Questions?

• Homework #3
 – Due today

• Homework #4
 – Out today, due in 2 weeks

• Project #4
 – Out today due in 3 weeks

• Grad Project
 – Due in 3 weeks
 • Presentation in 2 weeks
Class survey

• Grading
 – Homeworks and projects now state points assigned to each question
 – “Learning by doing” implies that you have to ask questions
 • **Grading reflect how well you followed the process taught in class**

• Scheduling
 – Point well taken and will improve in the future
 – More homework and reading

• More participation from students (in class)
Usability heuristics

• “Rules of thumb” that describe features of usable systems
 – Can be used as design principles
 – Can be used to evaluate a design

• Pros and cons
 – Easy and inexpensive
 • *Performed by expert*
 • *No users required*
 • *Catch many design flaws*
 – More difficult than it seems
 • *Not a simple checklist*
 • *Cannot assess how well the interface will address user goals*
Usability Engineering

• Introduced by Nielsen (1994)
• Can be performed on working UI or sketches
• Required a small set (3-5) of evaluators to examine the UI
 – Check compliance with usability principles
 • Each evaluator works independently
 • Go through the interface several times
 – All reviews are aggregated in one final usability report
Nielsen's evaluation phases (1-2)

• Pre-evaluation training
 – Provide the evaluator with domain knowledge if needed

• Evaluation
 – First step: get a feel for flow and scope
 – Second step: focus on specific elements
 • *Multiple passes approach is better*
 • *Create a list of all problems*
Nielsen's evaluation phases (3-4)

• Severity rating
 – Performed after individual evaluations are aggregated
 – Establishes a ranking between problem
 – Reflects frequency, impact and persistence
 • Cosmetic, minor, major and catastrophic

• Debriefing
 – Discuss outcome with design team
 – Suggest potential solutions
 – Assess how hard things are to fix
Neilsen’s heuristics

- Simple and natural dialog
- Speak the users’ language
- Minimize user memory load
- Consistency
- Feedback
- Clearly marked exits
- Shortcuts
- Prevent errors
- Good error messages
- Provide help and documentation
Simple and natural dialog

• Present information in natural order
 – See class on graphic design

• Use windows frugally
 – Avoid complex window management

• Remove or hide irrelevant or rarely needed information
 – They compete with important information on screen
 • Pro: Palm Pilot
 • Against: Dynamic menus

• Use Occam’s razor
 – less to learn, to get wrong, to distract...
Speak the users’ language

- Use a language compatible with users’ conceptual model
 - Example: withdrawing money at an ATM

- Use meaningful mnemonics, icons and abbreviations
Minimize user memory load

- Promote recognition over recall
 - Recognition is easier than recall

- Describe expected input clearly
 - Don’t allow for incorrect input

- Create orthogonal command systems
 - Using generic commands that can be applied to all interface objects
Consistency

• Consistency promotes skills acquisition and/or transfer

• Be consistent in
 – Command design
 • Same action, same effect in equivalent situations
 – Graphic design
 • Input format
 • Output format
 – Flow design
 • Similar tasks are handled in similar ways
Feedback (I)

- Users should always be aware of what is going on
 - So that they can make informed decision
 - Be specific:

 ![Feedback: Toolbar, cursor, ink](image)

 - Provide redundant information
Feedback (II)

• Different feedback time scales
 – Shall I wait for that task to finished or go for coffee?

 .1s Causality
 1s Delay but user’s flow of thought is uninterrupted
 10s Difficult to stay focused
 > 10s User will switch to another task while waiting

• Different techniques
 – Short transaction: hour glass cursor
 – Longer transaction: estimate of time left
 • An overestimate is always better!