Questions?

• Project #3
 – Survey question samples at the end of the last lecture
 – Due next Thursday
 – Presentation starting next Tuesday
 • 10 min presentation followed by 3 min for questions

• Grad Projects
 – A little bit over one month left

• Midterm
 – Working memory versus long term memory
 – Having several master is different from having several market segments
 – Direct manipulation is not good for repeated actions
 • Rename all the files in a directory
Quantitative Evaluation

• Gather (performance) measurements

• Methods
 – User events collection
 • Mouse clicks, keys pressed, ...
 • Data collected during system use
 – Google, Amazon
 – Controlled experiments
 • Set forth a testable hypothesis
 • Manipulate one or more independent variable
 • Observe effect on one or more dependent variable
 • Can be reproduced by others
Quantitative approach outcome

• Low level effects
 – Patterns of use
 – Menu selection method A faster than method B

• Pros and cons
 – Objective measurements
 • Good internal validity
 – Real world implications sometime difficult to foresee
 – Effects might be dwarfed in real world settings
 • 3.05s versus 3.00s?
Controlled experiment

• State a lucid, testable hypothesis
• Identify independent and dependent variables
• Design the experimental protocol
• Choose the user population
• Apply for human subjects protocol review
• Run a couple of pilots
• Run the experiment
• Run statistical analysis
• Draw conclusions
Running example

• Compare 4 command mechanisms
 – Used in geometric drawing tasks

[Diagrams of Tool palette, Toolglass, FlowMenu, control menu]
State a lucid, testable hypothesis

“Because of the time it takes to reach for the Tool palette, Tool palette will be the slowest condition.”
Choose the variables

• Manipulate one or more *independent* variable
 – Method
 – Device type…

• Observe effect on one or more *dependent* variable
 – Time to completion
 – Accuracy
 – Error rate…

• Running example
 – Independent variable: method
 – Dependent variable: speed, error rate, user satisfaction…
Design the experimental protocol

• Between or within subjects?
 – Between subjects: each subject run one condition
 • *Need more subjects but more powerful*
 – Within subjects: each subject run several conditions
 • *Need less subjects but less powerful*
 – Very important for the statistical analysis phase

• Which task?
 – Must reflect the hypothesis
 – Must avoid bias
 • *Instructions, ordering...*
 • *In doubt, always favor the null hypothesis*
Design the experimental protocol

• Running Example:
 – “Connect the colored dots” task
 • Similar to area selection and shape creation
 – Using a pen and a puck in an indirect setting
Chose the user population

• Pick a well balanced sample
 – Novices, experts, average
 – Age group
 – Sex…

• Population group may be one of the independent variable

• Running example:
 – Non-color blind, right handed adults (male and female)
Run the experiment

• Always run pilots first!
 – There are always unexpected problem!
 – When the experiment has started you cannot pick and choose

• Use a check-list so that all subjects follow the same steps

• Don’t forget the consent form!

• Don’t forget to debrief each subjects
Running example result I
Running example result II

Tool palette

FlowMenu

Toolglass

control menu
Run statistical analysis

• Properties of our population
 – Mean, variance…

• How different data sets relate to each other
 – Are we sampling from similar or different distributions?

• Probability that our claims are correct
 – Statistical significance:
 “The hypothesis that using a pen in direct mode is faster is accepted \((p < .05) \)”
 means that there is a higher than 95% chance the hypothesis is true
 – Typical level are .05 and .01 level
Statistical tools I

• T-test
 – Compare the mean of 2 populations
 • *Null hypothesis: no difference between means*
 – Assumptions
 • *Samples are normally distributed*
 – Very robust in practice
 • *Population variances are equal*
 – Reasonably robust for differing variances
 • *Individual observations in samples are independent*
 – Very important
Statistical tools II

• Correlation
 – Measure the extent to which 2 concepts are related
 – Caveats
 • *Correlation does not imply cause and effect (hidden variable)*
 – Ice cream consumption and drowning
 • *Need a large enough group*

• Regression
 – Calculate the “best fit”
Statistical tool III

- **ANOVA**
 - Single factor analysis of variance
 - *Compare three or more means*
 - Analysis of variance
 - *Compare relationship between many factor*
 - Beginners type at the same speed on all keyboards,
 - Touch-typist type fastest on the qwerty

- **Running example**
 - Accept the hypothesis

- **Your protocol influence the kind of test you can use**
 - In doubt consult with a statistician before starting the experiment!
Statistical significance

- Statistical significance
 - Comparing to the null hypothesis: “There is no effect”
 - Type I errors are the most disruptive

<table>
<thead>
<tr>
<th>Researcher’s Decision</th>
<th>Actual Situation: Null Hypothesis is True</th>
<th>Actual Situation: Null Hypothesis is False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept the null hypothesis</td>
<td>Correct decision</td>
<td>Type II error</td>
</tr>
<tr>
<td>Reject the null hypothesis</td>
<td>Type I error</td>
<td>Correct decision</td>
</tr>
</tbody>
</table>

- Design significance?
 - 3.00s versus 3.05s?
Draw conclusions

• Running example
 – What is the scope of the finding?
 • Does the experiment reflect real use?
 • Are there other parameters at play?