Due Wednesday, November 5 at the beginning of your discussion section.

You must write the solutions to the problems single-sided on your own lined paper, with all sheets stapled together, and with all answers written in sequential order or you will lose points.

1. Prove for all sets A, B, and C, $[C \subseteq A] \rightarrow [(A \cap B) \times C \subseteq (A \times A) \cap (B \times A)]$.

 Answer: Let A, B, and C be arbitrary sets; assume $C \subseteq A$.
 Let $(x, y) \in (A \cap B) \times C$ be arbitrary.
 $x \in A \cap B \wedge y \in C$ by the definition of cross product.
 $x \in A \wedge x \in B \wedge y \in C$ by the definition of intersection.
 Since $y \in C$, $y \in A$ by the definition of subset.
 Since $x \in A$ and $y \in A$, $x \in A \wedge y \in A$ by conjunctive addition.
 $(x, y) \in A \times A$ by the definition of cross product.
 Since $x \in B$ and $y \in A$, $x \in B \wedge y \in A$ by conjunctive addition.
 $(x, y) \in B \times A$ by the definition of cross product.
 $(x, y) \in A \times A \wedge (x, y) \in B \times A$ by conjunctive addition.
 $(x, y) \in (A \times A) \cap (B \times A)$ by definition of intersection.
 Therefore, for any sets A, B, and C, $[C \subseteq A] \rightarrow [(A \cap B) \times C \subseteq (A \times A) \cap (B \times A)]$ by closing the conditional world and generalizing from the generic particular.

2. Prove for all sets A, B, and C, $(A - B) - C = A - (B \cup C)$.

 Answer: Let A, B, and C be arbitrary sets.

 $$(A - B) - C = (A \cap B^c) - C \quad \text{definition of set difference}$$
 $$= (A \cap B^c) \cap C^c \quad \text{definition of set difference}$$
 $$= A \cap (B^c \cap C^c) \quad \text{associativity}$$
 $$= A \cap (B \cup C)^c \quad \text{DeMorgan's Law}$$
 $$= A - (B \cup C) \quad \text{definition of set difference}$$

 Therefore, for all sets A and B, $(A - B) - C = A - (B \cup C)$.

3. Prove for all sets A, B, and C, if $C \subseteq B - A$, then $A \cap C = \emptyset$.

 Answer: Let A, B, and C be arbitrary sets; assume $C \subseteq B - A$.
 Therefore, $C \subseteq (B \cap A^c)$ by definition of set difference.
 Since $C \subseteq B \cap A^c$, $\forall p \in C \rightarrow (p \in B \cap A^c)$.
 Let x be some arbitrary element of $A \cap C$ (to show $A \cap C$ is empty, we assume it has some element x, and derive a contradiction).
 So $x \in A \cap C$.
 $x \in A \wedge x \in C$ by the definition of intersection.
 $x \in A$ by conjunctive simplification.
 $x \in B^c \vee x \in A$ by disjunctive addition.
 $x \in (B^c \cup A)$ by definition of union.
 $x \notin (B^c \cup A)^c$ by definition of \notin.
\[x \notin (B \cap A^c) \text{ by DeMorgan’s Law.} \]
\[x \notin C \text{ by universal modus tollens.} \]

Now we have a contradiction, since \(x \in C \) and \(x \notin C \), which means our assumption that \(x \in A \cap C \) was false.

So \(x \notin A \cap C \) by closing the conditional world with a contradiction.

So \(\forall p \ p \notin A \cap C \) by generalizing from the generic particular.

So \(A \cap C = \emptyset \) by the definition of \(\emptyset \).

4. Prove for all sets \(A \) and \(B \), \(\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B) \). Explain why these two sets are not necessarily equal.

Answer: Let \(A \) and \(B \) be arbitrary sets.

Let \(X \) be an arbitrary element of \(\mathcal{P}(A) \cup \mathcal{P}(B) \).

\[X \in \mathcal{P}(A) \lor X \in \mathcal{P}(B) \text{ by definition of union.} \]

Case 1: Assume \(X \in \mathcal{P}(A) \).

\(X \subseteq A \) by definition of membership in a power set.

Let \(y \) be an arbitrary element of \(X \).

Since \(y \in X \) and \(X \subseteq A \), \(y \in A \) by the definition of subset.

\(y \in A \lor y \in B \) by disjunctive addition.

\(y \in A \cup B \) by definition of union.

\[\forall y \ y \in X \rightarrow x \in A \cup B \text{ by closing the conditional world.} \]

\(X \subseteq A \cup B \) by the definition of subset.

Case 2: Assume \(X \in \mathcal{P}(B) \).

\(X \subseteq B \) by definition of membership in a power set.

Let \(y \) be an arbitrary element of \(X \).

Since \(y \in X \) and \(X \subseteq B \), \(y \in B \) by the definition of subset.

\(y \in A \lor y \in B \) by disjunctive addition.

\(y \in A \cup B \) by definition of union.

\[\forall y \ y \in X \rightarrow x \in A \cup B \text{ by closing the conditional world.} \]

\(X \subseteq A \cup B \) by the definition of subset.

Since one of the two cases always applies, and both cases lead to the same result, we can conclude that

\(X \subseteq A \cup B \) by the dilemma rule.

\(X \in \mathcal{P}(A \cup B) \) by definition of membership in a power set.

\[\forall X \ X \in \mathcal{P}(A) \cup \mathcal{P}(B) \rightarrow X \in \mathcal{P}(A \cup B) \text{ by closing the conditional world and generalizing from the generic particular.} \]

\[\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B) \text{ by definition of subset.} \]

Therefore, for all sets \(A \) and \(B \), \(\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B) \) by generalizing from the generic particular.

These sets are not necessarily equal; this can be illustrated if we think about the size of each set. If a set \(A \) has size \(n \), then \(\mathcal{P}(A) \) has size \(2^n \). If \(A \) and \(B \) have sizes \(x \) and \(y \) respectively, the size of \(A \cup B \) could be as large as \(x + y \). But in general, \(2^x + 2^y \neq 2^{x+y} \), and two sets with different sizes cannot be equal. This can be illustrated with an example as follows:

Let \(A = \{1\} \) and \(B = \{2\} \). Then \(\mathcal{P}(A) = \{\emptyset, \{1\}\} \), and \(\mathcal{P}(B) = \{\emptyset, \{2\}\} \), and so \(\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}\} \). On the other hand, \(A \cup B = \{1, 2\} \), which means \(\mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} \).
5. Let \(n \) and \(k \) be positive integers, and let \(\Sigma \) be an alphabet of size \(n \). What is the the size of the set \(\Sigma^k \)?

Answer: \(\Sigma^k \) represents the set of all strings over \(\Sigma \) of length \(k \). Since there are \(n \) letters in our alphabet, there are \(n \) choices for each letter of each string in the set. Since the strings are of length \(k \), \(n(\Sigma^k) = n^k \).

6. Let \(A_1, A_2, \ldots \) be sets. Prove the generalized DeMorgan’s law:

\[
\forall n \in \mathbb{Z}^+ \ (A_1 \cap A_2 \cap \cdots \cap A_n)^c = A_1^c \cup A_2^c \cup \cdots \cup A_n^c
\]

Hint: Use induction, and the fact that \(A_1 \cap A_2 \cap \cdots \cap A_n = A_1 \cap A_2 \cap \cdots \cap A_{n-1} \cap A_n \).

Answer:

Base Case: \((n = 1) \)

\(A_1^c = A_1^c \checkmark \)

Inductive Hypothesis: \((n = k) \)

\((A_1 \cap A_2 \cap \cdots \cap A_k)^c = A_1^c \cup A_2^c \cup \cdots \cup A_k^c \)

Inductive Step: \((n = k + 1) \)

Show: \((A_1 \cap A_2 \cap \cdots \cap A_k \cap A_{k+1})^c = A_1^c \cup A_2^c \cup \cdots \cup A_k^c \cup A_{k+1}^c \)

Proof:

Let \(S = A_1 \cap A_2 \cap \cdots \cap A_k \).

By the IH, \(S^c = (A_1 \cap A_2 \cap \cdots \cap A_k)^c = A_1^c \cup A_2^c \cup \cdots \cup A_k^c \).

\[
(A_1 \cap A_2 \cap \cdots \cap A_k \cap A_{k+1})^c = (S \cap A_{k+1})^c \quad \text{substitution}
\]

\[
= (S^c \cup A_{k+1}^c) \quad \text{DeMorgan’s Law}
\]

\[
= (A_1^c \cup A_2^c \cup \cdots \cup A_k^c \cup A_{k+1}^c) \quad \text{substitution}
\]

And this is what we wanted to show.

7. Given any integer \(k \), explain how to construct \(k \) infinite sets that form a partition of \(\mathbb{Z} \). **Hint:** There is a theorem we studied in number theory that can help.

Answer: We can use the quotient-remainder theorem to help us. This theorem says that given a positive integer \(d \) and any integer \(n \), there is a unique integer \(r \), \(0 \leq r < d \) such that \(n = dq + r \). Let us invoke this theorem with \(d = k \). Since \(r \) can take on \(k \) values (since \(0 \leq r < d = k \)), we can partition the set \(\mathbb{Z} \) into sets based on the value of \(r \), since \(r \) is unique for each integer. Each set is infinite because if some integer \(n_1 \) has an \(r \)-value of \(r_1 \), then the integer \(n_1 + k \) also has this same \(r \)-value.

These \(k \) sets form a partition since each integer has a unique \(r \)-value for \(r \), so each integer falls into exactly one of the sets.