Constraint Satisfaction Problems

Russell and Norvig: Chapter 5
CMSC 421 – Fall 2003

Intro Example: 8-Queens

• Purely generate-and-test
• The "search" tree is only used to enumerate all possible 64^8 combinations

Intro Example: 8-Queens

Another form of generate-and-test, with no redundancies → "only" 8^8 combinations
What is Needed?
- Not just a successor function and goal test
- But also a means to **propagate the constraints** imposed by one queen on the others and an early **failure test**
- **⇒** Explicit representation of constraints and constraint manipulation algorithms

Constraint Satisfaction Problem
- **Set of variables** \{X_1, X_2, ..., X_n\}
- Each variable \(X_i\) has a **domain** \(D_i\) of possible values
- Usually \(D_i\) is discrete and finite
- **Set of constraints** \{C_1, C_2, ..., C_p\}
- Each constraint \(C_k\) involves a subset of variables and specifies the allowable combinations of values of these variables

Assign a value to every variable such that all constraints are satisfied

Example: 8-Queens Problem
- 64 variables \(X_{ij}, i = 1 \text{ to } 8, j = 1 \text{ to } 8\)
- Domain for each variable \{yes, no\}
- Constraints are of the forms:
 - \(X_{ij} = \text{yes} \Rightarrow X_{ik} = \text{no} \text{ for all } k = 1 \text{ to } 8, k \neq j\)
 - \(X_{ij} = \text{yes} \Rightarrow X_{ij} = \text{no} \text{ for all } k = 1 \text{ to } 8, k \neq i\)
 - Similar constraints for diagonals
Example: 8-Queens Problem
◆ 8 variables X_i, $i = 1$ to 8
◆ Domain for each variable $\{1, 2, \ldots, 8\}$
◆ Constraints are of the forms:
 - $X_i = k \Rightarrow X_j \neq k$ for all $j = 1$ to 8, $j \neq i$
 - Similar constraints for diagonals

Example: Map Coloring
◆ 7 variables $\{WA, NT, SA, Q, NSW, V, T\}$
◆ Each variable has the same domain $\{\text{red, green, blue}\}$
◆ No two adjacent variables have the same value:

Example: Street Puzzle
Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violonist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

Who owns the Zebra?
Who drinks Water?
Example: Task Scheduling

- T1 must be done during T3
- T2 must be achieved before T1 starts
- T2 must overlap with T3
- T4 must start after T1 is complete

- Are the constraints compatible?
- Find the temporal relation between every two tasks

Constraint Satisfaction Problem

- Set of variables \{X_1, X_2, ..., X_n\}
- Each variable \(X_i\) has a domain \(D_i\) of possible values
- Usually \(D_i\) is discrete and finite
- Set of constraints \{C_1, C_2, ..., C_p\}
- Each constraint \(C_k\) involves a subset of variables and specifies the allowable combinations of values of these variables

- Assign a value to every variable such that all constraints are satisfied

Constraint Graph

- Binary constraints

Two variables are adjacent or neighbors if they are connected by an edge or an arc
CSP as a Search Problem
- **Initial state:** empty assignment
- **Successor function:** a value is assigned to any unassigned variable, which does not conflict with the currently assigned variables
- **Goal test:** the assignment is complete
- **Path cost:** irrelevant

Remark
- Finite CSP include 3SAT as a special case
- 3SAT is known to be NP-complete
- So, in the worst-case, we cannot expect to solve a finite CSP in less than exponential time

CSP as a Search Problem
- **Initial state:** empty assignment
- **Successor function:** a value is assigned to any unassigned variable, which does not conflict with the currently assigned variables
- **Goal test:** the assignment is complete
- **Path cost:** irrelevant

n variables of domain size \(d\) \(\rightarrow O(d^n)\) distinct complete assignments

Commutativity of CSP
The order in which values are assigned to variables is irrelevant to the final assignment, hence:
1. Generate successors of a node by considering assignments for only one variable
2. Do not store the path to node
Backtracking Search

- **Empty Assignment**: Assignment = {}
- **1st Variable**: Assignment = {(var1=v11)}
- **2nd Variable**: Assignment = {(var1=v11),(var2=v21)}
- **3rd Variable**: Assignment = {(var1=v11),(var2=v21),(var3=v31)}
Backtracking Search

empty assignment
1st variable
2nd variable
3rd variable
Assignment = {(var1=v11),(var2=v21),(var3=v32)}

Backtracking Search

empty assignment
1st variable
2nd variable
3rd variable
Assignment = {(var1=v11),(var2=v22)}

Backtracking Search

empty assignment
1st variable
2nd variable
3rd variable
Assignment = {(var1=v11),(var2=v22),(var3=v31)}

Backtracking Algorithm

CSP-BACKTRACKING({})
CSP-BACKTRACKING(a)
 - If a is complete then return a
 - X ← select unassigned variable
 - D ← select an ordering for the domain of X
 - For each value v in D do
 - If v is consistent with a then
 - Add (X= v) to a
 - result ← CSP-BACKTRACKING(a)
 - If result ≠ failure then return result
 - Return failure
Map Coloring

Questions
1. Which variable X should be assigned a value next?
2. In which order should its domain D be sorted?

Questions
1. Which variable X should be assigned a value next?
2. In which order should its domain D be sorted?
3. What are the implications of a partial assignment for yet unassigned variables?

Choice of Variable
Map coloring
Choice of Variable

8-queen

Minimum remaining values (MRV)/Most-constrained-variable heuristic:

Select a variable with the fewest remaining values

Choice of Variable

Minimum remaining values (MRV)/Most-constrained-variable heuristic:

Select a variable with the fewest remaining values

Choice of Variable

Degree Heuristic/Most-constraining-variable heuristic:
Select the variable that is involved in the largest number of constraints on other unassigned variables

Choice of Value
Choice of Value

Least-constraining-value heuristic:
Prefer the value that leaves the largest subset of legal values for other unassigned variables.

Constraint Propagation ...

... is the process of determining how the possible values of one variable affect the possible values of other variables.

Forward Checking

After a variable X is assigned a value v, look at each unassigned variable Y that is connected to X by a constraint and deletes from Y's domain any value that is inconsistent with v.

Map Coloring

<table>
<thead>
<tr>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
</tbody>
</table>
Map Coloring

Impossible assignments that forward checking do not detect

constraint propagation
Early Application: Edge Labeling in Computer Vision
Edge Labeling as a CSP

- A variable is associated with each junction.
- The domain of a variable is the label set of the corresponding junction.
- Each constraint imposes that the values given to two adjacent junctions give the same label to the joining edge.
Edge Labeling

![Diagram of Edge Labeling](image)

Removal of Arc Inconsistencies

```
REMOVE-ARC-INCONSISTENCIES(J,K)
removed ← false
X ← label set of J
Y ← label set of K
For every label y in Y do
  If there exists no label x in X such that the constraint (x,y) is satisfied then
    Remove y from Y
    If Y is empty then contradiction ← true
    removed ← true
Label set of K ← Y
Return removed
```
CP Algorithm for Edge Labeling

- Associate with every junction its label set
- contradiction ← false
- Q ← stack of all junctions
- while Q is not empty and not contradiction do
 - J ← UNSTACK(Q)
 - For every junction K adjacent to J do
 - If REMOVE-ARC-INCONSISTENCIES(J, K) then
 - STACK(K, Q)

(Waltz, 1975; Mackworth, 1977)

General CP for Binary Constraints

Algorithm AC

- contradiction ← false
- Q ← stack of all variables
- while Q is not empty and not contradiction do
 - X ← UNSTACK(Q)
 - For every variable Y adjacent to X do
 - If REMOVE-ARC-INCONSISTENCIES(X, Y) then
 - STACK(Y, Q)

Complexity Analysis of AC3

- n = number of variables
- d = number of values per variable
- s = maximum number of constraints on a pair of variables
- Each variables is inserted in Q up to d times
- REMOVE-ARC-INCONSISTENCY takes O(d^2) time
- CP takes O(n s d^3) time
Is AC3 All What is Needed?

NO!

\[X \neq Y \]

\[X \neq Z \]

\[Y \neq Z \]

\[\{1, 2\} \]

Solving a CSP

Interweave constraint propagation, e.g.,
• forward checking
• AC3 and backtracking

+ Take advantage of the CSP structure

4-Queens Problem
4-Queens Problem

1
2
3
4

X1
\{1,2,3,4\}

X2
\{1,3,4\}

X3
\{2,3\}

X4
\{2,3\}

4-Queens Problem

1
2
3
4

X1
\{1,2,3,4\}

X2
\{1,3,4\}

X3
\{2,3\}

X4
\{2,3\}

4-Queens Problem

1
2
3
4

X1
\{1,2,3,4\}

X2
\{1,3,4\}

X3
\{2,3\}

X4
\{2,3\}

4-Queens Problem

1
2
3
4

X1
\{1,2,3,4\}

X2
\{1,3,4\}

X3
\{2,3\}

X4
\{2,3\}
4-Queens Problem

\[\begin{array}{cccc}
\times_{1} & \times_{2} & \times_{3} & \times_{4} \\
\{1, 2, 3, 4\} & \{1, 2, 3, 4\} & \{1, 2, 3, 4\} & \{1, 2, 3, 4\}
\end{array} \]
Structure of CSP

- If the constraint graph contains multiple components, then one independent CSP per component.

Constraint Tree

- Order the variables from the root to the leaves: \((X_1, X_2, ..., X_n)\)
- For \(j = n, n-1, ..., 2\) do
 - REMOVE-ARC-INCONSISTENCY\((X_j, X_i)\)
 where \(X_i\) is the parent of \(X_j\)
- Assign any legal value to \(X_1\)
- For \(j = 2, ..., n\) do
 - assign any value to \(X_j\) consistent with the value assigned to \(X_i\), where \(X_i\) is the parent of \(X_j\)
Structure of CSP

- If the constraint graph contains multiple components, then one independent CSP per component.
- If the constraint graph is a tree, then the CSP can be solved efficiently.
- Whenever a variable is assigned a value by the backtracking algorithm, propagate this value and remove the variable from the constraint graph.

Over-Constrained Problems

Weaken an over-constrained problem by:

- Enlarging the domain of a variable
- Loosening a constraint
- Removing a variable
- Removing a constraint

Local Search for CSP

Pick initial complete assignment (at random)
Repeat
- Pick a conflicted variable var (at random)
- Set the new value of var to minimize the number of conflicts
- If the new assignment is not conflicting then return it
(min-conflicts heuristics)
Remark
- Local search with min-conflict heuristic works extremely well for million-queen problems
- The reason: Solutions are densely distributed in the $O(n^3)$ space, which means that on the average a solution is a few steps away from a randomly picked assignment

Infinite-Domain CSP
- Variable domain is the set of the integers (discrete CSP) or of the real numbers (continuous CSP)
- Constraints are expressed as equalities and inequalities
- Particular case: Linear-programming problems

When to Use CSP Techniques?
- When the problem can be expressed by a set of variables with constraints on their values
- When constraints are relatively simple (e.g., binary)
- When constraints propagate well (AC3 eliminates many values)
- When the solutions are "densely" distributed in the space of possible assignments

Applications
- CSP techniques allow solving very complex problems
- Numerous applications, e.g.:
 - Crew assignments to flights
 - Management of transportation fleet
 - Flight/rail schedules
 - Task scheduling in port operations
 - Design
 - Brain surgery
- See www.ilog.com
Constraint Programming

“Constraint programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it.”

Eugene C. Freuder, Constraints, April 1997

Summary

- Backtrack Search
- Variable and value ordering
- Constraint propagation
- Edge labeling in Computer Vision
- Local Search