1. How many binary relations are there from a set with \(m \) elements to a set with \(n \) elements?

2. Determine whether each of the following relations are reflexive, symmetric, transitive, antisymmetric or none of these. Justify each answer with a proof or counterexample.

 (a) \(D \) is the “divides” relation on \(\mathbb{Z} \): for all integers \(m \) and \(n \), \(m \mid n \).

 (b) Let \(X = \{a, b, c\} \) and \(P(X) \) be the power set of \(X \). A binary relation \(\# \) is defined on \(P(X) \) as follows: for all \(A, B \in P(X) \), \(A \# B \leftrightarrow n(A) = n(B) \).

 (c) Let \(X = \{a, b, c\} \) and \(P(X) \) be the power set of \(X \). A binary relation \(R \) is defined on \(P(X) \) as follows: for all \(A, B \in P(X) \), \(A R B \leftrightarrow n(A) < n(B) \).

 (d) Let \(X = \{a, b, c\} \) and \(P(X) \) be the power set of \(X \). A binary relation \(T \) is defined on \(P(X) \) as follows: for all \(A, B \in P(X) \), \(A T B \leftrightarrow n(A) \neq n(B) \).

 (e) Let \(C \) be the set of all boolean formulas in three variables \(p, q \) and \(r \). Define \(I \) to be the “implies” relation on \(C \): for all boolean statements \(a \) and \(b \) in \(C \), \((a I b) \leftrightarrow (a \rightarrow b \) is true).