Problem 1

Letting \(a_{ij} \) and \(b_{ij} \) denote the elements of row \(i \) and column \(j \) of matrices \(A \) and \(B \), respectively, then the transpose of matrix \(A \) is the matrix \(B \) with \(b_{ij} = a_{ji} \). Give an algorithm to transpose a matrix represented by an MX quadtree.

Problem 2

How many interchange operations are needed to transpose an MX quadtree representation of a \(2^n \times 2^n \) matrix so that it is not sparse (i.e., all blocks are of size 1)?

Problem 3

Compare the savings in space and time requirements when a matrix is represented as an MX quadtree and as an array. Use the time required to perform a transpose operation as the basis of the comparison. You should assume the worst case which occurs when there is no sparseness (i.e., all blocks are of size 1).