Due at the start of class Thursday, September 30, 2004.

Problem 1.

(a) Exactly how many comparisons do you need to find the MINIMUM of \(n \) values. Give an algorithm.
(b) Prove your algorithm is optimal (by proving a matching lower bound).

Problem 2. Consider the problem of finding both the MINIMUM and MAXIMUM values in a list.

(a) Give an algorithm for this problem that takes substantially fewer than \(2n \) comparisons.
(b) Challenge problem. Prove your algorithm is optimal (by proving a matching lower bound).

Problem 3.

(a) Write a summation for the AVERAGE number of moves in (linear) insertion sort.
(b) Simplify the summation.