Counter

Counter increments an unsigned binary value from 0 to N.

Consider a T flip-flop with hardwired input of 1:

The behavior can be represented by a timing diagram:

Value of Q toggles at each positive clock edge.

Notice that if the clock period is t, the period of the output Q is exactly double the clock period, or $2t$.
Counter

Now use the output of the first flip-flop as the clock input of another T flip-flop:

1 \rightarrow T \rightarrow Q \rightarrow Q_1 \rightarrow Q'_1

1 \rightarrow T \rightarrow Q \rightarrow Q_0 \rightarrow Q'_0

CLK

What will be the period of the second flip-flop output Q_1?
If we keep repeating this N times, the period of the Nth output will be 2^N \cdot t
How does this help build a counter?
Consider what it means to count in binary:

<table>
<thead>
<tr>
<th>x_2</th>
<th>x_1</th>
<th>x_0</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

The sequence of x_0 values looks like a clock with period 1: 0 1 0 1 0 1 0 1
The sequence of x_1 values looks like a clock with period 2: 0 0 1 1 0 0 1 1
The sequence of x_2 values looks like a clock with period 4: 0 0 0 1 1 1 1

However, notice when x_1 changes relative to x_0:
- x_1 goes from 0 to 1 (for example, value 1 to 2) when x_0 goes from 1 to 0
- x_1 goes from 1 to 0 (for example, value 3 to 4) when x_0 goes from 1 to 0

This means that we need to toggle x_1 when x_0 is on a negative edge, but we want to use positive-edge flip-flops.
Counter

Toggling Q_1 on a negative edge of Q_0 is the same as toggling Q_1 on a positive edge of Q_0', so connect the negated output Q' of each flip flop to the input of the next flip-flop.
Timing diagram for this 3-bit counter:

Read values in each column from left to right:

000, 001, 010, . . .

Variation: how would we use D flip-flops instead of T flip-flops?