Due at the start of class Thursday, September 26, 2002.

Problem 1. Problem A.1-4 (page 1062) NEW EDITION
Problem 3.1-3 (page 45) OLD EDITION

Problem 2. Problem A.1-6 (page 1062) NEW EDITION
Problem 3.1-5 (page 45) OLD EDITION

Problem 3. Recall the algorithm described in class on Sep 12th (Thu) that given \(n \) numbers stored in sorted order, checks to see if there exist two numbers in the set that add to \(x \). (The same number cannot be used twice.)

First write out a pseudo-code description of the algorithm.

Now give a proof that the worst case running time is \(O(n) \).

Problem 4. Use the iteration method to solve the following recurrence.

\[
T(1) = 1 \\
T(n) = T(n - 1) + n^2 \quad \text{if } n > 1
\]

Find a function \(g(n) \) such that \(T(n) = \Theta(g(n)) \). (The function \(g(n) \) should be expressed without the use of any \(\sum \) symbols.)