsc as below,

yc = Wsc + b, (7)

p(lic = 1|[li1, l
i
2, ..., l

i
c−1],v

i) =
exp(y1c )∑

a∈[1,C]

∑
b∈{0,1}

exp(yba)
, (8)

p(lic = 0|[li1, l
i
2, ..., l

i
c−1],v

i) =
exp(y0c )∑

a∈[1,C]

∑
b∈{0,1}

exp(yba)
, (9)

whereyc = [y01 , y
1
1 , ..., y

b
a, ..., y

0
C , y

1
C ], a ∈ [1, C], and b ∈

{0, 1}, W andb are learnable parameters in the softmax layer.
Finally, a joint probability is defined over the sequential labels
lic in li by sequentially conditional probabilities as follows,

p(li) =
∏

c∈[1,C]

p(lic|[l
i
1, l

i
2, ..., l

i
c−1],v

i), (10)

where the label sequenceli = [li1, ..., l
i
c] is for the i-th shape

mi. It means to evaluate the probability ofli to be inferred
based on the given view sequencevi.
Objective function. Based on Eq. (10), we want the decoder-
RNN to predict the sequential labels as accurately as possible.
Thus, the objective function of SeqViews2SeqLabels is to
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maximize the log-likelihood of joint probabilities of predicting
lic in li for all M shapes in the training set, as defined below,

max
1

M

∑

i∈[1,M ]

log p(li). (11)

A testing shape is classified according top(lic =
1|[li1, l

i
2, ..., l

i
c−1],v

i), such that the shape class that the test-
ing shape belongs to is determined byargmaxc p(lic =
1|[li1, l

i
2, ..., l

i
c−1],v

i). In the next subsection, the attention
mechanism is introduced in detail, which describes how to
compute the attention vectorgc.

F. Attention mechanism

For each sequential label prediction, the attention mecha-
nism determines which views should be paid more attention
for more accurate prediction of sequential labels.

To predict the c-th label lic for shapemi, the degree
of attention paid to thej-th view vij is measured bythe
attention weightαi

c,j , where all attention weights form an
attention weight vectorαi

c = [αi
c,1, ..., α

i
c,j], j ∈ [1, V ] and∑V

j=1 α
i
c,j = 1. If lic = 1 is finally predicted, a higher value

of αi
c,j means that the shape appearance in thej-th view

vij is more distinctive to the characteristics of thec-th shape
class, and maybe, no other views are needed for the positive
prediction of lic. Otherwise, if lic = 0 is finally predicted, a
higher value ofαi

c,j means that the shape appearance in the
j-th view vij is more different from the characteristics of the
c-th shape class, and maybe, no other views are needed for
the negative prediction oflic. Thus, the attention vectorgc
is computed via weighting the outputoi

j at each step of the
encoder-RNN by the attention weightsαi

c,j, defined as,

gc =

V∑

j=1

αi
c,jo

i
j. (12)

Inspired by the attention mechanism for machine transla-
tion [41], we compute the attention weightαi

c,j in a similar
way. αi

c,j measures the similarity between the viewvij and
the c-th shape class, which indicates the distinctiveness ofvij
to the c-th shape class. Different from the attention involved
in [35], [37], the attention weights are computed according
to the hidden state at the current step rather than the hidden
state at the previous step. Therefore, the computation ofαi

c,j

is implemented by a single-layer neural network involvingoi
j

andhd
c , as defined as follows,

βi
c,j = xTtanh(Yoi

j + Zhd
c ), (13)

αi
c,j =

exp(βi
c,j)∑V

q=1 exp(β
i
c,q)

, (14)

where the vectorx, and the matricesY andZ are learnable
parameters of SeqViews2SeqLabels for learning the attention
weight vector αi

c. These parameters are optimized along
with other parameters involved in SeqViews2SeqLabels in the
learning procedure via maximizing Eq. (11).

IV. EXPERIMENTAL SETUP

In this section, different shape benchmarks and performance
measures for global shape classification and retrieval are re-
spectively described to evaluate the 3D global features learned
by SeqViews2SeqLabels. In addition, the setup of parameters
involved in SeqViews2SeqLabels is also discussed.

A. Benchmarks and evaluations

The global shape classification and retrieval experiments
are conducted under three large-scale 3D shape benchmarks,
including ModelNet40 [20], ModelNet10 [20] and ShapeNetv-
Core55 [42].

ModelNet40 and ModelNet10 are two subsets of ModelNet
which contains 151,128 3D shapes categorized into 660 shape
classes. As smaller subsets, ModelNet40 is formed by 40 shape
classes with a total of 12,311 3D shapes, while ModelNet10
consists of 4,899 3D shapes split into 10 shape classes. The
training and testing sets of ModelNet40 consist of 9,843
and 2,468 shapes, respectively. In addition, the training and
testing sets of ModelNet10 consist of 3,991 and 908 shapes,
respectively. ShapeNetCore55 is a subset of the ShapeNet
dataset, and it contains 51,190 3D shapes of 55 shape classes.

In 3D shape classification experiments, the metrics em-
ployed for evaluating the performance of different methods
includeaverage instance accuracyandaverage class accura-
cy. In 3D shape retrieval experiments,mean Average Precision
(mAP),Precision and Recall(PR) curves,precision(P), recall
(R), F1 score (F1) and Normalized Discounted Cumulative
Gain (NDCG) are presented to compare the performances of
different methods under different benchmarks.

B. The setup of parameters

In this subsection, the key parameters involved in Se-
qViews2SeqLabels are set by exploring their impacts on the
performance of SeqViews2SeqLabels in shape classification
experiments under ModelNet40. The average instance accura-
cy is used as the metric for the performance comparison, and
the GRU cell is employed in SeqViews2SeqLabels.

The key parameters include the dimension of hidden state,
the embedding dimension of sequential labels, the learning
rate, and the number of views in the view sequence captured
around each 3D shape.
The dimension of the hidden state.The hidden states
of the encoder-RNN and the decoder-RNN have the same
dimension in SeqViews2SeqLabels. In this experiment, the
results obtained with different candidate dimensions of hidden
state are compared as shown in Table I, where the dimension of
label embedding is set to 256, and the learning rate is 0.0001.

TABLE I
THE DIMENSION OF HIDDEN STATE COMPARISON UNDERMODELNET40,

EMBEDDING=256,RATE=0.0001.

Hidden state dimension 64 128 256 512
Accuracy(%) 92.91 93.11 92.83 92.95

The candidate dimensions of hidden state form a set
{64, 128, 256, 512}. From the comparison shown in Table I,
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all results obtained with these candidate dimensions are very
good, and the best result is achieved with 128. Thus, the
dimension of the hidden state is set to 128 in the following
experiments.
The embedding dimension of sequential labels.We conduct
a comparison of different embedding dimensions of sequential
labels using 128 dimensional hidden states and a learning rate
of 0.0001.

TABLE II
THE DIMENSION OF LABEL EMBEDDING COMPARISON UNDER

MODELNET40,HIDDEN=128,RATE=0.0001.

Label embedding dimension 64 128 256 512
Accuracy(%) 92.54 92.91 93.11 92.99

The results with candidate embedding dimensions
{64, 128, 256, 512} of sequential labels are compared in
Table II. The best result is achieved with 256, which is used
in the following experiments.

The former two comparisons also imply that the perfor-
mance of SeqViews2SeqLabels can not be further improved by
increasing the dimension of hidden states and the embedding
dimension of sequential labels under ModelNet40. However,
we believe the learning ability of SeqViews2SeqLabels could
be increased via enlarging the dimension of the hidden state
and the embedding dimension of sequential labels if more
training samples were available.
The learning rate. The learning rate affects the optimization
of parameters in SeqViews2SeqLabels. In this experiment, the
results obtained with different learning rates are compared. As
shown in Table III, the result obtained with learning rate of
0.0002 is better than the ones obtained in the former experi-
ments, which achieves an accuracy of93.31%. This compari-
son is conducted with the 128 dimensional hidden state and the
256 dimensional embedding of sequential labels, respectively.
In the following experiments, SeqViews2SeqLabels is trained
with the learning rate of 0.0002.

TABLE III
THE LEARNING RATE COMPARISON UNDERMODELNET40,HIDDEN=128,

EMBEDDING=256.

Learning rate 0.00005 0.0001 0.0002 0.0004
Accuracy(%) 92.63 93.11 93.31 92.99

The number of views. The number of views in view
sequence is also a factor of affecting the performance of
SeqVews2SeqLabels. In the former experiments, 12 views in
view sequence are captured around each 3D shape, which
is employed for learning global features. In this experiment,
different numbers of views are compared to explore the effect
of number of views.

TABLE IV
THE NUMBER OF VIEWS UNDERMODELNET40,HIDDEN=128,

EMBEDDING=256,RATE=0.0002.

View number 3 6 12 24
Accuracy(%) 92.71 92.78 93.31 92.46

In the comparison shown in Table IV, the best result is
obtained with 12 views. Similar to the effect of dimension of

hidden state and the embedding dimension of sequential labels,
the performance of SeqViews2SeqLabels cannot be further
improved by increasing the number of views, as indicated by
the result with 24 views. The same phenomenon is observed
under ModelNet10 as shown in Table V, where the best result
is also achieved with 12 views. The reason is analysed in the
following paragraph.

Although more sequential views in view sequences provide
more information of each shape, it would become more
difficult to aggregate more views for effective feature learning.
In other words, the ability of learning long sequential datais
still limited even if LSTM and GRU are specially designed to
learn from long sequences. In the following experiments, 12
views in the view sequences captured around each shape are
used to learn global features.

TABLE V
THE NUMBER OF VIEWS UNDERMODELNET10,HIDDEN=128,

EMBEDDING=256,RATE=0.0002.

View number 3 6 12 24
Accuracy(%) 93.94 94.27 94.71 94.05

V. RESULTS AND ANALYSIS

In this section, the performance of SeqViews2SeqLabels is
evaluated against the state-of-the-art methods in shape classi-
fication and shape retrieval under ModelNet40, ModelNet10
and ShapeNetCore55, respectively. For fair comparison, the
results obtained by the state-of-the-art methods are computed
from single modality, such as image, voxel or point cloud.

A. Shape classification

ModelNet40.Under ModelNet40 for shape classification, the
comparison is shown in Table VI, where the modality and
numbers of views are also presented. The evaluation metrics,
both average class precision and average instance precision,
are presented in the table if they are reported in the original
paper.

Using views captured from 3D shapes in the training set
of ModelNet40, VGG is fine-tuned via classifying each single
view into one of 40 shape classes. The accuracy of single
view classification is89.47%, as the result named as “VGG
(ModelNet40)”. By voting the classification of single view
over all views in each view sequence, namely “VGG (Voting)”,
the average instance accuracy of classifying 3D shapes is
92.50%. Fine-tuning is important to extract low-level features
of views by VGG. This is because VGG is pre-trained by color
images from ImageNet while the views are captured without
colors. Thus, the results listed as “Ours (No finetune)” are
not as good as our best results described in the following
paragraph, where SeqViews2SeqLabels is trained under low-
level features obtained from no fine-tuned VGG.

With SeqViews2SeqLabels employing GRU cell, our results
named as “Ours” achieve91.12% and 93.31%, as shown by
the bold numbers. Our results are the best results among all
reported results in terms of both average class accuracy and
average instance accuracy. For fair comparison, the resultof
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VRN [43] is presented with a single CNN, where twice more
views than ours are employed, and the result of RotationNet
[29] is presented with views taken by the default camera
system orientation which keeps identical with other methods.
In addition, another result of ours listed as “Ours1” achieves
91.24% and 93.15%, which is also a state-of-the-art result.
The comparison between “Ours” and “Ours1” implies that
the unbalanced number of shapes in each shape class makes
average class accuracy and average instance accuracy not
positively correlated.

SeqViews2SeqLabels is able to learn the semantics of
sequential views via aggregating views by the encoder-RNN,
which makes SeqViews2SeqLabels insensitive to the first view
position. To verify this point, the result named as “Ours
(Start)” is obtained via training SeqViews2SeqLabels by se-
quential views with random first view position. Although the
first view position is not fixed for training, the result obtained
as “Ours (Start)” is still comparable to our best result.

In addition, the effect of different kinds of RNN cells is
also explored in the comparison. The result listed as “Ours
(LSTM)” is obtained by replacing GRU with LSTM in Se-
qViews2SeqLabels. The effect of different kinds of RNN cells
is insignificant, as implied by the comparable result to our best
result.

The effect of the attention mechanism is also highlighted
in the comparison. The result listed as “Ours (No attention)”
is obtained based on SeqViews2SeqLabels without attention
vector for sequential labels prediction. The degenerated result
implies that the attention mechanism is important for the
prediction of sequential labels, especially when sequential
views are with large number and complex to understand.

The result listed as “Ours (No decoder)” emphasizes the
importance of sequential labels. “Ours (No decoder)” is im-
plemented by replacing the decoder-RNN with a softmax
classifier. The degenerated result shows that, by learning
and predicting labels in a sequential way, the decoder-RNN
successively captures more discriminative information among
different shape classes than the softmax classifier. Sequential
labels effectively alleviate overfitting, which increasesthe
classification accuracy.

In addition, we also conduct an experiment to verify the
effectiveness of the softmax layer for sequential labels pre-
diction at each step of the decoder-RNN. By replacing the
softmax layer with a sigmoid function, the result listed as
“Ours (Sigmoid)” is obtained by minimizing the least squares
error of predicted sequential labels. However, the result listed
as “Ours (Sigmoid)” is not satisfactory. This is because the
characteristics of backward shape classes cannot be observed
for sequential labels prediction by the sigmoid function ateach
step.

Finally, we highlight our novel view aggregation by com-
paring it with widely used max pooling and mean pooling.
To conduct a fair comparison, we employ the same low-level
view features as the ones (“VGG (ModelNet40)”) involved
in our best results of “Ours”. Moreover, the structure of
MVCNN is trained with max pooling and mean pooling re-
spectively, as shown by the results of “Ours(Maxpooling)” and
“Ours(Meanpooling)”. Due to the loss of content information

in most of the views and the spatial information among the
views, these results are not better than ours.

TABLE VI
CLASSIFICATION COMPARISON UNDERMODELNET40,HIDDEN=128,

EMBEDDING=256,RATE=0.0002.

Methods Modality Views Class(%) Instance(%)
SHD Mesh - 68.23 -
LFD Image 10 75.47 -

PyramidHoG-LFD Image 20 87.2 90.5
Fisher vector [3] - 12 84.8 -

3DShapeNets [20] Voxel 12 77.32 -
DeepPano [6] Image 1 77.6 -

Geometry image [28] Image 1 83.9 -
VoxNet [44] Voxel - 83.0 -
VRN [43] Voxel 24 - 91.33
FPNN [45] Voxel - 88.4 -

T-L Network [46] Voxel - 74.4 -
3DGAN [23] Voxel - 83.3 -
PointNet [47] Point 1 86.2 89.2

PointNet++ [48] Point 1 - 91.9
FoldingNet [49] Point 1 - 88.4

Octree [24] Voxel 12 90.6 -
PANORAMA [27] Image 6 90.70 -

Pairwise [31] Image 12 90.7 -
GIFT [5] Image 64 89.5 -

Dominant Set [8] Image 12 - 92.2
Su-MVCNN [3] Image 80 90.1 -
MVCNN [13] Image 20 89.7 92.0

MVCNN-Sphere [13] Voxel 20 86.6 89.5
RotationNet [29] Image 12 - 90.65

SO-Net [50] Point 1 87.3 90.9
SliceVoxel [32] Voxel 1 - 85.73

VGG(ModelNet40) Image 1 - 89.47
VGG(Voting) Image 12 90.37 92.50

Ours Image 12 91.12 93.31
Ours1 Image 12 91.38 93.07

Ours (No finetune) Image 12 88.63 91.57
Ours (Start) Image 12 91.10 92.95

Ours (LSTM) Image 12 91.14 92.99
Ours (No attention) Image 12 88.99 91.13
Ours (No decoder) Image 12 90.50 92.50

Ours (Sigmoid) Image 12 63.79 77.63
Ours (Maxpooling) Image 12 89.77 91.53
Ours (Meanpooling) Image 12 89.97 91.57

ModelNet10. The performance of SeqViews2SeqLabels is
further evaluated under ModelNet10 for shape classification.
The comparison is shown in Table VII.

The VGG fine-tuned by the views from ModelNet40 is first
used to extract the low-level features of sequential views which
are captured from the 3D shapes in ModelNet10.

As the results listed as “Ours” and “Ours (LSTM)” shown,
SeqViews2SeqLabels achieves the best results under Model-
Net10. Comparing with the GRU cell, LSTM cell performs
better under ModelNet10, where average class accuracy and
average instance accuracy achieve up to94.80% and94.82%,
respectively.

The effects of attention mechanism and sequential labels are
also highlighted in the comparison. Although both the results
listed as “Ours (No attention)” and “Ours (No decoder)” are
better than the ones of other state-of-the-art methods, they
are degenerated compared with “Ours” or “Ours (LSTM)”
due to the lack of attention mechanism and sequential labels,
respectively.

With the low-level features provided by VGG which is fine-
tuned under the views captured from the shapes in Model-
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Net10, we explore whether better results could be achieved.
As the result listed as “VGG (ModelNet10)”, the accuracy of
classifying single view into one of 10 shape classes is91.87%.
By voting the classification of single view over all sequential
views in each view sequence, the accuracy of classifying
shapes is achieved to93.83%, as listed as “VGG (Voting)”.
Although the results of “Ours1” and “Ours1 (LSTM)” are
slightly degenerated compared with the results of “Ours” and
“Ours (LSTM)”, they are still the state-of-the-art resultsamong
all reported results.

Under ModelNet10, we repeat the experiments of “Ours
(Start)”, “Ours(Maxpooling)” and “Ours(Meanpooling)” con-
ducted under ModelNet40. As the results shown in Table VII,
the same phenomenons are observed.

TABLE VII
CLASSIFICATION COMPARISON UNDERMODELNET10,HIDDEN=128,

EMBEDDING=256,RATE=0.0002.

Methods Modality Views Class(%) Instance(%)
SHD Mesh - 79.79 -
LFD Mesh 10 79.87 -

3DShapeNets [20] Voxel 12 83.54 -
DeepPano [6] Image 1 85.5 -

Geometry image [28] Image 1 88.4 -
VoxNet [44] Image - 92.0 -
VRN [43] Voxel 24 - 93.8

3DGAN [23] Voxel - 91.0 -
ORION [51] Voxel - 93.8 -

FoldingNet [49] Point 1 - 94.4
PANORAMA [27] Image 6 91.12 -

Pairwise [31] Image 12 92.8 -
GIFT [5] Image 64 91.5 -

RotationNet [29] Image 12 - 93.84
3DDescriptorNet [52] Voxel - - 92.4

SO-Net [50] Point 1 93.9 94.1
SliceVoxel [32] Voxel 1 - 91.40

Ours Image 12 94.56 94.71
Ours (LSTM) Image 12 94.80 94.82

Ours (No attention) Image 12 93.15 93.17
Ours (No decoder) Image 12 93.75 93.83

Ours (Start) Image 12 94.55 94.60
Ours (Maxpooling) Image 12 92.00 92.07
Ours (Meanpooling) Image 12 93.12 93.17
VGG (ModelNet10) Image 1 - 91.87

VGG (Voting) Image 12 93.83 93.83
Ours1 Image 12 94.51 94.60

Ours1 (LSTM) Image 12 94.12 94.27

ShapeNetCore55.In this experiment, the performance of
SeqViews2SeqLabels is evaluated under ShapeNetCore55. For
each 3D shape, 12 sequential views rendered without colors
are used to train SeqViews2SeqLabels. In addition, we also
explore whether sequential views rendered with colors can be
used to improve the performance of SeqViews2SeqLabels. The
sequential views with colors are downloaded from the web
page of ShapeNet, however, there are only 8 sequential views
in each view sequence. The results are shown in Table VIII.

In Table VIII, the results named as “VGG (ShapeNet-
Core55)” and “VGG1 (ShapeNetCore55)” are obtained via
fine-tuning VGG by the views without colors and the views
with colors, respectively, where the results obtained by voting
are correspondingly listed as “VGG (Voting)” and “VGG1
(Voting)”. Because of the highly unbalanced number of shapes
in each shape class, we only present our best results in
terms of average class accuracy, as listed as “Ours” and

TABLE VIII
CLASSIFICATION COMPARISON UNDERSHAPENETCORE55,HIDDEN=128,

EMBEDDING=256,RATE=0.0002.

Methods Modality Views Class(%) Instance(%)
VGG(ShapeNetCore55) Image 1 - 83.85

VGG(Voting) Image 12 71.84 86.78
Ours Image 12 74.81 85.47

Ours (512) Image 12 75.11 85.10
VGG1 (ShapeNetCore55) Image 1 - 83.68

VGG1 (Voting) Image 8 76.03 87.04
Ours1 Image 8 76.91 86.61

Ours1 (512) Image 8 76.84 85.94

“Ours1” which are obtained by low-level view features from
“VGG (ShapeNetCore55)” and “VGG1 (ShapeNetCore55)”,
respectively. The comparison between these results implies
that the color is slightly helpful to increase the performance
of SeqViews2SeqLabels in terms of average class accuracy,
from 74.81% and 76.91%. We also try to explore whether
the performance of SeqViews2SeqLabels could be improved
via increasing the dimension of hidden state, as the results
of “Ours (512)” and “Ours1 (512)”. However, the results with
higher dimension of hidden states are comparable to “Ours” or
“Ours1” respectively, which implies that the 128 dimensional
hidden states are sufficiently good to learn from shapes for the
scale of ShapeNetCore55.

B. The effect of shape class order

In this subsection, we explore the effect of shape class order
under ModelNet40 and ModelNet10 in shape classification. In
the experiments above, we use the default shape class order
provided by the benchmark, while we employ randomized
shape class order in this experiment. Specifically, we ran-
domize shape class order 40 times under each benchmark.
Using each randomized shape class order, we repeat the shape
classification with the parameters of “Ours” in Table VI or
Table VII. Finally, we compute the mean, standard deviation
and maximum over the 40 groups of results in terms of average
instance accuracy and average class accuracy, as shown in
Table IX.

TABLE IX
THE EFFECT OF SHAPE CLASS ORDER UNDERMODELNET40 AND

MODELNET10,HIDDEN=128,EMBEDDING=256,RATE=0.0002.

Metrics (%) ModelNet40 ModelNet10
Instance mean 93.20 94.52
Instance std 0.09 0.11
Class mean 91.02 94.45
Class std 0.14 0.12

Ours(ClassMax)-Instance 93.40 94.71
Ours(ClassMax)-Class 91.10 94.65

The statistic results show that the effect of shape class
order is subtle. Under both benchmarks, the mean values are
high, and the standard deviations are quite small, in terms of
both average instance accuracy and average class accuracy.In
addition, we even obtain a higher instance accuracy than our
best results with default shape class order under ModelNet40,
as shown by “Ours(ClassMax)-Instance”.
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C. Attention visualization
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Fig. 4. The attention weights learned by SeqViews2SeqLabels for two
airplanes and one bathtub from ModelNet40, as shown in (a), (b) and (c)
respectively.

In this subsection, the attention learned by
SeqViews2SeqLabels under ModelNet40 is visualized to
analyse how SeqViews2SeqLabels recognizes 3D shapes by
understanding sequential views. As shown in Fig. 4, the
attention weight vectors{αi

c} for all shape classes over
sequential views invi are visualized as a matrix, such as
the ones of two airplanes in Fig. 4 (a), (b) and the one of
a bathtub in Fig. 4 (c), where red represents high attention
weight and eachαi

c is the c-th column of the matrix.
SeqViews2SeqLabels learns the attention weights of two
airplanes with similar patterns which are much different from
the ones of bathtub. In addition, the learned attention weights
conform to the human cognition of objects. Specifically, for
shapes like airplanes with distinctive characteristics, most
shape classes can make certain label predictions upon merely
the first view. This can be observed in most red entries in
the first row of matrices in Fig. 4 (a) and (b). In contrast, for
shapes without distinctive characteristics, such as the bathtub
which is similar to “cup” or “flowerpot”, most shape classes
need almost all views to predict each sequential label in label
sequence, as shown by the inapparent entries in most columns
of the matrix in Fig. 4 (c).

D. Shape retrieval

The performance of SeqViews2SeqLabels is also evaluated
using the learned global features in shape retrieval experi-
ments under ModelNet40, ModelNet10 and ShapeNetCore55,
respectively. Under ModelNet40 and ModelNet10, our results
are produced with the global features learned by the trained
SeqViews2SeqLabels named as “Ours” in the corresponding
Table VI, Table VII.

The shapes in ModelNet40 and ModelNet10 are originally
split into a training set and a testing set. Thus, to comprehen-
sively evaluate the performance of SeqViews2SeqLabels for

shape retrieval, four experiments are conducted under each
benchmark. The four experiments are named as “Test-Test”,
“Test-Train”, “Train-Train”, and “All-All”, indicating which
data set the query and retrieved shapes come from, respec-
tively. For example, “Test-Train” indicates that the shapes in
the testing set are used as query for shape retrieval from the
training set.

The comparison between SeqViews2SeqLabels and the
state-of-the-art methods is shown in terms of mAP in Ta-
ble X, where the retrieval range is also explained. Under
ModelNet40, the mAPs obtained by SeqViews2SeqLabels are
the best, which achieves89.00% and 96.73% in the “Test-
Test” and “All-All” experiments, respectively, as shown by
the bold numbers. Under ModelNet10, the mAPs of Se-
qViews2SeqLabels achieve89.55% and97.85% in the “Test-
Test” and “All-All” experiments, respectively. The correspond-
ing PR curves of our results obtained under ModelNet40 and
ModelNet10 are shown in Fig. 5 (a) and (b), respectively,
where the PR curves of our results show a high performance
of SeqViews2SeqLabels.

We believe our results are also the best as shown in bold,
even if GIFT obtains a higher mAP. This is because, the
dataset used by GIFT is formed by randomly selecting 100
shapes from each shape category, which is much simpler than
the whole benchmark that we used. To verify this point, we
employ the same low-level view features to compare with
GIFT (64 clusters) under the whole ModelNet40 and Model-
Net10, as shown by “GIFT1”. In addition, for better analysis
of SeqViews2SeqLabels in shape retrieval, we also present
the retrieval results with the features learned by the variants
of SeqViews2SeqLabels compared in the shape classification
experiments, such as “Ours(LSTM)”, “Ours(Start)”,“Ours(No
attention)”, “Ours(No decoder)” and “Ours(ClassMax)”. The
corresponding PR curves are presented in Fig. 6.

TABLE X
RETRIEVAL COMPARISON UNDERMODELNET40 AND MODELNET10,

HIDDEN=128,EMBEDDING=256,RATE=0.0002.

Methods Range ModelNet40 ModelNet10
SHD Test-Test 33.26 44.05
LFD Test-Test 40.91 49.82

3DShapeNets Test-Test 49.23 68.26
Geometry image Test-Test 51.30 74.90

DeepPano Test-Test 76.81 84.18
su-MVCNN Test-Test 79.50 -

PANORAMA Test-Test 83.45 87.39
GIFT Random 81.94 91.12

Triplet-Center [53] Test-Test 88.0 -
SliceVoxel [32] Test-Test 77.48 85.34

Ours Test-Test 89.00 89.55
Ours Test-Train 92.41 93.56
Ours Train-Train 98.76 99.65
Ours All-All 96.73 97.85

Ours(LSTM) Test-Test 88.83 91.43
Ours(Start) Test-Test 88.09 89.80

Ours(No attention) Test-Test 88.54 88.46
Ours(No decoder) Test-Test 87.49 86.66

GIFT1 Test-Test 86.56 89.04
Ours(ClassMax) Test-Test 89.09 89.45

Under the three subsets of ShapeNetCore55, i.e., training
set, validation set and testing set, the retrieval performance of
SeqViews2SeqLabels is compared with other state-of-the-art
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Fig. 5. The comparison between precision and recall cures obtained by
different methods under (a) ModelNet40 and (b) ModelNet10.
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Fig. 6. The comparison between precision and recall cures obtained by GIFT
and different variants of SeqViews2SeqLabels under (a) ModelNet40 and (b)
ModelNet10 based on the same low-level view features.

methods in terms of different metrics. Considering that there
is no comparison results under training set and validation set
in [54], the results of state-of-the-art methods under testing
set are from the SHREC2017 retrieval contest [54], while
the ones under training set and validation set are from the
SHREC2016 retrieval contest [30]. All involved 3D shapes
under ShapeNetCore55 are normal and are not perturbed by
rotation. In Table XI, we present the performance obtained by
SeqViews2SeqLabels respectively trained under views without
colors and views with colors, as the ones named as “Ours
(512)” and “Ours1” in Table VIII. The comparison shown in
Table XI implies that the performance of SeqViews2SeqLabels
for shape retrieval is the best among all state-of-the-art meth-
ods under all subsets, where our results under views without
colors and views with colors are listed as “Ours” and “Ours
(C)”, respectively. In addition, the comparison between results
of “Ours” and “Ours (C)” also demonstrate that colors in
views for training do not significantly improve the retrieval
performance of SeqViews2SeqLabels.

VI. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

A. Conclusions

In this paper, a novel deep learning model, Se-
qViews2SeqLabels, is proposed to learn 3D global features
via aggregating sequential views captured around 3D shapes
on a circle. In existing methods, a pooling procedure is
employed to aggregate multiple views but suffers from two
issues, i.e., the lack of content information of almost all
views and the lack of spatial information among the views. To
resolve these disadvantages, SeqViews2SeqLabels employsan
encoder-RNN to aggregate sequential views, which effectively

learns global features with semantics. In addition, the other
part of the encoder-decoder structure of SeqViews2SeqLabels,
the decoder-RNN, predicts sequential labels based on the
learned global features. The decoder-RNN is able to capture
more and finer discriminative information among all shape
classes to effectively alleviate overfitting for higher classifica-
tion accuracy. Finally, an attention mechanism is integrated in
the decoder-RNN, which assigns heavier weights on the low-
level features of distinctive views for each shape class. The
introduced attention assists the encoder-RNN in learning the
semantic meaning of view sequences by dramatically reducing
the effect of the first view position. The attention mechanism
is experimentally verified to further improve the discriminative
ability of SeqViews2SeqLabels.

B. Limitations and future work

Although SeqViews2SeqLabels learns 3D global features
with high performance, it still suffers from two disadvantages.
First, SeqViews2SeqLabels can only learn features via aggre-
gating sequential views rather than any kind of unordered
views, such as views captured on a unit sphere centered at
3D shapes. Second, although RNNs are good at aggregating
sequential data, their ability is limited when the sequence
contains a large number of data, especially for the complex
data, such as views in this work. Thus, SeqViews2SeqLabels
merely performs well under limited number of sequential
views, even with the help of the attention mechanism.

In the future, it is worth to explore how to aggregate large
numbers of sequential views in view sequences with novel
deep learning models, since more views could provide more
information to learn for discriminating 3D shapes.
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