CMSC452 Elementary Theory of Computation, Fall 2001

Sketch of Solutions: Homework 3

Note: 5 partial credits are given to each of problems 2.2.6(a), 2.3,4(c), 2.4.4, 2.3.5(a) and 2.4.10(b) for minor errors. No partial credits are given to the rest problems.

Problem 2.2.4 [5+5=10 points]
(a) Since $\triangle = \{(q_i,a_j,q_j): i \neq j\}$, once a machine is in state q_i, then it will never leave q_i. Moreover, the machine can only grant/take a_j for $j \neq i$. Thus if the machine starts with state q_i, it accepts strings missing at least the symbol a_i. And in this non-deterministic finite automaton, the machine can start from any state. So it accepts the language consisting of all the strings missing at least one symbol. [5 points]
(b) Adding a new start state and transitions on e from it to each of the former states, and making all the previous start states no longer initial. Then the machine has only 1 start state as normal definition and accepts the same language. [5 points]

Problem 2.2.6 [10+5+5=20 points]
(a) Nondeterministic finite automata accepting $(ab \cup aab \cup aba)^*$. [10 points]

(b) Deterministic finite automata accepting $(ab \cup aab \cup aba)^*$. [5 points]

(c) No simpler deterministic machine accepting $(ab \cup aab \cup aba)^*$ exists. It can be verified by state-minimization algorithm in section 2.5. [5 points]
Problem 2.3.1 [5+5=10 points]
(a) If we interchange the final and non-final states of a nondeterministic finite automaton, then the strings it formerly accepted are not guaranteed to be rejected. [5 points]
(b) There are examples of nondeterministic finite automata such that \((s,w) \vdash^* M(q_1,e)\) and \((s,w) \vdash^* M(q_2,e)\) for some string \(w\) and final state \(q_1\) and non-final state \(q_2\).
Then not only \(w \in L(M)\) but also the automaton resulting from interchanging start and final states accept \(w\). [5 points]

Problem 2.3.4 (c) [10 points]
\((ab)^* \cup (bc)^* ab\)

![Diagram](image-url)

Problem 2.3.5 [10+5=15 points]
(a) [10 points]

(b) [5 points]

Problem 2.3.7 (d) [5 points]
\((a \cup ba^*a)(ba^*a)^*b(b \cup a)^*\)
Problem 2.4.4 [10 points]
Suppose \(m = n = k \), then \(L = \{ w = a^k b a^k b a^{2k} : k \geq 1 \} \). Assume \(L \) is a regular expression. By theorem 2.4.1 (pumping lemma), there is an \(N \geq 1 \) such that if \(w \in L \) and \(|w| \geq N \), \(w \) can be written as \(w = xyz \) where \(y \neq \epsilon \), \(|xy| \leq N \), and \(xy^iz \) can be expressed as \(a^k b a^k b a^{2k} \) for all \(i \geq 0 \). We know \(w \) contains 2 \(bs \). Then \(y \) cannot contain any \(b \); otherwise, \(xy^0z \) has no \(b \) and \(xy^0z \notin L \). Now there are 3 possibilities: (1) \(y \) is before the first \(b \); (2) \(y \) is between the two \(bs \); and (3) \(y \) is after the second \(b \). For case (1), \(xy^2z = a^{k+|y|} b a^k b a^{2k} \notin L \) since \(k + |y| \neq k \). Contradiction. Similarly, case (2) and (3) lead to contradiction. Thus, \(L \) is not a regular expression.

Problem 2.4.8 (a) [5+5=10 points]
False. [5 points]
Each language, regular or not regular, is a subset of the regular language \(\Sigma^* \). [5 points]

Problem 2.4.10 (b) [10 points]
An example of deterministic 2-head finite automaton accepting \(wcw \) where \(w = (a \cup b)^* \)