Q: What’s the grading policy for Homework #1?
50 Points All
P1: 10 pt, do something meaningful but wrong got 5 pt.
P2: 10 pt, describe a method but failed to offer a good reason, 5 pt.
P3a: 10 pt for O(nlogn), 5 pt for O(n^2), 0 pt for others.
P3b: 10 pt do something meaningful but wrong got 5 pt.
P4: 10 pt, do something meaningful but wrong got 5 pt.

Q: Why did I lose some points on Problem 2?
1. The method is easy to figure out, but you must offer a convictive way to say your method works. Rephrase your method – like “pairing the smallest and the largest would result in the minimum of maximum sum” can’t be counted. You must say something for WHY, and an example like “if you add the largest with something else except the smallest, etc..”
2. The maximum sum does not necessarily show up on \( (X_{\text{max}}, X_{\text{min}}) \) pair. If the input is \{1, 10, 11, 12\}, maximum sum = 10+11. However, if input is \{1, 2, 3, 5\}, maximum sum = 1+5.

Q: Why did I lose some points on Problem 3?
1. If you use “Vector” (like Java’s vector class) and so on, the add/search operation time can’t be viewed as constant because it’s not.
2. If you use an array or something like to count the number of \( x_i \), the array size should be max \( (x_i) \), not n, and it is unknown in advance.
3. Input elements are not necessary to integers. Your method should handle the input element like -1.5, 2.0, \( \frac{1}{3} \), …; namely bucket sort or something similar don’t work out in this question.
4. If you use hashing method, a complete solution should include “What’s your hash function?” and the related collision resolution policy. A collision policy handles “What should be done if \( h(x_1) = h(x_2) \) but \( x_1 \neq x_2 \).”

Q: What is the score distribution for this homework?
In the following format
(Section #, P1 Ave, P2 Ave, P3a Ave, P3b Ave, P4 Ave, Total Ave)
(0101, 7.17, 5.19, 7.92, 3.20, 8.96, 32.45)
(0201, 6.55, 5.00, 6.37, 3.02, 8.88, 29.82)
(0301, 7.20, 5.59, 7.35, 3.38, 8.46, 31.98)

Q: When is the deadline for re-grading?
Email to meou@cs.umd.edu with the subject “CMSC 351 HW1 Re-grading” before 12:00pm EST Sep 30.