Overflow: UB

Unsigned binary:

Add two non-negative numbers: result is greater than or equal to each number

\[
\begin{align*}
 x + y & \geq x \\
 x + y & \geq y
\end{align*}
\]

Overflow occurs when result is larger than maximum number \((2^k - 1\) for \(k\) bits)

Can detect overflow just by checking if carry out from most significant bit is 1

Ripple-carry circuit with overflow detection:

"V" is used to denote overflow bit ("O" is too close to "0")
Overflow: 2C

If \(x \) and \(y \) have opposite signs, then the result can't overflow:

- magnitude of the result will be less than the magnitude of the larger number

 \[| x + y | \leq \max (|x|, |y|) \]

Overflow can only occur when the numbers both have the same sign. If the sign of the result is different, then overflow must have occurred.

For example, if \(x \) and \(y \) both have sign bit 0 (positive), and the result has sign bit 1 (negative), then overflow must have occurred.

Add 2 \(k \)-bit numbers:

\[
\begin{array}{c}
\begin{array}{cccccccccccc}
& & x_{k-1} & \cdots & x_0 \\
+ & y_{k-1} & \cdots & y_0 \\
& & s_{k-1} & \cdots & s_0 \\
\end{array}
\end{array}
\]

One way to express whether overflow occurs:

\[V = x_{k-1}y_{k-1}s_{k-1} + x_{k-1}y_{k-1}s_{k-1} \]

Either both sign bits of \(x \) and \(y \) are 1 and the sign bit of \(s \) is 0, or the sign bits are both 0 and the sign bit of \(s \) is 1.

Simpler formula:

\[V = c_{k-1} \text{ XOR } c_{k-2} \]

The overflow bit is equal to the XOR of the carry-in to the leftmost bit with the carry-out from the leftmost bit.
Overflow: 2C

\[V = c_{k-1} \ XOR \ c_{k-2} \]

Why does this work?

Case 1: 0 carried in, 1 carried out
This occurs only when both \(x_{k-1} \) and \(y_{k-1} \) are 1, but then \(s_{k-1} \) is 0, so the result is non-negative even though both \(x \) and \(y \) are negative.

Case 2: 1 carried in, 0 carried out
This occurs only when both \(x_{k-1} \) and \(y_{k-1} \) are 0, but then \(s_{k-1} \) is 1, so the result is negative even though both \(x \) and \(y \) are non-negative.

Adder with overflow detection