
Volume 0 (1981), Number 0 pp. 1–15 COMPUTER GRAPHICS forum

Temporally Consistent Motion Segmentation from RGB-D Video

P. Bertholet1 A. E. Ichim 2 and M. Zwicker1

1Computer Graphics Group, University of Bern, Switzerland
2Computer Graphics and Geometry Laboratory, École Polytechnique Fédérale de Lausanne, Switzerland

Abstract
Temporally consistent motion segmentation from RGB-D videos is challenging because of the limitations of current RGB-D
sensors. We formulate segmentation as a motion assignment problem, where a motion is a sequence of rigid transformations
through all frames of the input. We capture the quality of each potential assignment by defining an appropriate energy function
that accounts for occlusions and a sensor specific noise model. To make energy minimization tractable, we work with a discrete
set instead of the continuous, high dimensional space of motions, where the discrete motion set provides an upper bound for
the original energy. We repeatedly minimize our energy, and in each step extend and refine the motion set to further lower the
bound. A quantitative comparison to the current state of the art demonstrates the benefits of our approach in difficult scenarios.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Leveraging motion for object segmentation in videos is a well stud-
ied problem. In addition, with RGB-D sensors it has become possi-
ble to exploit not only RGB color data, but also depth information
to solve the segmentation problem. The goal of our approach is to
allow a user, or a robotic device, to move objects in a scene while
recording RGB-D video, and to segment objects based on their mo-
tion. This scenario has applications, for example, in robotics, where
a robotic device could manipulate the scene to enhance scene un-
derstanding [MGC∗15]. Another application scenario is 3D scene
acquisition, where a user would be enabled to physically interact
with the scene by moving objects around as the scene is being
scanned. The system would then segment and reconstruct individ-
ual objects, instead of returning a monolithic block of geometry.
KinectFusion-type techniques enable similar functionality, but with
the restriction that a full scene reconstruction needs to be available
before segmentation can start [IKH∗11]. In contrast, we do not re-
quire a complete scan of an entirely static scene.

Despite considerable interest recently in computer graphics,
computer vision, and robotics, RGB-D motion segmentation re-
mains challenging. Current RGB-D sensors provide limited spatial
resolution and suffer from strong noise, which makes it hard to seg-
ment and track the motion of small objects. In addition, data from
a single sensor suffers from occlusions, which complicates consis-
tent segmentation of objects that cannot be observed in some input
frames. We found that current approaches often cannot handle these
challenges robustly, and we propose a novel algorithm that leads to
significant improvements in difficult scenarios.

Our approach assumes a piecewise rigid motion model, and does
not constrain camera movement. Let us define a motion as a se-
quence of rigid transformations that describes the trajectory of a
point through all input RGB-D frames. We formulate segmenta-
tion as an energy minimization problem, and define the energy as
a functional over all possible motion assignments to the observed
scene points. A key idea to make this approach tractable is to work
with a discrete set of motions, which provides an upper bound for
our original energy. We iteratively expand and refine this motion set
to lower our bound in each step. We solve the segmentation prob-
lem repeatedly with the motion set, and expand and refine the set
to obtain a better segmentation with a lower energy each time.

A crucial component in this approach is our technique to con-
struct suitable motions to add to our motion set, which will allow
us to further reduce the segmentation energy in the next step. We
achieve this by building on the segments of the current segmen-
tation, and recombining them in a way to avoid getting stuck in
bad local minima. We then find new motions by solving a geomet-
ric registration problem for the recombined segments. Finally, we
compare our approach to state of the art techniques in computer
graphics and robotics, and demonstrate significant improvements.
In summary, we make the following contributions:

• We describe a novel algorithm for temporally consistent motion
segmentation of RGB-D data that is formulated as a motion as-
signment problem over the continuous, high dimensional space
of rigid motions through the input sequence.

• We propose a practical algorithm to solve the problem by work-
ing with a discrete set of motions, which provides an upper
bound of the original energy. We repeatedly solve the motion

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation

assignment problem by extending and refining the motion set,
each time lowering the bound and improving the segmentation.
• We demonstrate significant improvements over the state of the

art in several difficult scenarios.

2. Previous Work

Motion Segmentation from RGB Video. Motion segmentation
from video is a classical topic in computer vision, and a full re-
view is beyond the scope of this paper. We are inspired by Ochs et
al. [OMB14], who observe that motion is exploited most effectively
by considering it over larger time windows, for example by tracking
feature point trajectories. They point out the advantage of obtaining
consistent segmentations over entire video sequences, which is also
a goal in our approach. Recent techniques jointly solve for RGB
video segmentation and optical flow [SLSJB16, TYB16]. Learning
based approaches have also become popular for motion segmen-
tation [FAFM15] and optical flow [DFI∗15], and Sevilla-Lara et
al. [SLSJB16] leverage semantic segmentation using deep CNNs
in their approach. Similar to these techniques, we also obtain both
a segmentation and motion estimates. Our approach, however, re-
lies purely on the geometric information in RGB-D data. It may be
interesting in the future to combine this with deep learning tech-
niques for RGB images and video.

Motion Segmentation from RGB-D Data. A number of tech-
niques have been quite successful in segmenting objects from pairs
of RGB-D frames. Our work is most related to the recent approach
of Stückler et al. [SB15] who also use a piecewise rigid motion
model and perform energy minimization to recover object segmen-
tation and motion simultaneously. Similar to our approach, they use
a coordinate descent strategy for energy minimization and graph
cuts to update the segmentation. Earlier work includes the approach
by Ven et al. [vdVRT10], who also jointly solve for segmentation
and motion by formulating a CRF and using belief propagation.
Both techniques, however, are limited to pairs of RGB-D frames.
The main difference to our technique is that we solve globally over
an entire RGB-D sequence, which allows us to consistently label
segments, track partial objects, and accumulate data over time.

Our problem is similar to other techniques that leverage entire
RGB-D sequences to segment objects based on their motion, and to
fuse partial objects over all frames into more complete 3D recon-
structions. The original KinectFusion system [IKH∗11] can seg-
ment moving objects after a complete scan of a static scene has
been obtained. Perera et al. [PBH∗15] improve on this by segment-
ing objects based on incremental motion, whereas KinectFusion re-
quires objects to move completely outside their originally occupied
volume in the static scene. As a crucial difference to our approach,
both approaches rely on a complete 3D reconstruction of a static
version of the scene that needs to be acquired first, before object
segmentation can be performed.

The goal of Ma and Sibley’s work [MS14] is similar to ours, as
they discover, track and reconstruct objects from RGB-D videos
based on piecewise rigid motion. A key difference is that they use
an incremental approach as they move forward over time to dis-
cover new objects, by detecting parts of the scene that cannot be
tracked by the dominant camera motion. This means that groups of

objects that initially exhibit the same motion (for example one ob-
ject moving on top of another), but later split and move along differ-
ent trajectories, cannot be consistently identified and separated over
the entire sequence. In contrast, we optimize jointly over segmen-
tation and motion, taking into account entire RGB-D sequences,
instead of incremental segmentation followed by tracking. This al-
lows to successfully resolve such challenging scenarios.

Recently, Qing et al. [YLX∗16] and Kim et al. [KLAK16] also
proposed techniques for simultaneous space-time segmentation and
motion estimation for point cloud sequences, addressing the same
problem statement as we do. Both techniques focus on articulated
objects, rather than entire scenes that may include complex interac-
tion and occlusion between different objects, which our technique
can handle. Qing et al. [YLX∗16] start with a non-rigid ICP tech-
nique [PB11] to establish correspondences between temporally ad-
jacent point cloud frames. These correspondences are extended to
local temporal point trajectories, and the key idea is to cluster these
trajectories to obtain the final space-time segmentations. This is
achieved in three steps: first, they obtain initial, per frame point
cloud segmentations by linkage clustering the trajectories [FRP09].
Then they make the segmentation consistent by propagating seg-
mentation boundaries incrementally to all frames, which leads to an
oversegmentation. Finally, they consolidate the oversegmentation
using a space-time optimization based on graph cuts. The disadvan-
tage of this approach is that it hinges on the correspondences estab-
lished in the non-rigid ICP step. If this step fails, the approach can-
not recover. In contrast, our approach is more robust because it re-
peatedly re-estimates correspondences. Kim et al. [KLAK16] per-
form segmentation on a sparse set of trajectories seeded in the first
frame via a combination of probabilistic subspace clustering and
graphcuts, followed by motion estimation. Their approach, how-
ever, assumes absence of occlusions. We include comparisons to
these techniques and show that our approach handles complex sce-
narios more robustly.

RGB-D Scene Flow. Our problem is also related to the problem of
obtaining 3D scene flow, that is, frame-to-frame 3D flow vectors,
from RGB-D data. For example, Herbst et al. [HRF13] generalize
two-frame variational 2D flow to 3D, and apply it for rigid motion
segmentation. Quigoro et al. [QBDC14] model the motion as a field
of twists and they encourage piecewise rigid body motions. They
do not address segmentation, and their method processes pairs of
RGB-D frames separately. Sun et al. [SSP15] also address scene
flow, but they formulate an energy over several frames in terms
of scene segmentation and flow. While they can deal with several
moving objects, their segmentation is separating depth layers, not
objects. They also show results only for short sequences of less
than ten frames. Jaimez et al. [JSS∗15] leverage a soft piecewise
rigidity assumption and jointly optimize for segmentation and mo-
tion to extract high quality scene flow and segmentations for pairs
of RGB-D frames. In contrast, our goal is to separate objects only
based on their individual motion, and label the segmented objects
consistently over time. We perform energy minimization on video
segments instead of frame pairs, which also allows us to reason
explicitly about occlusion.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation

Motion Assignment (Segmentation)

Motion Set

Initialize to
Single Motion
(Section 6.3)

Mean Field Inference
(CRF) (Sec. 6.1.2)

Merge Segments
(Sec. 6.1.3)

Optimizing the Motion Assignment (Sec 6.1)

Remove Unnecessary
Motions (Sec 6.2.3)

Add New Motions
(Sec. 6.2.1 & 6.2.2)

Extending and Re�ning the Motion Set (Sec. 6.2)

A
lg

or
ith

m

St
at

e

Figure 1: Our approach minimizes an energy, described in Section 5, that represents the quality of a motion assignment to all scene points in
the RGB-D sequence. Our key idea (Section 6) is to repeatedly minimize an upper bound of the original energy by considering only a discrete
set of motions. Each time we propose an expanded and refined set of motions that leads to tighter upper bounds of the original energy. Hence
our iteration includes two distinct stages: finding a set of motions that allow a tightening of the upper bound (Section 6.2) and finding an
assignment that minimizes the upper bound (Section 6.1). Vertical arrows indicate read and write operations into the scene representations.

3. Overview

Given a sequence of RGB-D frames as an input, our goal is to as-
sign an object motion to each RGB-D point, where the motion de-
scribes the 3D trajectory of the point through the entire sequence.
We assume a piecewise rigid motion model, and define objects as
groups of scene points that exhibit the same rigid motion through
the sequence. Hence the motion assignments represent a segmenta-
tion into objects. We do not assume any a priori knowledge about
object geometry or appearance, or the number of objects, and cam-
era motion is unconstrained.

Figure 1 shows an overview of our approach, which is based on
repeatedly minimizing a spatio-temporal motion segmentation en-
ergy. The original energy is defined as a function of the assignments
of a motion to each point in the RGB-D frames, where all motions
from the continuous, high dimensional space are considered, and
the number of objects (that is, the number of different motions be-
ing assigned). To make this practical, a key idea is to work with a
discrete set instead of the continuous space of motions, which pro-
vides an upper bound to the original energy. In each step, we extend
and refine the motion set to further lower the bound and improve
the resulting segmentation. To make the energy robust to noise and
occlusions, reduce the number of user parameters, and allow gen-
eralization to different sensors, we first introduce a parameterized
noise model for a depth sensor at hand in Section 4. We then de-
fine our motion segmentation energy in Section 5, and describe the
energy minimization in detail in Section 6.

Throughout the paper we will use the following notation: We de-
note the set of RGB-D frames by f1, ..., fn. Any observed 3D point
x has associated attributes such as its normal x.n, its 3D coordinates
(x.x,x.y,x.z), its pixel coordinates (x.i,x. j), and the index of the
frame x. f ∈ N where x is captured. The set of all observed points
is denoted by X . To formulate motion segmentation we introduce
the space of all rigid motions through the point cloud sequence and
denote it by M. For a sequence with n frames M is a (n− 1) · 6
dimensional space, since after choosing an arbitrary frame as refer-
ence frame there are (n− 1) rigid transformations left to be deter-
mined with 6 degrees of freedom each. A motionM∈M provides
rigid alignmentsMi→ jx to map x from any frame fi to any frame
f j . We assume x’s attributes like its normal are transformed too. We

define a motion segmentation as a mapping s,

s : X →M,s(x) =Mx,

which assigns a motion Mx to every point x. We will propose a
variational description for motion segmentation, where we seek the
segmentation s that minimizes an energy functional E(s) ∈ R.

4. Depth Sensors with Calibrated Noise

We propose a sensor dependent, per-pixel isotropic noise model
given by the following parameters:

• σ(x) : the local standard deviation (noise magnitude) of sensed
depth as a function of image coordinates x.i,x. j and depth x.z

• τ(x): the local sampling density of the sensor at x, which we
define as half the maximal diameter of the area covered by pixel
x.i,x. j in the observed scene, under the assumption that x lies
on a plane through x with normal x.n.
• α: A maximal angle between the surface normal of a point and

the viewing direction from the sensor. Surfaces in the scene with
a larger angle are deemed unobsorvable.

To calibrate a noise model for a sensor we manually choose a
conservative value for α. The sampling density τ at any position
and depth can be computed from the camera model and the normal
of the local plane via projection and unprojection. We obtain the
standard deviation σ(x) via regression of pixel-wise noise estimates
to simple, sensor-specific parametric models as follows: given a
set of frame pairs from static scenes, we first compute pixel-wise
estimates for the standard deviation as the pixel-wise differences
between acquired depth values. For the Kinect for Xbox One we
propose fitting a0 + a1z+ a2z2 + b1max(d− b2,0)2 + c 1

in f rared to
the observed noise, where d is the image space distance in pixels to
the cameras principal point. The quadratic polynomial in z models
that noise increases with depth, the term b1max(d−b2,0)2 models
the typical radial shape of the noise of the Kinect One sensor and
the term c 1

in f rared models the dependence of noise on the infrared
spectrum reflectance of objects typical for time of flight sensors.
For the Asus Xtion we choose a simpler model a0+a1z+a2z2. See
Figure 2 for the extracted parameters, and a qualitative example.

In summary, we model the sensor noise at a point x as
an isotropic normal distribution N ((x.x,x.y,x.z)T , σ̂2(x)), where

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation

Fitted Model Observed Noise
a0 a1 a2 b1 b2 c

Kinect One 5.244e-03 -8.741e-03 3.060e-03 1.425e-06 174 5.79
ASUS 6.217e-04 -1.643e-04 3.37e-03 - - -

Figure 2: Visualization of the noise model for the Kinect One with
the fitted model on the left and the measured noise on the right. The
measurements were slightly blurred for visualization purposes. The
table reports the fitted parameters for both sensors we use.

σ̂(x) = max(τ(x),σ(x)). Finally, we discard the point if it is ob-
served at a grazing angle, that is ∠x.n,(eye− x)> α.

5. 4D Spatio-temporal Motion Segmentation Energy

We propose to seek the motion segmentation s : X →M that min-
imizes a spatio-temporal energy that measures both if motions are
assigned to scene points consistently over time, and if the assigned
motions accurately match the observed data. Our energy builds
on binary terms ψx,y(Mx,My), which depend on the motion as-
signments s(x) =Mx,s(y) =My at all pairs of points x,y, and
unary terms ψx(Mx), which depend on the motion assignment
s(x) =Mx at each single point x. The energy is the sum over all
these terms,

E4DMSEG(s) =

cost|s(X)|
label

(
∑

x∈X
∑

y∈X
ψx,y(Mx,My)+ ∑

x∈X
ψx(Mx)

)
, (1)

where |s(X)| denotes the number of distinct motions that s assigns
to X . The factor costlabel > 1 encourages s to assign smaller num-
bers of different motions to avoid oversegmentation. We set it to be
just slightly larger than one, costlabel = 1.005.

Binary Terms. The binary terms represent a registration cost be-
tween two points x and y, and they consist of two components, a
correspondence probability and a registration error. First, for each
scene point x ∈ X , we will define a probability Px,y(Mx) for an
other point y to correspond to the same physical scene point as x.
We consider this probability a function of the motion s(x) =Mx
that s assigns to x. Second, we will define a pairwise registration
error errorx,y(Mx,My) between a pair of points x and y, which
depends on both the assigned motions at x and y. The binary regis-
tration cost is then the registration error weighted by the correspon-
dence probability,

ψx,y(Mx,My) =
Px,y(Mx)

∑
′
y Px,y′(Mx)

errorx,y(Mx,My), (2)

where we normalize the weights to sum up to one for each point
x. For each x, the sum ∑y ψx,y(Mx,My) now yields a weighted
average of registration errors. Hence the pairwise cost only depends
on the quality of likely observations, but not on their quantity.

Unary Term. We design the unary term to encourage temporal co-
herence, by penalizing solutions with scene points x that are un-
likely to be observed in other frames,

ψx(Mx) =
d

∑y Px,y(Mx)
, (3)

where d is a user defined constant. We now explain the definition
of our correspondence probability and registration error in more
detail.

Correspondence Probability. We model the probability that a
pair of points x and y correspond to the same location in the scene
under the motion segmentation s by considering how x is positioned
relative to y when mapped to y’s frame under its motion s(x) =Mx.
The correspondence probability consists of four factors

Px,y(Mx) = 1y==NN(M→yx)︸ ︷︷ ︸
(i)

·(P!occl(M→yx))︸ ︷︷ ︸
(ii)

·

i>α(∠(M→yx.n,eye−M→yx))︸ ︷︷ ︸
(iii)

e
− |x. f−y. f |2

(σ2
temp)︸ ︷︷ ︸

(iv)

, (4)

where we use the indicator function 1B = 1 if B is true, and 0 other-
wise, NN means nearest neighbor, and the shortcut notationM→yx
indicates the mapping of x under its assigned motion Mxfrom
frame x. f to y. f , that isMx. f→y. f

x x.

First, (i) is a binary factor indicating whether y is the near-
est neighbor of x when x is mapped to y’s frame. Next, (ii) is
the probability P!occl(M→yx) that the mapped point M→yx is
not occluded, which we define using the camera noise model.
The observation that might occlude M→yx is the point in the
pixel in frame y. f that we hit by projecting M→yx onto the im-
age plane. We denote this point π(M→yx), and its noise mag-
nitude is modeled as σ̂(π(M→yx)). The probability that it oc-
cludes the mapped point can be expressed directly using the cu-
mulative density function, denoted cd f , of the normal distribution
N (π(M→yx).z, σ̂(π(M→yx))). Hence

P!occl(M→yx) = P(π(M→yx).z > (M→yx).z) = 1− cdf(x.z).

We set P!occl(M→yx) to zero if M→yx is outside of the camera
frustum or if there was no observation at π(M→yx).

Third, (iii) is a weight indicating whether x’s orientation to the
camera would still allow x to be observed by the depth sensor in y’s
frame. We write this as i>α(ϕ) = clamp1

0(cos(ϕ ·π/(2α))), where
α is a parameter of the camera noise model (Section 4). Finally, (iv)
is a probability depending on the temporal distance between x and
y, as in practice correspondences established to temporally closer
frames are more reliable. We fixed σtemp = 30.

Registration Error. The errorx,y(Mx,My) is a binary term that
distinguishes whether x and y belong to the same object, that is
whether the assigned motionsMx andMy are the same. IfMx 6=

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation

My, we assign a maximal penalty. Otherwise, we use a sum of
a clamped L2 error and an incremental error incry(My) between
mapped and observed 3D positions,

errorx,y(Mx,My) = (5)1 Mx 6=My

1
2

(
clamp3σ̂

0 (||M→y
x x−y||2)

3σ̂
+ incry(My)

)
else.

We choose 3σ̂ for clamping, as under normal distribution 99.73%
of data lies in this range and treat other data as outliers. If the qual-
ity of the motions is low and exhibits drift, the clamped error satu-
rates quickly when x and y are temporally far apart. The incremental
motion penalty avoids the problem with drift, by mapping y to its
previous and next frame, and measuring the registration error there,

incry(My) = (6)

∑
δ=±1

P!occl(M→δy) clamp3σ̂

0 (||NN(M→δy)−M→δy||2)
3σ̂

∑δ=±1 P!occl(M→δy)
,

where we also take into account potential occlusion. We use the
shortcut notationM→±1y forMy. f→y. f±1

y y (note that incr is used
only ifMx ==My) and NN(M→±1y) for the nearest neighbor
of the mapped pointM→±1y in the frame y. f ±1.

Discussion. Let us summarize the key features of our energy. First,
it explicitly models nonuniform sensor noise and occlusions in
a sound way by using a calibrated noise model for each sensor,
making it easy to adapt our method to arbitrary range sensors. It
is robust to occlusions by ignoring registration errors of occluded
points. Further, the registration error is robust to outliers and miss-
ing data, and it enforces temporal consistency. Note that the en-
ergy does not include a binary term for spatial smoothness of mo-
tion assignments, but our implementation provides some spatial
smoothing through subsampling and interpolation, as we describe
in Section 6.1.2. Finally, the only user parameters of our energy are
σtemp in the correspondence probability, which allows to increase
the weight of temporally local evidence, and d, which is used to
get rid of the trivial solution of assigning motions which explain an
observed point x by the point being visible in only one frame and
being out of frustum or invisible else.

6. Energy Minimization

We next describe our approach for finding a motion assignment
ŝ : X →M that minimizes our energy,

ŝ = argmin
s:X→M

E4DMSEG(s).

Because the space of motions is continuous and high-dimensional
it is intractable to solve this directly. Instead, we will operate with
a discrete subset of motions {Mk},Mk ∈M,k ∈ {1 . . .n}, which
turns our energy minimization into a discrete labeling problem. Our
strategy builds on the observation that for discrete sets {Mk} and
{M′k} we have the upper bounds

min
s:X→M

E4DMSEG(s)≤ min
s:X→{Mk}∪{M′k}

E4DMSEG(s)

≤ min
s:X→{Mk}

E4DMSEG(s). (7)

Hence we will solve the discrete labeling problem repeatedly, by it-
eratively expanding the motion set {Mk}with new motions {M′k}
in each step. This monotonically tightens the upper bound and im-
proves our solution in each step. For efficiency reasons, we will also
remove unnecessary motions from the set in each step. Figure 1 il-
lustrates our overall pipeline. We discuss the discrete labeling prob-
lem (that is, minimization of the upperbound) given a discrete set
of motions in Section 6.1. In Section 6.2 we then describe the re-
finement of the motion set that allows us to tighten the upper bound
in each step.

6.1. Optimizing the Motion Assignment

For a fixed set of n motions {Mk},k ∈ {1 . . .n} we seek to find
an assignment s : X → {Mk} that minimizes the upper bound in
Equation (7). We first solve for an assignment s that optimizes the
unary and pairwise terms of the energy. We simplify the notation
and write sx = k instead of s(x) =Mk, where we represent the
motion by its index in the finite set. The assignment problem is
then

argmin
s:X→{1...n}

∑
x∈X

∑
y∈y

ψx,y(sx,sy)+ ∑
x∈X

ψx(sx), (8)

which we solve via mean-field inference. Then we greedily merge
assignments to reduce the number of assigned motions |s(X)| ≤ n
to optimize over the factor 1.005|s(X)|.

6.1.1. Mean-Field Inference for CRFs

Mean-field inference has been a popular choice for various com-
puter vision tasks due to its simplicity, scalability and flexi-
bility, and has been successfully applied to segmentation be-
fore [ZJRP∗15] [SOD12]. Mean-field inference for our energy in
Equation 8 is formulated via the likelihood of its corresponding
conditional random field (CRF), P({sx}) = 1

Z exp(−ESEG({sx})),
where Z is an adequate normalization factor. Minimizing the en-
ergy is equivalent to maximizing the likelihood P({sx}), and the
sought assignments {sx} are the MAP parameters of P. The cen-
tral idea of the mean field is to approximate P by a simpler dis-
tribution Q = ∏x∈X Qx(sx), where Qx(sx = l) can be interpreted
as the (marginal) probability for assigning label (object motion)
l to point x. The MAP of Q is simply given by the assignments
argmaxl Qx(sx = l) for all x.

To approximate the MAP of P, in mean-field inference the ap-
proximation quality of Q is measured via the KL divergence to P.
This leads to the so called free mean field energy that Q has to
minimize,

F(s,Q) =∑
x

n

∑
sx=1

Qx(sx)ψx(sx)

+∑
x,y

n

∑
sx=1

n

∑
sy=1

Qx(sx)Qx(sy)ψx,y(sx,sy)

+∑
x

n

∑
sx=1

Qx(sx) log(Qx(sx)). (9)

The first two terms are the expected value of the energy in Equa-
tion (8) under the distribution Q, while the third term is the negative

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation

entropy of Q, acting as a regularisation term on Q. Adding the con-
straint that the Qx sum to one (via Laplacian multipliers) yields the
following equation that the Qx at any local maximum need to fulfill,

Qx(sx = l) = (10)

1
Zx

exp(−ψx(sx = l)−
n

∑
l′=1

∑
y 6=x

Qy(sy = l′)ψx,y(sx = l,sy),

where the Zx are normalization factors such that the Qx sum to one
for any x. This is called the update equation and describes Q as
its fixpoint. The mean-field CRF inference method is the corre-
sponding fixpoint iteration. To guarantee convergence, the updates
in Equation 10 have to be performed sequentially over all points x
and potential assignments sx = l, l ∈ 1 . . .n.

6.1.2. Parallel Mean-Field Inference on the GPU

To efficiently implement the inference scheme we parallelize the
update equations and perform inference on the GPU.

Parallel Updates. In the parallel scheme, we update all the prob-
abilities Qx(sx = l) in parallel for each x and l (Equation 10). Al-
though naive parallelization does not guarantee convergence to a lo-
cal minimum, Baqué et al. [BBFF16] showed how using additional
damping in each fix point step would guarantee convergence. In our
case, however, we did not experience the need for such a damping
factor. Note that, as our pairwise terms ψx,y are independent of sy
when sx 6= sy, the double sum from Equation 10 simplifies to

∑
y 6=x

Qy(sy = l)ψx,y(sx = l,sy = l)

+(1−Qy(sy = l))ψx,y(sx = l,sy 6= l). (11)

Acceleration via Subsampling. To further reduce the complexity
of the updates (Equation 10) we evaluate them only on 10% ran-
domly sampled points. We then interpolate the result back to the
full point cloud to get dense probabilities Qx,∀x ∈ X defined ev-
erywhere, before the next update step.

We interpolate the label probabilities in 3D using local weighted
averaging based on Euclidean distances between dense interpola-
tion target points and the sparse samples that we used in the mean-
field update. At each interpolation target point x we use Gaussian
weights with standard deviation 2σ̂(x). We find neighboring points
via linear searches in local 7× 7 windows in x’s frame x. f , which
can be efficiently parallelized.

Note that in each parallel update step, we update the sparse
points based on the full point set X with interpolated probabilities.
That is, the nearest neighbor searches required for the update (see
Equation (4) and (6)) access the full point set. As the summation
in the update (Equation (11)) only requires the probabilities of a
single label l, we evaluate each label l separately (in parallel on the
GPU), and only keep the probabilities for one label in GPU mem-
ory at a time. To complete the update (Equation 10), we compute
the exponentiation and normalization for the sparse points.

Energy Scaling. An important aspect of mean-field inference is
that its result depends on the global scale of the energy, as noted
for example by Saito et al. [SOD12]. Observe that in Equation (9)

ψx(sx = 1) ψx(sx = 2)
x = 1 2 0
x = 2 0 1

x = 1 x = 2
2

ψ1,2(s1,s2) =

{
0 if s1 = s2;
2 otherwise

Temperature T
10 -1 10 0 10 1 10 2
0

0.2

0.4

0.6

Q(s1 = 1)
Q(s2 = 1)

Figure 3: A minimal example to illustrate the influence of energy
scaling in mean-field inference. Top row: unary and pairwise en-
ergy terms for two nodes x = 1,x = 2 and two possible label as-
signments sx = 1,sx = 2. Bottom left: the corresponding graphical
model. Bottom right: minimizer Q of the free energy (Equation (9))
as a function of the temperature T used to scale the entropy. Q is
only shown for the first label, that is Q(s1 = 1),Q(s2 = 1). A value
below 0.5 means that a MAP assignment selects the second label,
above 0.5 it chooses the first label. The optimal labeling (mini-
mizing Equation 8) assigns the second label to both nodes, that is
s1 = s2 = 2.

the relative weight of energy (first two terms) and entropy (third
term) is implicitly governed by the scale of the original energy (the
unary and binary terms). We demonstrate the effect of a scale factor
in a minimal example in Figure 3, where the optimal Q and its MAP
result change depending on a relative scale factor T that we apply
to the entropy term. The factor T is related to the Gibbs free energy
in thermodynamics, where the temperature T weights the entropy
term. As Baqué et al. note [BFF16], at high temperatures the Gibbs
free energy is convex (because with increased weight of the entropy
the pairwise terms loose their importance) and local minima start
arising only at lower temperatures.

We obtain best results by gradually decreasing the temperature
(increasing the relative scale of the energy), to optimize increas-
ingly non-convex energies. We use an exponential cooling scheme
where we increase the scale of our energy by a fixed factor after
each mean-field update pass, to overall cover two magnitudes of
energy scales. This corresponds to the exponential cooling scheme
known from simulated annealing [NA98].

Pseudocode. Our full GPU-based inference algorithm is listed in
Algorithm 1 in pseudocode. We first describe the data needed on the
GPU (lines 1-11). The dense buffers have number-of-frames times
number-of-pixels entries and provide the dense data needed to com-
pute the CRF update (Equation (10)); the buffer QDense provides
space to store the dense Q values for a single motion. The arrays
from line 8ff encode the sample positions for the sparse samples as
well as buffers QSparse[k] to store the probabilities Q for each mo-
tion k and all the sparse samples. The inference method proceeds
as follows: first the sparse probabilities are uniformly initialized
(line 12). Then for a fixed number of iterations the sparse values are

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation

1 Struct gpuData contains
2 M[] ; // the motion set {Mk}
3 dense data:
4 Depths[] ; // all depth frames
5 Normals[] ; // precomp. normals
6 Sigmahats[] ; // precomp. σ̂

7 QDense[] ; // dense Q for single motion
8 sparse data:
9 QSparsePos ; // encodes sparse sample pos

10 QSparse[] ; // the sparse probabilities

11 end
12 gpu::set(QSparse[:],1/numLabels) ; // initialize Q
13 for it = 0:15 do
14 iterate over motions:
15 for k = 1:length(M) do
16 gpu::interpolate_sparse_to_dense(QSparse[k],

QDense);
17 compute sums from the update equation Eq. (11).
18 gpu::temporal_sum_dense_to_sparse(M[k], QDense,

QSparse[k]);
19 end
20 exponentiation and normalization
21 energyScalingFactor = pow(100,it/15)
22 gpu::crf_exp_and_normalization(QSparseOut,QSparse,

energyScalingFactor);
23 end

Algorithm 1: The CRF step and the data that is stored on the
GPU. Methods annotated with gpu :: are implemented on the
GPU.

updated following Equation (10) by first interpolating the sparse
values (line 16) and then evaluating the sum from Equation (11)
(line 18). Finally, the results are exponentiated while taking the en-
ergy scaling scheme into account and normalized to sum to one
(line 22).

6.1.3. Merging Segments

After each full iteration we greedily merge pairs of segments as
long as it decreases the sum of the unary and binary terms in the
motion segmentation energy (Equation (1)), or increases it by less
than half a percent. This effectively optimizes over the cost|s(X)|

label
term in Equation (1), since merging two segments reduces the num-
ber of assigned motions |s(X)| by one. Merging segments may
indeed decrease the sum of unary an binary terms if CRF infer-
ence converged to a non-optimal local minimum featuring over-
segmentation. In particular, in scenes with geometrically weakly
interconnected regions that belong to the same object, the filter-
based CRF inference algorithm sometimes assigns different mo-
tions in each region if nearly duplicate motions are present in the
motion set. Merging segments resolves such issues.

6.2. Extending and Refining the Motion Set

Our key objective in this step is to add motions to the current set that
will actually contribute to further lowering the energy. To facilitate
our explanations, let us use the term label not only for the index

f f

Figure 4: Scenarios that require an extension of the motion set to
improve the segmentation. Left: even if we have the correct motion
for the red bottle, we cannot improve the segmentation in the third
frame. This is because the motion does not track the bottle in the
third frame, where it was not segmented correctly. Right: with only
the motion for the hand and the static table, we cannot correctly
segment the bottle in the third frame. Our approach to extend the
motion set can resolve these situations.

of a motion from our set, but also for all the points assigned to
that motion. An intuitive approach would be to extend our motion
set by adding the motions that geometrically best align each label
across all frames containing any points that belong to the label.
These motions would in turn lead to better segmentations, etc.

This strategy alone, however, easily gets stuck in bad local min-
ima. A trivial example is when all points are attributed to the same
label. We can find a single optimal motion for this one label, but
adding this motion is not useful to refine the segmentation. In addi-
tion, scenes where different objects exhibit different motions only
in a part of the sequence, but move along the same trajectories oth-
erwise, are challenging. For example, in Figure 4 (left) the bot-
tle tips over and remains static with the support surface after the
fall. Assume that, under the current motion assignments (visual-
ized in blue and red colors), the red label disappears after the bottle
falls, which we call “label death”. Aligning the red label across all
frames where it appears, however, cannot determine the actual mo-
tion of the bottle after the red label disappears. Hence, we cannot
improve the red label in the next motion assignment step. Analo-
gously, a label may emerge as two objects split and start moving
independently (“label birth”).

Finally (Figure 4, right), a first object (the bottle) may first share
its motion with a second one (the hand), and then with a third one
(the support surface). Hence the first object (bottle) may first share
its label with the second one (hand), and then switch to the third one
(support surface). We call this “label switch”. Similarly as above,
in these cases the simple strategy can get stuck with a set of mo-
tions that includes perfect alignments of the current labels, but we
will never add other motions that can further reduce our energy and
overcome the problems with label events (death, birth, switch) we
just discussed.

We address these issues by introducing new labels, which we as-
semble from the ones obtained in the previous motion assignment
step as described in Section 6.2.1. Then, we find motions that geo-
metrically align these new labels, as discussed in Section 6.2.2, and
add them to our set.

6.2.1. Constructing New Labels

We construct the set of new labels in two steps: We first analyze
the given labels to detect label events (death, birth, switch as de-
scribed above), and then assemble the set of new labels based on
the detected events.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation

)yellow, yellow(fMSupport

Label birth

Label death Label birth Label death

))l, yellow(f,M)yellow, l(fMMatrix entries max(
l=red
l=green
l=blue
l=black

l=pink
l=teal
l=gray

Figure 5: Visualization of the elements of the mass trans-
fer matrices M f involving the yellow label, and detection of
birth and death events. The top plot shows the support, that
is the entries M f (yellow,yellow) for all frames f along with
the threshold (red line) to detect birth and death. We visualize
the other entries of M f related to the yellow label by plotting
max(M f (yellow, l),M f (l,yellow)) in the respective colors of l. We
mark the largest label transfers at birth and death (black-yellow and
yellow-gray for the first spatio-temporal segment, gray-yellow and
yellow-gray for the second), which we use to assemble new labels.

Detecting Label Events. To detect label events including
switches, births and deaths we first construct a label mass trans-
fer matrix M f ∈ N×N for each frame f , where N is the number of
labels. This matrix stores for each pair of labels how many pixels
change from the first to the second label from frame f to f +1. To
compute M f we first initialize it with zeros. Then, for each pixel in
frame f , we note its label l, compute its closest neighbor in the next
frame f + 1, call its label l′, and increment M f (l, l′). In Figure 5
we visualize the elements of M f related to one label (yellow) over
a sequence of frames f .

We detect death of label l′ in frame f + 1 if the number of
pixels assigned to l′, that is ∑

N
l=1 M f (l, l′), drops from above to

below 0.5% of all pixels per frame from f to f + 1. Similarly,
we detect label birth if the number of assigned pixels increases
from below to above 0.5% from one frame to the next. Finally,
we detect label switch events as the nswitch largest temporal lo-
cal maxima in the temporal stack of the matrices M f . More pre-
cisely, a pair of labels l, l′ is a temporal local maximum in frame
f if M f−1(l, l′) < M f (l, l′) > M f+(l, l′), and we select the nswitch
largest of these. We also apply a temporal box filter to the matrix
stack for each matrix entry to avoid spurious local maxima.

Assembling the New Labels. Label events, including deaths,
births, and switches, are indications of temporal over-segmentation,
that is, 3D points on objects that are erroneously assigned different
labels over time. Hence our goal is to construct a new set of la-
bels that do not suffer from temporal over-segmentation, that is, la-
bels that are supported (alive) during the whole sequence of frames.
Death and birth events also occur when objects enter or leave the
frustum, but in the crucial early stage of our optimization tempo-
ral errors are the primary source of such events. When an object

truly leaves the frustum, we rely on the robustness of our energy
formulation and the segmentation step to discard spurious motions.

First, we complete labels that experience birth or death events
by concatenating them with other labels. For a label l with death
in some frame f0, we look up in the ten frames M f∈ f0−9,... f0 pre-
ceding its death to which label l′ the largest label transfer occurred
(as illustrated in Figure 5), and then append l′ to l (by taking the
union of their pixels). We proceed similarly with l′, appending an
other label in case l′ dies before the end of the sequence, etc. We
proceed in the same way with label births, but moving backward
in time. As a result, we obtain a new set of labels that all have full
temporal support, and we discard the original labels. Finally, we
eliminate duplicate label combinations from this set. This process
is illustrated in Figure 6.

Second, we resolve label switches by constructing a new label
that combines the label pair involved in each switch. If we have a
label switch from l to l′ in frame f0, we construct a new label l′′

as the union of l before f0, and l′ after f 0. We keep all three labels
l, l′, l′′ in our new set.

Finally, we generate new labels by randomly sampling a small
number of noutlier points from the 0.5% points incurring the largest
cost to Equation (1). We add a label consisting of a short, small
tempo-spatial tube around each point. We use a fixed spatial radius
of 15 pixels and extend the tubes over 30 frames in both directions
using each points’ currently assigned motion.

Note that the set of new labels we constructed here is not a seg-
mentation of the data points. Instead, each point may occur in mul-
tiple labels. This is not an issue, since we merely use these labels to
generate new motions, which we will subsequently use to minimize
our segmentation energy.

6.2.2. Finding Motions by Aligning Labels

We find a motion for each label separately by geometrically align-
ing the points belonging to the label across the sequence of frames.
This is a standard 3D registration problem. Since we want to gen-
erate motions that are likely to reduce our segmentation energy, we
minimize a registration cost that is similar to the binary term in our
energy. For efficiency, however, we employ simplified correspon-
dence probabilities and registration errors compared to the original
ones (Equation (4) and (5)). We follow an ICP-like [BM92] ap-
proach, where we iteratively update the correspondence probabili-
ties and the registration errors.

Modified Correspondence Probability. We simplify the corre-
spondence probability from Equation 4 to

Px,y(Ml) = 1y==NN(M→y
l x) ·1|y−NN(M→y

l x)|<3σ̂, (12)

where we changed the notation for Px,y to indicate that Px,y is a
function of the motion Ml of label l. Our simplification amounts
to a binary nearest neighbor correspondence, discarding the terms
accounting for occlusion, normal orientation relative to the camera,
and temporal distance. We ignore the correspondence, however, if
the distance between the nearest neighbors is above a threshold 3σ̂.

Modified Registration Error. Let us factorMi→ j
l into a transfor-

mation of frame i to a reference coordinate system, followed by the

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation
Se

gm
en

ta
tio

n

La
be

l
Co

m
bi

na
tio

ns

Ex
am

pl
e

 C
om

bi
na

tio
ns

Te
m

po
ra

l
La

be
l S

up
po

rt
s

Figure 6: Visualization of the complete label assembling step. The segmentation is shown on the top left. Using the mass transfer matrix,
first the temporal label supports are computed. Then the label births and deaths are resolved to get the label combinations shown on the right.
Finally, based on these combinations new labels are generated, and we show two selected label combinations at the bottom of the figure.
These combined labels will then be used to generate new motions which will be added to the motion set.

transformation to frame j. That is,Mi→ j
l = TjT

−1
i , where we omit

l to simplify the notation. We now define our modified registration
error as

errorx,y(Ml) =
〈

Ty. f T−1
x. f x− y,y.n

〉2
+α‖Ty. f T−1

x. f x− y‖, (13)

where we changed the notation for errorx,y (Equation (5)) similar
as above to indicate that the error depends on the motion Ml of
label l. We abandon the incremental error (Equation 6) for sim-
plicity, and clamping the error is not necessary because we include
distance-based clamping in the modified correspondence probabil-
ities (Equation 12). Finally, our modified registration error includes
a point-to-plane distance and relative weight α for the point-to-
point distance, which improves convergence in practice.

ICP Iteration. We solve for the rigid transformations Tx. f , Ty. f
by alternating between updating point correspondences (Equa-
tion (12)) and minimizing the alignment error (Equation (13)) in a
Levenberg-Marquardt algorithm. For faster convergence, we solve
for the transformations in a coarse-to-fine fashion by subsampling
the point clouds hierarchically and using clouds of increasing den-
sity as the iteration proceeds. In addition, we consider the registra-
tion error only for point pairs (x,y) occurring in select frame pairs.

Selecting Frame Pairs. The simplest strategy is to include only
point pairs from neighboring frames, {(x,y)|y. f = x. f + 1}. This
may be sufficient for simple scenes with large objects and slow
motion. However, it suffers from drift. We enhance the incremen-
tal approach with a loop closure strategy to avoid drift similar to
Zollhöfer et al. [ZDI∗15]. Using temporally more distant frames
mirrors the temporal window in our original motion segmentation
energy. The idea is to detect non-neighboring frames that could
be aligned directly, and compute the registration error from Equa-
tion (13) for points from a sparse set of such pairs. We use the
following heuristics to find eligible frame pairs:

• The centroid of the observed portion of the object in frame i lies
in the view frustum when mapped to frame j, and vice versa.
• The viewing direction onto the object, approximated by the di-

rection from the camera to the centroid, should be similar in both
frames. We tolerate a maximum deviation of 45 degrees.
• The distance of the centroids to the camera is similar in both

frames. Currently we tolerate a maximum factor of 2.

The first two criteria are to check that similar parts of the object are
visible in both frames, and they are seen from similar directions.
The third one ensures that the sampling density does not differ too
much. Initializing a set S with the adjacent frame constraints (i, i+
1), we greedily extend it with a given number of additional pairs
(k, l) from the eligible set. We iteratively select and add new pairs
from the eligible pairs such that they are as distant as possible from
the already selected ones,

S← S∪ argmax
eligible (k,l)

(
min

(i, j)∈S
|k− i|+ | j− l|

)
. (14)

Overall, for our ICP variant with loop closures, we first solve
for alignments only with points from neighboring frame pairs,
{(x,y)|y. f = x. f + 1}, taking identity transformations as initial
guesses of the alignment between adjacent frames. We then use
these alignments to determine and select additional eligible loop
closure constraints and do a second ICP iteration with points from
the extended set of frame pairs, {(x,y)|(y. f ,x. f) ∈ S}.

6.2.3. Removing Unnecessary Motions

In addition to constructing new labels (Section 6.2.1) and finding
motions for them (Section 6.2.2), we also remove all old motions
from the previous iteration step from the motion set, before we
solve the motion assignment problem again (refer to Figure 1 for
an overview of the process). This is crucial for performance rea-
sons. Removing non-assigned motions from them motion set does
not loosen the upper bound from Equation (7). But removing pre-
viously assigned motions may loosen the bound. The old motions,

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation

2 4 6 8 10 12 14
Iteration

101

102

E
ne

rg
y

two chairs
one chair
ambush 5
bonn chair
bonn can 1
bonn can 2
statue

Figure 7: Illustration how our approach minimizes the energy
(Equation (1)) throughout the iteration. Note that the process is oc-
casionally non-monotonic. One reason is that the CRF step is not
guaranteed to converge to the global minimum. Further, our ap-
proach to discard motions from the motion set (Section 6.2.3) may
lead to a loosening of the upper bound, yet our procedure robustly
minimizes the energy.

however, are typically redundant with new ones that we found for
the new labels. In practice our method still continuously reduces
the energy (Equation (1)) over the iterations as shown in Figure 7.

6.3. Initialization

We start our minimization (Figure 1) with a single motion, namely
the motion obtained by registering all frames with the registration
method described in Section 6.2.

7. Implementation and Results

7.1. Parameters, Implementation, and Runtimes

We use the same parameters in all our experiments but choose sen-
sor dependent noise models. We fix the three free parameters in
the energy definition (Section 5) to costlabel = 1.005 (remove la-
bels if the energy is increased by less than half a percent), d = 0.1
(bias in unary term) and σtemp = 30 (spatial window for correspon-
dence probability). To construct new labels (Section 6.2.1), we set
nswitch = noutlier = 5 and limit the number of motions to 32. When
aligning the motions (Section 6.2.2) we set the balance between the
point-to-point and point-to-plane term to α = 0.1 (Eq. (13)). We
apply at most 100 ICP iterations or stop upon convergence. In the
motion assignment step (Section 6.1) we set the number of CRF
iterations to 15 and interpolate the update equation evaluated on
10% of the points. We always perform 10 main iterations. We dis-
cuss the influence of the parameters and the noise model in Section
7.1.1.

Overall the complexity of our method is linear in the number of
frames and quadratic in the number of motions. In theory, the up-
date of the mean-field inference (Equation 10) is quadratic in the
number of frames, as for each point in each frame points from all
other frames contribute to the update. In practice, due to the expo-
nential decay of the correspondence probabilities with respect to
the temporal distance (Eq. (4)), we evaluate the update equation on
a fixed temporal window around each frame. The quadratic com-
plexity in the number of motions stems from the greedy merging of
segments (Section 6.1.3), where we consider all pairs.

OURS Motion Set Assignment EG16 IROS16
220 128 92 418 268

Table 1: The runtimes of our method, as well as the ones by Qing
et al. [YLX∗16] (EG16) and Kim et al. [KLAK16] (IROS16), in
seconds per frame, averaged over all sequences in our quantitative
evaluation. We break down our times into the refinement of the
motion set (Section 6.2) and the motion assignment (Section 6.1).

noutlier = 10
nshift =10

noutlier = 5
nshift =5

noutlier = 2
nshift = 2

cost =1 cost =1.005 cost = 1.01 cost = 1.05
Figure 8: Influence of label costs costlabel and hypothesis genera-
tion noutlier,nshi f ts on the method’s final result after 10 iterations.
Increasing costlabel leads to a coarser segmentation while increas-
ing nswitch, noutliers will allow the method to find segments more
robustly and in less iterations as more hypotheses are tested. On
the other hand the quality of the inference step slightly decreases as
the number of hypotheses increases. With costlabel = 1 the method
works well but results in oversegmentations when geometry is ill
connected, a value slightly larger than one corrects this.

We implemented our approach in C++ and run all steps on the
CPU, except for CRF inference (Section 6.1.1) and the evalua-
tion of the energy in the segment merging step (Section 6.1.3),
which are implemented on the GPU. We report runtimes of our ap-
proach and the global methods by Qing et al. [YLX∗16] and Kim et
al. [KLAK16] in Table 1. Our parallel CRF inference is quite fast
- the pairwise terms in the update Equation 11 are evaluated and
summed up at about 2700fps on our NVIDIA Titan GPU, including
nearest neighbor search. Using temporal windows of 60 frames, (in
average) 15 motions, 15 CRF iterations and 10 overall iterations
this results in an average computation time of 45s. Including the
merge step, which takes about the same time, we get the reported
92s to optimize motion assignments. The rest of our code is not op-
timized for speed and leaves a lot of room for improvement. For ex-
ample, registering a single label (Section 6.2.2) runs only at 0.5 fps
(which is the current bottleneck). We make our code and data avail-
able at: http://www.cgg.unibe.ch/publications/
rgb-d-motion-segmentation/project-page.

7.1.1. Influence of Parameters, Noise Model

In general the method is relatively robust to the parameter choices.
The parameters costlabel and nswitch, noutliers control the label gen-
eration and removal; their joint influence is visualized in Figure 8.
Our parameter choice is a trade-off between under- and overseg-
mentation and the stability of our method.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://www.cgg.unibe.ch/publications/rgb-d-motion-segmentation/project-page
http://www.cgg.unibe.ch/publications/rgb-d-motion-segmentation/project-page

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation

σtemp: 3 7 15 30 100

0

fr
am

e
in

de
x

50

100

Figure 9: Results for varrying σtemp. Increasing σtemp yields better
temporal consistency and improves the results, as more frames are
taken into account.

1e-3 1e-20 11e-1d:
Figure 10: Setting the bias d (dataterm) to zero leads to artifacts in
difficult regions (close to the boundary, behind the person’s head),
as motions are favored which explain the points as being occluded
as often as possible. These artifacts are fixed with a small bias.
Large values will break the method, as free-space violation be-
comes cheaper than occlusion.

Increasing the parameter σtemp allows assignments to take more
frames into account and leads to increased temporal consistency, at
the expense of computation time. We did not observe benefits of
using σtemp > 30; we qualitatively show the influence of the pa-
rameter in Figure 9. The exact choice of d (bias) does not matter
much. Setting it to zero still yields sensible results, with a pref-
erence to explaining observations as being visible only once and
hidden else on difficult regions. This behavior is fixed when setting
d between 1e−3 to 1e−1. When set higher the method degrades,
as free-space violation becomes cheaper than potential occlusion,
see Figure 10. The parameters related to registration (α, number
of iterations, exact choice of registration energy) were chosen in
an ad-hoc manner to produce relieable, robust registration results.
Note that motion estimation could, in principle, be replaced with
any robust registration method.

The noise and sensor model is central for our method to perform
robustly over a diverse set of scenes and sensors and effectively en-
capsulates sensor specific parameters. To evaluate the influence of
the noise model we compare our method to two base-lines, using ei-
ther a simplified adaptive or no adaptive noise model. We obtain the
first by replacing σ̂ = max(τ,σ) by max(σ,τ), where σ is the mean
value of σ, computed once per sensor. For the second, we replace
the complete noise model σ̂ by the constant σ. We qualitatively
compare the models in Figure 11 and quantitatively demonstrate
the benefit of the full model in Section 7.2. Note that in average our
simplified baselines also outperform our competitors.

two_chairs one_chair

no
ne

si
m

pl
e

fu
ll

it. 2 4 6 8 final final
bonn_chair statue

no
ne

si
m

pl
e

fu
ll

it. 2 4 6 8 final final
Figure 11: Results with our proposed noise model σ̂ (full), with a
simplified noise model max(σ,τ) (simple) and without any adaptive
noise model σ (none). On two_chairs and bonn_chair the interme-
diate results at iterations 2, 4, 6 and 8 are shown alongside the final
result. Using the full model improves the convergence rate and the
final results.

7.2. Quantitative Evaluation

We compare our method to the two recent techniques by Qing
et al. [YLX∗16] (abbreviated EG16) and Kim et al. [KLAK16]
(IROS16) using seven sequences described in Table 2. The scenes
of varying complexity are recorded with three different sensors.
They feature up to twelve near-rigid and rigid objects with ro-
tational and translational motion, and a moving camera. Rota-
tions are typically harder to handle as they result in challeng-
ing self-occlusions. We recorded one_chair, two_chairs, and statue
ourselves; bonn_chair, bonn_can1, and bonn_can2 are from data
shared by Stückler and Behnke [SB15], and ambush5 is from the
Sintel dataset [BWSB12].

We run our method and EG16 on temporally subsampled data at
about 10fps. For IROS16 we use all frames as we observed a per-
formance drop with subsampling, while EG16 exhibits a large per-
formance gain from subsampling. The only exception is the statue
scene, where we needed to run IROS16 with subsampling as their
code would not complete within 24 hours otherwise.

For a quantitative evaluation we manually annotated all se-
quences with ground-truth segmentations. Our goal is to evaluate
the segmentation of independently moving rigid objects and ob-
ject parts, and how well this generalizes to near-rigid parts such
as arms and legs. Hence we also classify each ground-truth label
as either rigid or near-rigid. We define each ground-truth label us-
ing a ternary mask including a set of positive, negative, and op-
tional positive pixels. We show an example ground-truth segmen-
tation for the one_chair sequence in Figure 12. While Stückler and
Behnke [SB15] already provide ground-truth segmentations on a

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation

Sequence Frames Labels Sensor
num used gt num rigid type type motion

one_chair 100 (50) 8 12 (3) R+T Kin1 static
two_chairs 60 (60) 5 3 (3) R+T Kin1 static
statue 660 (220) 16 5 (3) R+T Asus static
ambush5 20 (20) 5 9 (2) T Synt moving
bonn_chair 180 (60) 6 4 (3) T Asus moving
bonn_can1 180 (60) 5 6 (3) T Asus moving
bonn_can2 60 (20) 4 3 (2) T Asus moving

Table 2: Summary of the sequences used for evaluation. The
Frames column lists the number of frames (num), the number of
frames used in our method after temporally subsampling to about
10fps (used), and the number of frames with ground-truth annota-
tions (gt). The Labels column lists the number of different rigid and
near-rigid segments (num), the number of rigid segments (rigid),
and their dominant type of motion (type), which is rotational (R) or
translational (T). Last, we list the acquisition sensor, which are the
Kinect for Xbox One (Kin1), the Asus Xtion Pro (Asus), or a syn-
thetic sensor (Synt) for the synthetically rendered ambush5 scene,
and whether the sensor is static or moving.

Figure 12: Visualization of ternary ground-truth masks for our eval-
uation. On the left we show the positive masks for all labels in dif-
ferent colors, and we draw pixels that do not occur in any positive
mask in dark gray. On the right we show the ternary masks for each
label, where positive pixels are in teal, negative pixels in yellow,
and optional pixels in blue.

few frames, we use our annotations instead for consistency. The
ternary masks with optional positive pixels for each label allow us
to obtain a more fine-grained evaluation, compared to masking am-
biguous pixels as “do not care” for all labels.

Given a ternary ground-truth mask m with values
positive,optional, and negative, and a binary mask b
representing a single label found by one of the meth-
ods (OURS, EG16, or IROS16), we compute true pos-
itives t p = |b&(m = true|m = optional)|, true nega-
tives tn = |!b&(m = f alse|m = optional)|, false positives
|b&(m = f alse)|, and false negatives |!b&(m = true)|, where
the Boolean operations are applied to each pixel, and |.| counts
the number of true pixels. From this we compute the accuracy
t p/(t p+ f p+ f n), precision t p/(t p+ f p), and F-score as usual.

To evaluate the segmentation of a frame, we first need to deter-
mine the correspondences between the found labels and the ground-
truth labels. Similar to Mahmood et al. [MDSL17], we choose the
correspondences that maximize the F-score. We then divide the
sum of the per label scores by the number of ground truth labels. To
compare the performance of each method when only rigid objects,

EG16 IROS16 OURS
A P F A P F A P F

one_chair 0.19 0.26 0.23 0.22 0.30 0.26 0.58 0.6 0.61
0.56 0.79 0.67 0.45 0.61 0.54 0.93 0.94 0.96

two_chairs 0.93 1.00 0.96 0.28 0.52 0.33 0.96 0.98 0.98
0.93 1.00 0.96 0.28 0.52 0.33 0.96 0.98 0.98

statue 0.70 0.81 0.78 0.37 0.41 0.41 0.88 0.89 0.90
0.74 0.86 0.83 0.61 0.67 0.67 0.94 0.95 0.97

ambush5 0.42 0.53 0.52 0.28 0.3 0.32 0.92 0.94 0.95
0.6 0.83 0.75 0.57 0.59 0.64 0.96 0.98 0.98

bonn_chair 0.53 0.75 0.62 0.56 0.69 0.63 0.83 0.92 0.9
0.45 0.68 0.53 0.49 0.65 0.55 0.80 0.91 0.88

bonn_can1 0.21 0.35 0.28 0.51 0.61 0.57 0.96 0.97 0.98
0.42 0.7 0.56 0.82 0.90 0.90 0.95 0.97 0.98

bonn_can2 0.40 0.66 0.52 0.89 0.94 0.94 0.83 0.96 0.90
0.20 0.59 0.33 0.92 0.98 0.96 0.8 0.98 0.88

Average 0.48 0.62 0.56 0.44 0.54 0.49 0.85 0.89 0.89
0.56 0.78 0.66 0.59 0.70 0.66 0.91 0.96 0.95

Table 3: Acccuracy (A), Precision (P) and F-Score (F) for the
methods by Qing et al. [YLX∗16] (EG16), Kim et al. [KLAK16]
(IROS16) and our method (OURS). For each scene we report the
metrics evaluated on the complete scene featuring both rigid and
near-rigid parts, like arms, heads, etc. (first row), as well as the
metrics evaluated only on the rigid objects (second row).

or rigid and near-rigid objects are considered, we evaluate every
scene twice: once using all the ternary masks including rigid and
near-rigid objects, and once using only the absolutely rigid parts.

We summarize the quantitative results in Table 3, where we
report accuracy, precision, and F-score, both in the purely rigid
case, and including rigid and near-rigid objects. Stückler and
Behnke [SB15] and Kim et al. [KLAK16] also report accuracy,
while precision and F-score are more commonly otherwise. In sum-
mary, this quantitative evaluation shows that we outperform both
comparison methods by a large margin.

We evaluate the effectiveness of our proposed noise model in
the same way in Table 4, by comparing our full method against a
baseline with either a simplified adaptive noise model or without
any adaptive noise model, as described in Section 7.1.1. In sum-
mary, the full method generalizes best to all scenes and sensors
and clearly outperforms the two baselines. Note that in average our
simplified baselines also outperform our competitors.

7.3. Discussion

The results of all methods and all sequences are visualized in
Figures 15 to 18. Our method excels on the bonn_can1 (Fig-
ure 15), two_chairs (Figure 17), ambush5 (Figure 16) and statue
sequence (Figure 18), both on the rigid and the near-rigid por-
tion of the scenes. These scenes feature highly non-uniform noise
(two_chairs) complex interactions (bonn_can1, statue, ambush5)
and up to nine near-rigid objects (ambush5). On the one_chair
sequence we consistently segment all rigid parts and find a rea-
sonable under-segmentation of the man featured in the sequence
(Figure 17). A limitation of our method can be observed on the
bonn_can2 and the bonn_chair sequence (Figures 15 and 16). Our

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation

NONE SIMPLE FULL
A P F A P F A P F

one_chair 0.07 0.07 0.07 0.42 0.43 0.45 0.58 0.6 0.61
0.27 0.27 0.30 0.58 0.58 0.62 0.93 0.94 0.96

two_chairs 0.98 1.00 0.99 0.98 1.00 0.99 0.96 0.98 0.98
0.98 1.00 0.99 0.98 1.00 0.99 0.96 0.98 0.98

statue 0.54 0.55 0.57 0.55 0.56 0.59 0.88 0.89 0.90
0.32 0.32 0.37 0.51 0.51 0.56 0.94 0.95 0.97

ambush5 0.26 0.33 0.35 0.92 0.94 0.95 0.92 0.94 0.95
0.69 0.70 0.81 0.96 0.98 0.98 0.96 0.98 0.98

bonn_chair 0.55 0.73 0.62 0.65 0.73 0.69 0.83 0.92 0.9
0.51 0.65 0.57 0.55 0.65 0.60 0.80 0.91 0.88

bonn_can1 0.77 0.78 0.80 0.77 0.78 0.80 0.96 0.97 0.98
0.91 0.92 0.95 0.89 0.90 0.94 0.95 0.97 0.98

bonn_can2 0.85 0.94 0.92 0.85 0.95 0.92 0.83 0.96 0.90
0.86 0.97 0.92 0.85 0.98 0.92 0.8 0.98 0.88

Average 0.57 0.63 0.62 0.74 0.77 0.77 0.85 0.89 0.89
0.65 0.69 0.70 0.76 0.80 0.80 0.91 0.96 0.95

Table 4: Acccuracy (A), Precision (P) and F-Score (F) using our
method without an adaptive noise model (NONE), with a simpli-
fied noise model (SIMPLE) and with our full noise model (FULL),
reported as in Table 3.

method robustly finds all rigid parts but over-segments the back-
ground. This is due to strong aberrations in the recorded depth data:
as the camera moves our method explains the aberrations as an ad-
ditional moving object. We document the aberrations in Figure 13.
Leveraging the assigned motions, our approach also allows us to ac-
cumulate the point clouds and perform 3D reconstruction, as shown
in Figure 14.

The IROS16 method works very well on scenes with few objects
and non-rotational motions, such as the bonn_can1 and bonn_can2
scene (Figure 15). IROS16 quickly fails in the presence of occlu-
sions because it assumes the availability of complete point trajec-
tories throughout the sequence. Hence it does not perform well on
the ambush5, one_chair, two_chair and statue scene. Also IROS16
does not generalize well to the near-rigid scene parts. The near-
rigid motions and the non-uniformity of noise pose a challenge to
the employed probabilistic subspace clustering. The brittleness of
the method in the presence of occlusions was noted by Kim et al. in
the original paper [KLAK16], where the method was demonstrated
to work well on scenes with up to three (near)-rigid objects.

The EG16 method by Qing et al. [YLX∗16] handles scenes
with many motions and little occlusion well, such as the syn-
thetic ambush5 scene (Figure 16) and the statue scene (Figure 18).
More pronounced occlusion leads to the erroneous establishment
of correspondences, resulting in over-segmentations. At the same
time EG16 heavily relies on spatial smoothness to reduce over-
segmentation in their intermedidate single-frame results. When oc-
clusions and self-occlusions lead to objects appearing separated in
individual frames, this often results in spatial over-segmentation
in the final results (see Figures 15, 16 and 17). Note that the
method works well on the two_chair scene (Figure 17) despite self-
occlusions and highly non-uniform noise, as the single objects stay
spatially connected throughout the sequence.

bonn_chair

bonn_can2
Figure 13: Top view on selected frames from the bonn_chair and
the bonn_can2 sequence. Aberrations in the observed depth are
very pronounced in the bonn_chair sequence, and also present in
the bonn_can sequence. Together with camera motion they cause
our method to over-segment.

In summary, we clearly benefit from our explicit occlusion
model, and our energy minimization strategy is able to find dom-
inant rigid and near-rigid motions robustly. A further reason for
the performance gap between EG16, IROS16, and our method is
that EG16 and IROS16 rely on very sparse sampling, as both meth-
ods have quadratic complexity in the number of samples per frame.
Both methods compute a segmentation for about 2-5% of the points
only, while we solve for a dense segmentation, even though we ap-
proximate a sub-step of CRF inference on 10% of the points.

7.4. Limitations

While our technique finds segmentations and rigid motions more
robustly than previous methods and it generalizes well to near-rigid
parts, it still has a number of limitations.

• Computation time is on the order of three to four minutes per
frame. We share this limitation with the global approaches of
our two competitors. Hence, all three methods cannot handle full
videos with thousands of frames. We believe that a variant of our
formulation could be a building block for large sequences, for
example by relying on key frames and by using alternative, faster
approaches to augment the motion set.

• Our formulation is not resilient to aberrations in depth data. This
could be reduced by additionally relying on semantic features
rather than on geometry alone.

• We share certain limitations with ICP, which may not be able to
align objects when they undergo large motions between frames.
Also, objects that leave the camera frustum or are completely
occluded for several frames cannot be handled correctly. We
would need additional strategies to augment the motion set in
both cases.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation
A

cc
um

ul
at

ed
 c

lo
ud

R
ec

on
st

ru
ct

io
n

Figure 14: From left to right: accumulated point clouds and selected
reconstructions for the statue, bonn_chair, and our one_chair se-
quence. The accumulated point clouds were created by mapping
all observed data points to the central frame.

• Our method will fail for extremely non-rigid objects like cloth,
water, or similar.

8. Conclusions

We presented a novel method for temporally consistent motion seg-
mentation from RGB-D videos. Our approach is based almost en-
tirely on geometric information, which is advantageous in scenes
with little texture or strong appearance changes. We demonstrated
successful results on scenes with complex motion, where object
parts sometimes move in parallel over parts of the sequences, and
their motion trajectories may split or merge at any time. Even in
these challenging scenarios we obtain consistent labelings over the
entire sequences, thanks to a global energy minimization over all
input frames. Our approach includes two key technical contribu-
tions: first, a novel formulation of a motion segmentation energy
which incorporates occlusion and sensor noise in a principled way,
second a minimization framework for the energy, which allows the
principled use of powerful heuristics to find motions.

References

[BBFF16] BAQUÉ P., BAGAUTDINOV T., FLEURET F., FUA P.: Princi-
pled parallel mean-field inference for discrete random fields. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (2016), pp. 5848–5857. 6

[BFF16] BAQUÉ P., FLEURET F., FUA P.: Multi-modal mean-fields via
cardinality-based clamping. arXiv preprint arXiv:1611.07941 (2016). 6

[BM92] BESL P. J., MCKAY N. D.: A method for registration of 3-d
shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence
14, 2 (Feb 1992), 239–256. doi:10.1109/34.121791. 8

[BWSB12] BUTLER D. J., WULFF J., STANLEY G. B., BLACK M. J.:
A naturalistic open source movie for optical flow evaluation. In Euro-
pean Conf. on Computer Vision (ECCV) (Oct. 2012), A. Fitzgibbon et al.
(Eds.), (Ed.), Part IV, LNCS 7577, Springer-Verlag, pp. 611–625. 11, 15

[DFI∗15] DOSOVITSKIY A., FISCHERY P., ILG E., HÃĎUSSER P.,
HAZIRBAS C., GOLKOV V., V. D. SMAGT P., CREMERS D., BROX T.:
Flownet: Learning optical flow with convolutional networks. In 2015
IEEE International Conference on Computer Vision (ICCV) (Dec 2015),
pp. 2758–2766. doi:10.1109/ICCV.2015.316. 2

[FAFM15] FRAGKIADAKI K., ARBELAEZ P., FELSEN P., MALIK J.:
Learning to segment moving objects in videos. In Computer Vision and
Pattern Recognition (CVPR), 2015 IEEE Conference on (June 2015),
pp. 4083–4090. doi:10.1109/CVPR.2015.7299035. 2

[FRP09] FRADET M., ROBERT P., PÃL’REZ P.: Clustering point trajec-
tories with various life-spans. In Visual Media Production, 2009. CVMP
’09. Conference for (Nov 2009), pp. 7–14. doi:10.1109/CVMP.
2009.24. 2

[HRF13] HERBST E., REN X., FOX D.: Rgb-d flow: Dense 3-d motion
estimation using color and depth. In Robotics and Automation (ICRA),
2013 IEEE International Conference on (May 2013), pp. 2276–2282.
doi:10.1109/ICRA.2013.6630885. 2

[IKH∗11] IZADI S., KIM D., HILLIGES O., MOLYNEAUX D., NEW-
COMBE R., KOHLI P., SHOTTON J., HODGES S., FREEMAN D.,
DAVISON A., FITZGIBBON A.: Kinectfusion: Real-time 3d recon-
struction and interaction using a moving depth camera. In Pro-
ceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology (New York, NY, USA, 2011), UIST ’11,
ACM, pp. 559–568. URL: http://doi.acm.org/10.1145/
2047196.2047270, doi:10.1145/2047196.2047270. 1, 2

[JSS∗15] JAIMEZ M., SOUIAI M., STUCKLER J., GONZALEZ-JIMENEZ
J., CREMERS D.: Motion cooperation: Smooth piece-wise rigid scene
flow from rgb-d images. In 3D Vision (3DV), 2015 International Con-
ference on (2015), IEEE, pp. 64–72. 2

[KLAK16] KIM Y., LIM H., AHN S. C., KIM A.: Simultaneous seg-
mentation, estimation and analysis of articulated motion from dense
point cloud sequence. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (Oct 2016), pp. 1085–1092.
doi:10.1109/IROS.2016.7759184. 2, 10, 11, 12, 13, 15

[MDSL17] MAHMOOD M. H., DÍEZ Y., SALVI J., LLADÓ X.: A col-
lection of challenging motion segmentation benchmark datasets. Pattern
Recognition 61 (2017), 1–14. 12

[MGC∗15] MA L., GHAFARIANZADEH M., COLEMAN D., CORRELL
N., SIBLEY G.: Simultaneous localization, mapping, and manipulation
for unsupervised object discovery. In Robotics and Automation (ICRA),
2015 IEEE International Conference on (May 2015), pp. 1344–1351.
doi:10.1109/ICRA.2015.7139365. 1

[MS14] MA L., SIBLEY G.: Unsupervised dense object dis-
covery, detection, tracking and reconstruction. In Computer
Vision âĂŞ ECCV 2014, Fleet D., Pajdla T., Schiele B., Tuyte-
laars T., (Eds.), vol. 8690 of Lecture Notes in Computer Sci-
ence. Springer International Publishing, 2014, pp. 80–95. URL:
http://dx.doi.org/10.1007/978-3-319-10605-2_6,
doi:10.1007/978-3-319-10605-2_6. 2

[NA98] NOURANI Y., ANDRESEN B.: A comparison of simulated an-
nealing cooling strategies. Journal of Physics A: Mathematical and Gen-
eral 31, 41 (1998), 8373. 6

[OMB14] OCHS P., MALIK J., BROX T.: Segmentation of moving ob-
jects by long term video analysis. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on 36, 6 (June 2014), 1187–1200. doi:
10.1109/TPAMI.2013.242. 2

[PB11] PAPAZOV C., BURSCHKA D.: Deformable 3d shape reg-
istration based on local similarity transforms. Computer Graph-
ics Forum 30, 5 (2011), 1493–1502. URL: http://dx.
doi.org/10.1111/j.1467-8659.2011.02023.x, doi:10.
1111/j.1467-8659.2011.02023.x. 2

[PBH∗15] PERERA S., BARNES N., HE X., IZADI S., KOHLI P.,
GLOCKER B.: Motion segmentation of truncated signed distance func-
tion based volumetric surfaces. In Applications of Computer Vision
(WACV), 2015 IEEE Winter Conference on (Jan 2015), pp. 1046–1053.
doi:10.1109/WACV.2015.144. 2

[QBDC14] QUIROGA J., BROX T., DEVERNAY F., CROWLEY J.:
Dense semi-rigid scene flow estimation from rgbd images. In Com-
puter Vision âĂŞ ECCV 2014, Fleet D., Pajdla T., Schiele B., Tuyte-
laars T., (Eds.), vol. 8695 of Lecture Notes in Computer Science.
Springer International Publishing, 2014, pp. 567–582. URL: http://
dx.doi.org/10.1007/978-3-319-10584-0_37, doi:10.
1007/978-3-319-10584-0_37. 2

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/ICCV.2015.316
http://dx.doi.org/10.1109/CVPR.2015.7299035
http://dx.doi.org/10.1109/CVMP.2009.24
http://dx.doi.org/10.1109/CVMP.2009.24
http://dx.doi.org/10.1109/ICRA.2013.6630885
http://doi.acm.org/10.1145/2047196.2047270
http://doi.acm.org/10.1145/2047196.2047270
http://dx.doi.org/10.1145/2047196.2047270
http://dx.doi.org/10.1109/IROS.2016.7759184
http://dx.doi.org/10.1109/ICRA.2015.7139365
http://dx.doi.org/10.1007/978-3-319-10605-2_6
http://dx.doi.org/10.1007/978-3-319-10605-2_6
http://dx.doi.org/10.1109/TPAMI.2013.242
http://dx.doi.org/10.1109/TPAMI.2013.242
http://dx.doi.org/10.1111/j.1467-8659.2011.02023.x
http://dx.doi.org/10.1111/j.1467-8659.2011.02023.x
http://dx.doi.org/10.1111/j.1467-8659.2011.02023.x
http://dx.doi.org/10.1111/j.1467-8659.2011.02023.x
http://dx.doi.org/10.1109/WACV.2015.144
http://dx.doi.org/10.1007/978-3-319-10584-0_37
http://dx.doi.org/10.1007/978-3-319-10584-0_37
http://dx.doi.org/10.1007/978-3-319-10584-0_37
http://dx.doi.org/10.1007/978-3-319-10584-0_37

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation
G

T
IR

O
S1

6
E

G
16

O
U

R
S

bonn_can1 bonn_can2
Figure 15: Results on a sub-sequence of the bonn_can1 and bonn_can2 scene of Stückler and Behnke [SB15]. From top to bottom: visualiza-
tion of the ground-truth, results obtained by IROS16 [KLAK16], EG16 [YLX∗16], and our method. The colors in the ground-truth indicate
the positive pixels in the ternary masks of the ground-truth labels. White pixels are not marked as positive in any ground-truth label.

G
T

IR
O

S1
6

E
G

16
O

U
R

S

bonn_chair ambush5
Figure 16: Results on the bonn_chair of Stückler and Behnke [SB15] and the ambush5 sequences from the Sintel dataset [BWSB12].
bonn_chair: due to aberrations in the recorded depth the sequence is over-segmented. Our method is the only to correctly segment the
swiveling base of the chair. ambush5: our method works robustly despite the presence of non rigid motion. We successfully segment most
dominant objects such as the main body parts (torso, arms, head) and the halberd. Note how, despite the heavy occlusion by the halberd, the
left arm of the tall man is correctly segmented.

[SB15] STÜCKLER J., BEHNKE S.: Efficient dense rigid-body mo-
tion segmentation and estimation in rgb-d video. International
Journal of Computer Vision 113, 3 (2015), 233–245. URL:
http://dx.doi.org/10.1007/s11263-014-0796-3, doi:
10.1007/s11263-014-0796-3. 2, 11, 12, 15

[SLSJB16] SEVILLA-LARA L., SUN D., JAMPANI V., BLACK M. J.:
Optical flow with semantic segmentation and localized layers. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2016), pp. 3889–3898. doi:10.1109/CVPR.2016.422. 2

[SOD12] SAITO M., OKATANI T., DEGUCHI K.: Application of the
mean field methods to mrf optimization in computer vision. In Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on (2012), IEEE, pp. 1680–1687. 5, 6

[SSP15] SUN D., SUDDERTH E. B., PFISTER H.: Layered rgbd scene
flow estimation. In Computer Vision and Pattern Recognition (CVPR),
2015 IEEE Conference on (June 2015), pp. 548–556. doi:10.1109/
CVPR.2015.7298653. 2

[TYB16] TSAI Y. H., YANG M. H., BLACK M. J.: Video segmenta-
tion via object flow. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2016), pp. 3899–3908. doi:
10.1109/CVPR.2016.423. 2

[vdVRT10] VAN DE VEN J., RAMOS F., TIPALDI G.: An integrated
probabilistic model for scan-matching, moving object detection and mo-
tion estimation. In Robotics and Automation (ICRA), 2010 IEEE Inter-
national Conference on (May 2010), pp. 887–894. doi:10.1109/
ROBOT.2010.5509586. 2

[YLX∗16] YUAN Q., LI G., XU K., CHEN X., HUANG H.: Space-time
co-segmentation of articulated point cloud sequences. Computer Graph-
ics Forum 35, 2 (2016), 419–429. URL: http://dx.doi.org/10.
1111/cgf.12843, doi:10.1111/cgf.12843. 2, 10, 11, 12, 13,
15

[ZDI∗15] ZOLLHÖFER M., DAI A., INNMANN M., WU C., STAM-
MINGER M., THEOBALT C., NIESSNER M.: Shading-based refine-
ment on volumetric signed distance functions. ACM Trans. Graph. 34, 4
(July 2015), 96:1–96:14. URL: http://doi.acm.org/10.1145/
2766887, doi:10.1145/2766887. 9

[ZJRP∗15] ZHENG S., JAYASUMANA S., ROMERA-PAREDES B., VI-
NEET V., SU Z., DU D., HUANG C., TORR P. H.: Conditional random
fields as recurrent neural networks. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (2015), pp. 1529–1537. 5

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1007/s11263-014-0796-3
http://dx.doi.org/10.1007/s11263-014-0796-3
http://dx.doi.org/10.1007/s11263-014-0796-3
http://dx.doi.org/10.1109/CVPR.2016.422
http://dx.doi.org/10.1109/CVPR.2015.7298653
http://dx.doi.org/10.1109/CVPR.2015.7298653
http://dx.doi.org/10.1109/CVPR.2016.423
http://dx.doi.org/10.1109/CVPR.2016.423
http://dx.doi.org/10.1109/ROBOT.2010.5509586
http://dx.doi.org/10.1109/ROBOT.2010.5509586
http://dx.doi.org/10.1111/cgf.12843
http://dx.doi.org/10.1111/cgf.12843
http://dx.doi.org/10.1111/cgf.12843
http://doi.acm.org/10.1145/2766887
http://doi.acm.org/10.1145/2766887
http://dx.doi.org/10.1145/2766887

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation
G

T
IR

O
S1

6
E

G
16

O
U

R
S

one_chair two_chairs
Figure 17: Results on the one_chair and two_chairs sequences. one_chair: we clearly outperform both IROS16 and EG16. Note how we
correctly segment the swiveling base of the chair. In addition, we extract the most dominant near-rigid parts (legs, right shoulder, right arm,
head, torso), but we miss some parts like the left upper and lower arm. two_chairs: EG16 segments the two seats slightly better than our
method but over-segments the floor from the wall.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

P. Bertholet, A. E. Ichim & M.Zwicker / Temporally Consistent RGB-D Motion Segmentation
It

#0
It

#1
It

#2
It

#3
It

#4
It

#5
It

#6
It

#7
It

#8
O

U
R

S
G

T
IR

O
S1

6
E

G
16

Figure 18: Results on the statue sequence. This figure shows our segmentation results throughout the iterations of our optimization. The
temporal consistency and spatial correctness improve steadily and the method is robust to the presence of nonrigid objects (arms, hands).

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

