Chapter 4

Mathematical Induction
- Used to verify a property of a sequence
- $2, 4, 6, 8, \ldots$ for $i \geq 1$ $a_i = 2i$
 - infinite sequence with infinite distinct values
- for $i \geq 1$ $b_i = (-1)^i$
 - infinite sequence with finite distinct values
- for $1 \leq i \leq 6$ $c_i = i+5$
 - finite sequence (with finite distinct values)

Finding the Explicit Formula
- Figure the formula of this sequence
- $1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, \ldots$
- Different sequences with same initial values
 - $k \geq 0$
 - $a_k = 2k + 1$
 - $b_k = (k-1)^3 + k + 2$

Summation & Product Notation
- Sum of Items Specified
 $$\sum_{k=1}^{6} 2^k = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6$$
- Product of Items Specified
 $$\prod_{k=1}^{5} 2k = 2(1) * 2(2) * 2(3) * 2(4) * 2(5)$$
Variable ending point

• n as the index of the final term
 \[\sum_{k=0}^{n} \frac{k+1}{n+k} \]

• for n = 2
• for n = 3

Nesting of Sum/Product Notation

• Variations (same or different??):
 \[\sum_{j=1}^{j} \sum_{i=1}^{n} Y_{ij}^2 = \sum_{j=1}^{j} (\sum_{i=1}^{n} Y_{ij})^2 = (\sum_{j=1}^{j} \sum_{i=1}^{n} Y_{ij})^2 \]

Telescoping Series

\[\sum_{k=1}^{n} \left(\frac{k}{k+1} - \frac{k+1}{k+2} \right) \]
\[\prod_{i=1}^{n} \left(\frac{i}{i+1} \right) \]
Properties

- Merging and Splitting

\[
\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k) \quad \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} a_k + \sum_{k=m+1}^{n} a_k
\]

\[
\prod_{k=m}^{n} a_k \cdot \prod_{k=m}^{n} b_k = \prod_{k=m}^{n} (a_k \cdot b_k) \quad \prod_{k=m}^{n} a_k = \prod_{k=m}^{n} a_k \cdot \prod_{k=m+1}^{n} a_k
\]

- Distribution

\[c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} (c \cdot a_k)\]

Factorial

- \(n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1 \)

- Definition

\[0! = 1 \]
\[n! = n \cdot (n-1)! \]