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chosen components, and failures may arise be-
cause they do not behave as anticipated. To
make the right choice from among what are of-
ten functionally equivalent alternatives, system
developers must have empirical evidence that
clearly shows a component’s dependability.

The International Federation for Informa-
tion Processing4 defines dependability as “the
trustworthiness of a computing system that al-
lows reliance to be justifiably placed on the
services it delivers.” However, “reliance” is
contextually subjective and depends on the
particular stakeholders’ needs. Different
stakeholders will focus on different system at-
tributes—such as availability, catastrophic-
failure avoidance, and deliberate-intrusion
prevention—as well as require different levels
of adherence to such attributes. The same at-
tribute can also mean different things to dif-
ferent people, and multiple definitions of the

same attribute are common.5,6 Dependability
clearly assumes a precise meaning only when
applied in a specific context.

From this perspective, we present a practi-
cal process that developers can use to empiri-
cally evaluate component dependability in
their context. Our approach uses the Unified
Model of Dependability,7 a requirements engi-
neering approach specially devised to capture
dependability in context. As the “Unified
Model of Dependability” sidebar explains,
UMD transforms the system developers’ high-
level dependability needs into a detailed de-
pendability model of the component. This
model clearly specifies the measurable charac-
teristics the component must have to be de-
pendable in a specific context. The model then
serves as a reference, providing guidance on
effectively designing experiments to compare
similar components and interpret collected
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critical applications. Using COTS products can shorten develop-
ment and deployment time because they let system developers
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data. The process can be applied to any spe-
cific context and COTS component. Here, we
describe our comparison of the dependability
of real-time Java virtual machines (RT JVM)
in the spacecraft software context.

The real-time Java virtual machine
Today, the Java programming language

helps many companies reduce development
costs and achieve faster time-to-market. Java
technology has widely penetrated the general-

The UMD requirements engineering frame-
work helps developers elicit and model de-
pendability requirements. UMD is failure-
centered in that it permits stakeholders to
express their requirements by specifying
what they see as the actual failure, or class
of failures, that should not affect the system
or a specific service (scope). For each fail-
ure, stakeholders can also specify the tolera-
ble manifestations (measure) and the desired
corresponding system reaction. Stakeholders
might also specify external events that could
harm the system. Figure A shows UMD’s ba-
sic modeling concepts: failure, scope, meas-
ure, reaction, and event. Stakeholders use
these concepts to express their dependability
requirements. For example, for an RT JVM, a
requirement expressed using UMD could be,
“The thread scheduler [scope] should not
have a jitter bigger than 500 ns [failure]
more often than 0.1 percent of the cases
[measure]; if the failure occurs, a warning
should be issued [reaction].”

UMD is stakeholder oriented, as failure,
scope, measure, reaction, and event are basic
concepts that stakeholders can easily grasp
and associate with entities in their application
domain. Rather than dealing with abstract en-
tities such as dependability and its attributes,
stakeholders can use UMD to focus on practi-
cal concepts and more effectively map their
dependability needs to their context. More-
over, to better support stakeholders in formulating their require-
ments and to address the needs of a particular application con-
text, UMD lets users refine its basic modeling concepts. As figure
A shows, for example, to help stakeholders identify unacceptable
system or service failures, it might suggest the different types of
failures that could occur (response time, timeliness, and so on).

To implement UMD, we developed a Web-enabled tool1,2

organized around two main tables:

■ The scope table, which allows stakeholders to define all
dependability-related services starting from the system
functional description.

■ The failure table, which allows stakeholders to specify their
requirements by defining, for the whole system or a specific
service, undesired failures, their tolerable manifestations,
possible triggering external events, and desired reactions.

Reference
1. V. Basili, P. Donzelli, and S. Asgari, “A Unified Model of Dependability:

Capturing Dependability in Context,” IEEE Software, vol. 21, no. 6, 2004,
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The Unified Model of Dependability
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Figure A. The Unified Model of Dependability’s concepts and 
relationships. Stakeholders express dependability requirements
using the concepts of failure, scope, system reaction, and potentially
threatening external events. 



purpose computing and embedded device
markets, where manufacturers exploit its ben-
efits. However, in the real-time arena, Java
lags behind. Although early results of use are
promising, Java’s adoption for critical applica-
tions is an open issue.8

The Java technology model with real-time
extensions, as specified in the Real-Time Spec-
ification for Java (RTSJ),9 leverages real-time
operating system (RTOS) capabilities by com-
bining Java’s benefits with the possibility of
correctly reasoning about the executing soft-
ware’s temporal behavior. Java addresses the
requirements faced by real-time and non-real-
time applications by coupling the RT JVM
with an RTOS and providing developers
mechanisms to separate hard real-time and
soft real-time threads, objects, and memory. 

As figure 1 shows, the RT JVM is the real-
time Java technology model’s key component.
Thus, whereas the JVM for standard non-real-
time applications is typically considered an
implicit choice and sometimes even a com-
modity,10 the RT JVM is a COTS component
that can greatly impact a project’s shape. 

Currently, several RTSJ-compliant RT JVM
implementations are available.11 The selection
(and subsequent adoption) of a specific RT
JVM requires a careful trade-off analysis in-
volving economical benefits and potential
risks. The benefits of adopting an RT JVM are
counterbalanced by the risk of applying it for
real-time applications, rather than other more
traditional and dependable technologies. Un-
derstanding to what extent we can depend on
a specific RT JVM is crucial. 

Case study: RT JVM for mission-
critical spacecraft software

Spacecraft software is a classical hard real-
time application.11,12 The issues are complex,
involving numerous sensors, control mecha-
nisms, and actuators. High performance is in-
sufficient; the software’s temporal behavior
must be predictable. The software requires
that certain threads execute at certain times,
depending on the type of activity to be per-
formed (such as periodic control loops or ex-
ceptional events handlers).

Current spacecraft software uses more tra-
ditional languages—typically C and C++.11

NASA’s Jet Propulsion Laboratory is actively
investigating the possibility of adopting Java
for mission-critical spacecraft software in proj-
ects such as Golden Gate.11,12 The idea is to
make systems coalesce and have both real-time
and non-real-time code on the same JVM so
that both ground systems and spacecraft can
have the same processors and environments. 

Our goal is to evaluate some of the avail-
able RT JVMs to understand their dependabil-
ity for spacecraft software. Because any tech-
nology has strengths and weaknesses that vary
in relevance depending on application con-
text,3 our evaluation process aims to provide
empirical observations that can help develop-
ers understand individual RT JVM character-
istics for the spacecraft software context. Dur-
ing the case study, we evaluated three RT
JVMs: VM-A and VM-B, running on the same
RTOS and hardware platform, and VM-C,
running on a different RTOS and platform.

The empirical evaluation process
As figure 2 shows, our evaluation process

consists of three main steps.
We first build a dependability model of the

component. To do this, we identify the system
developers’ dependability needs and transform
them into measurable characteristics that the
component must possess to be dependable for
the specific context. The dependability model
sets the dimensions of our evaluation space:
the characteristics we’ll use to compare the
candidate components. For example, we could
compare RT JVMs based on jitter—the differ-
ence between the desired and actual scheduled
time for a real-time thread.9 For a dimension,
we might also set a precise value that acts as a
gate during the evaluation process, and only
consider components that meet the precise re-
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quirement. For example, for an RT JVM we
could say that jitter must not exceed 50 µs. As
we describe below, to build the dependability
model, we adopt UMD, a requirements engi-
neering approach especially devised to capture
dependability in context.

Next, we design and implement the experi-
ments. To design experiments suitable for
measuring and identifying component charac-
teristics, we use the information we acquired
in building the dependability model. By pre-
cisely specifying the information we need to
collect, the dependability model supports the
identification of the areas that our experi-
ments should focus on.

Finally, we interpret the results to evaluate
the candidate components’ dependability. Our
interpretation is facilitated by the dependability
model, which precisely defines the evaluation
space dimensions (that is, the relevant compo-
nent characteristics and evaluation gates). 

Dependability model construction
Using UMD, system developers specified

characteristics that an RT JVM should possess
to be considered dependable for spacecraft
software. They used the UMD tool to build
the RT JVM dependability model in two steps.

First, by analyzing descriptions of the can-
didate RT JVMs, they identified services for
which they believed dependability was rele-
vant. Figure 3 shows an extract from the re-
sulting scope table.

Second, guided by UMD’s failure table
structure, they filled as many tables as neces-
sary to transform their dependability needs
into precisely specified component character-
istics. The refinement of UMD’s scope, failure,
event, measure, and reaction concepts guided
system developers while building the model.
Examples of the adopted failure types include

■ Functional correctness: Functional re-
quirements aren’t implemented.

■ Throughput: The number of items (such as
threads) per unit of time is less than expected.

■ Response time: Response time is greater
than expected.

■ Load: The number of items handled by
the system or service is less than expected.

■ Timeliness: Jitter, latency, or delay is big-
ger than expected.

■ Accuracy: Data accuracy is lower than 
expected.

■ Data freshness: Frequency of data updat-
ing is less than expected.

Figure 4 shows a failure table example. The
system developers signal a failure for the service
“Thread Monitor” when a deadline is missed
(that is, when a real-time thread is not com-
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Figure 2. Dependability evaluation. We first construct a dependability
model, then use the model’s information to design, run, and interpret
experiments on component dependability.

Figure 3. A sample scope table for the real-time Java virtual machine
(RT JVM). Using this table, spacecraft system developers identified
potentially critical services.
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pleted within the expected time9). This is a func-
tional correctness and high severity failure. Sys-
tem developers deem this failure inadmissible
for spacecraft applications, and specify that it
should never happen (Max cases = 0). However,
to increase their confidence in the component,
they ask for a warning service (deadline handler)
in case a deadline is missed9 so that applications
can take necessary emergency actions. 

Figure 5 shows an excerpt from the final
dependability model: Each line of the model
contains information gathered through the
UMD tool’s failure table (for example, line 4
corresponds to figure 5’s failure table). 

Line 1 specifies the system developers’ re-
quirement that an RT JVM always be able to
handle at least 90 real-time threads. This is a
precise requirement from the spacecraft soft-
ware domain: It sets a gate that candidate RT
JVMs will have to pass during the evaluation. 

Line 2 specifies that the RT JVM be able to
detect and react to a “priority inversion.”8 A
priority inversion happens when, because of
an external application’s error (external
event), a higher-priority thread cannot access a
shared resource locked by a (dormant) lower-
priority thread, preempted by a third thread,
whose priority is between the priority levels of
the other two. In this case, the RT JVM must
be able to detect the situation and operate a
“priority inheritance,” raising the dormant
thread’s priority to the priority level of the
higher-priority thread so that it can be sched-
uled and free the resource. Again, this is a pre-
cise requirement—that is, an evaluation gate. 

Line 3 signals that high jitter values could
prevent an RT JVM from being adopted for

spacecraft applications. In this case, system
developers decided not to set a precise value,
but to leave the jitter as a to-be-evaluated
(TBE) characteristic. Jitter therefore sets an
evaluation space dimension—that is, a charac-
teristic against which developers will compare
the candidate components. As a further com-
parison element, system developers decided to
annotate the current technology capability
(CTC)—that is, the jitter provided by sched-
ulers currently used for spacecraft software.

Finally, lines 5 and 6 indicate the relevance
of the context switch time (the time required
to switch context from one thread to another)
and the time necessary to throw the deadline
handler if a deadline is missed. Again, system
developers chose not to specify a precise value
for the context switch time, leaving it as a TBE
quantity. They did precisely specify that a
deadline handler must be thrown within a
given percentage of the context switch time
(150 percent), setting an evaluation gate. As
this example shows, while building a depend-
ability model it’s possible to explicitly express
links between component characteristics.

The final dependability model (partially il-
lustrated in figure 5) consists of 24 lines and
was developed in about 40 hours. This effort
was led by an UMD expert (from the Univer-
sity of Maryland) and a JPL specialist, with
various interactions from other NASA experts
on spacecraft software.

Experiment design
We derived the set of experiments for eval-

uating the candidates directly from the de-
pendability model in figure 5. First, we identi-

Figure 4. A sample 
failure table for the RT
JVM. This table helps
stakeholders use UMD’s
basic concepts to 
specify requirements. 



fied the actions required to verify each line of
the dependability model (for example, for line
1 in figure 5, verification that a candidate
component could handle at least 90 real-time
threads). We then clustered these actions to
minimize the number of required experiments.
For the sake of brevity, we describe only two
of these experiments here:

■ Experiment 1: Priority inversion. We ran
three real-time threads on each candidate
RT JVM with three different priorities—
high, medium, and low—to generate a pri-
ority inversion. This experiment covers
line 2 of the dependability model. 

■ Experiment 2: Workload of 90 increas-
ingly expensive real-time threads. On the
candidate RT JVMs, we ran 10 workload

sets of 90 threads (sets S1 to S10). All
threads within a set have the same cost
(that is, the same computational CPU
time), which increases regularly from set
to set (from 1 ms for S1 to 10 ms for S10).
This experiment covers lines 1, 2, and 4 of
the dependability model.

To prepare for the experiments, a JPL soft-
ware specialist developed about 17,000 lines of
Java code, requiring about 400 hours, includ-
ing 100 hours for running the experiments. 

Results interpretation
Table 1 summarizes the results from our

experiments. Each row in the table corre-
sponds to a line of the dependability model
(figure 5), indicating the corresponding exper-
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Line  Scope  Event  Failure  Measure  Reaction

  1  System N/A  “Handles fewer than 90 real-time threads” Max cases = 0 N/A
    (gate)
 CPU usage: Any   Type: Load
   Severity: High  

  2  Thread  Priority inversion “Unable to detect that a higher-priority thread cannot Max cases = 0 Mitigation
 scheduler (application  access a shared resource owned by a dormant  (gate)  service:
  error)  lower-priority thread”  Priority
     inheritance
 CPU usage: N/A  Type: Functional correctness
   Severity: High    

  3  Thread N/A “Mean jitter bigger than TBE” Standard   N/A
 scheduler   CTC: Jitter := ~500 ns deviation = TBE 
 
 CPU usage: Any  Type: Timeliness
 (with 90 threads)    Severity: High 

  4  Task monitor N/A “Missed deadline” Max cases = 0 Warning:
    (gate) Deadline
 CPU usage: Any  Type: Functional correctness  handler
 (with 90 threads)  Severity: High  

  5  Thread scheduler N/A “Thread context switch time greater than TBE” Probability of N/A
   CTC: Context switch time = ~1 µs occurrence = 
    TBE 
 CPU usage: Any   Type: Functional correctness 
 (with 90 threads)  Severity: High

  6  Deadline handler N/A “Time to throw the deadline handler is greater than Max cases = 0 N/A
   150 percent of the thread context switch time” (gate) 
     
 CPU usage: Any  Type: Response time 
 (with 90 threads)  Severity: High

Evaluation gate

Link

To-be-evaluated
characteristic

Current technology
capability

Figure 5. Excerpt from
the real-time Java virtual
machine dependability
model for the spacecraft
software domain.



iment and obtained results. For example, row
2 of table 1 indicates that experiment 1 evalu-
ated the RT JVMs’ ability to detect a priority
inversion (line 2 of the dependability model)—
an experiment that all three RT JVMs passed.

In experiment 2, we noticed that VM-C
couldn’t run 90 real-time threads (see table 1,
row 1). Given this, we focused on VM-A and
VM-B. Figure 6 shows the results for jitter
mean values and corresponding standard devi-
ations for both VM-A and VM-B for each of
the 10 workloads. The green arrows indicate
the first workload in which the RT JVMs
missed a deadline. As our results show, VM-B

both provides a lower jitter (in terms of mean
and standard deviation) than VM-A and meets
its deadlines for considerably higher work-
loads. As figure 6 also shows, VM-B’s mean jit-
ter is always lower than the CTC.

Our results provide a clear picture of the
candidates’ behavior in our context. In addi-
tion to seeing how each candidate RT JVM be-
haved relative to the spacecraft software do-
main—which is crucial for the selection
process—we also clearly identified RT JVM
weaknesses that we must address before pro-
ceeding with the integration. In particular,
some unexpected RT JVM behavior has led us
to collaborate with vendors to improve the
products either by enhancing nonfunctional
characteristics (such as being able to handle
more than 90 real-time threads) or by adding
desired functionalities (such as a deadline han-
dler) to better cope with potential failures.

T he case study results have increased
our confidence in the process sug-
gested for evaluating COTS compo-

nents dependability. The process produced a
clear, quantitative characterization of the can-
didate components in line with the high-level
dependability properties that system develop-
ers sought. 

The process let us identify individual com-
ponent’s strengths and weaknesses in the tar-
get context. This knowledge not only supports
the selection process in achieving a better fit
between the components and their intended
use, but also identifies the weaknesses that we
must address to improve their dependability.
In particular, on the basis of the experimental
results, we could decide how components
must be changed to achieve behavior appro-
priate to the context (as in our case study) or
to adopt integration mechanisms suitable to
prevent or mask undesired behavior. For ex-
ample, it might be possible to adopt “wrapper
software” to filter dangerous external events
(as in priority inversion, line 2, figure 5), or
augment components with desired reactions
(not originally designed in the component but
captured through UMD as dependability re-
quirements) to potential failures. 

Conducting context-focused, UMD-derived
experiments complements vendor component
evaluations by placing the component in the
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Table 1
Excerpt from the experimental results

Dependability model Experiment Results
correspondence number VM-A VM-B VM-C

Line 1 - 90 real-time threads 2 Pass Pass Fail
Line 2 - Priority inversion 1 Pass Pass Pass
Line 3 - Jitter 2 Figure 6 Figure 6 N/A
Line 4 - Missed deadline 2 Figure 6 Figure 6 N/A



user’s context and focusing on specific aspects
that the component’s creator might have ne-
glected. From this perspective, we address the
classical limits of empirical evaluation in two
ways:

■ We narrow the experiment coverage prob-
lem by using UMD to perform a careful
and systematic elicitation of the context
dependability needs.

■ We identify highly focused experiments,
measuring and stimulating detailed com-
ponents characteristics.

Developers can adopt UMD to identify de-
pendability requirements for systems in any con-
text7 and apply our evaluation process whenever
they need to understand a component’s depend-
ability in context. Our future work will focus on
further evaluating our suggested process with
more general-purpose COTS products.
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