CMSC 631 — Program Analysis and Understanding
Fall 2004

Data Flow Analysis

Compiler Structure

- Source code parsed to produce AST
- AST transformed to CFG
- Data flow analysis operates on control flow graph (and other intermediate representations)

Abstract Syntax Tree (AST)

- Programs are written in text
 - I.e., sequences of characters
 - Awkward to work with
- First step: Convert to structured representation
 - Use lexer (like flex) to recognize tokens
 - Sequences of characters that make words in the language
 - Use parser (like bison) to group words structurally
 - And, often, to produce AST

Abstract Syntax Tree Example

```plaintext
Program
  x := a + b;
y := a * b;
while (y > a) {
  a := a + 1;
x := a + b
}
```

ASTs

- ASTs are abstract
 - They don’t contain all information in the program
 - E.g., spacing, comments, brackets, parentheses
 - Any ambiguity has been resolved
 - E.g., \(a + b + c\) produces the same AST as \((a + b) + c\)
- For more info, see CMSC 430
 - In this class, we will generally begin at the AST level

Disadvantages of ASTs

- AST has many similar forms
 - E.g., for, while, repeat...until
 - E.g., if, ?:, switch
- Expressions in AST may be complex, nested
 - \((42 \times y) + (z > 5 \ ? 12 \times z : z + 20)\)
- Want simpler representation for analysis
 - ...at least, for dataflow analysis
Control-Flow Graph (CFG)

- A directed graph where
 - Each node represents a statement
 - Edges represent control flow

- Statements may be
 - Assignments $x := y \text{ op } z$ or $x := \text{ op } z$
 - Copy statements $x := y$
 - Branches $\text{ goto } L$ or if $x \text{ relop } y$ goto L
 - etc.

Control-Flow Graph Example

\[
\begin{align*}
 x := a + b; \\
y := a * b; \\
 \text{while } (y > a) \{ \\
 a := a + 1; \\
 x := a + b \\
 \}
\end{align*}
\]

Variations on CFGs

- We usually don’t include declarations (e.g., int x;)
 - But there’s usually something in the implementation

- May want a unique entry and exit node
 - Won’t matter for the examples we give

- May group statements into basic blocks
 - A sequence of instructions with no branches into or out of the block

Control-Flow Graph w/Basic Blocks

\[
\begin{align*}
 x := a + b; \\
y := a * b; \\
 \text{while } (y > a + b) \{ \\
 a := a + 1; \\
 x := a + b \\
 \}
\end{align*}
\]

CFG vs. AST

- CFGs are much simpler than ASTs
 - Fewer forms, less redundancy, only simple expressions

- But...AST is a more faithful representation
 - CFGs introduce temporaries
 - Lose block structure of program

- So for AST,
 - Easier to report error + other messages
 - Easier to explain to programmer
 - Easier to unpause to produce readable code

Data Flow Analysis

- A framework for proving facts about programs
- Reasons about lots of little facts
- Little or no interaction between facts
 - Works best on properties about how program computes
- Based on all paths through program
 - Including infeasible paths
Available Expressions

- An expression \(e \) is available at program point \(p \) if
 - \(e \) is computed on every path to \(p \), and
 - the value of \(e \) has not changed since the last time \(e \) is computed on \(p \)

- Optimization
 - If an expression is available, need not be recomputed
 - (At least, if it's still in a register somewhere)

Data Flow Facts

- Is expression \(e \) available?
- Facts:
 - \(a + b \) is available
 - \(a \times b \) is available
 - \(a + 1 \) is available

Data Flow Equations

- Let \(s \) be a statement
 - \(\text{succ}(s) = \{ \text{immediate successor statements of } s \} \)
 - \(\text{pred}(s) = \{ \text{immediate predecessor statements of } s \} \)
 - \(\text{In}(s) = \text{program point just before executing } s \)
 - \(\text{Out}(s) = \text{program point just after executing } s \)

 \[\text{In}(s) = \bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \]
 \[\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s)) \]

 - Note: These are also called transfer functions

Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Some</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x := a + b)</td>
<td>(a + b)</td>
<td>(a + b)</td>
</tr>
<tr>
<td>(y := a \times b)</td>
<td>(a \times b)</td>
<td>(a \times b)</td>
</tr>
<tr>
<td>(a := a + 1)</td>
<td>(a + 1), (a + b), (a \times b)</td>
<td>(a + b)</td>
</tr>
<tr>
<td>(x := a + b)</td>
<td>(a + b)</td>
<td>(a + b)</td>
</tr>
</tbody>
</table>

Terminology

- A \textit{joint point} is a program point where two branches meet

- Available expressions is a \textit{forward must} problem
 - Forward = Data flow from \textit{in} to \textit{out}
 - Must = At join point, property must hold on all paths that are joined
Liveness Analysis

- A variable v is live at program point p if
 - v will be used on some execution path originating from p...
 - before v is overwritten

- Optimization
 - If a variable is not live, no need to keep it in a register
 - If variable is dead at assignment, can eliminate assignment

Data Flow Equations

- Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges
 - Expr is available only if available on all paths
 - Liveness is a backward may problem
 - To know if variable live, need to look at future uses
 - Variable is live if available on some path
 - $\text{In}(s) = \text{Gen}(s) \cup (\text{Out}(s) - \text{Kill}(s))$
 - $\text{Out}(s) = \bigcup_{s' \in \text{succ}(s)} \text{In}(s')$

Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x := a + b$</td>
<td>a, b</td>
<td>x</td>
</tr>
<tr>
<td>$y := a * b$</td>
<td>a, b</td>
<td>y</td>
</tr>
<tr>
<td>$y > a$</td>
<td>a, y</td>
<td></td>
</tr>
<tr>
<td>$a := a + 1$</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Computing Live Variables

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
 - There is no intervening assignment to v
- Also called def-use information

Very Busy Expressions

- An expression e is very busy at point p if
 - On every path from p, e is evaluated before the value of e is changed

- Optimization
 - Can hoist very busy expression computation
 - What kind of problem?
 - Forward or backward? backward
 - May or must? must

Reaching Definitions

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
 - There is no intervening assignment to v
 - Also called def-use information

- What kind of problem?
 - Forward or backward? forward
 - May or must? may
Space of Data Flow Analyses

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
</tbody>
</table>

- Most data flow analyses can be classified this way
 - A few don’t fit: bidirectional analysis
 - Lots of literature on data flow analysis

Data Flow Facts and Lattices

- Typically, data flow facts form a lattice
 - Example: Available expressions

```
    a+b, a*b, a+1
    ————
    1 2 3
```

Lattices

- A partial order is a lattice if meet and join are defined on any set:
 - \(\sqcap \) is the meet or greatest lower bound operation:
 - \(x \sqcap y \leq x \) and \(x \sqcap y \leq y \)
 - if \(x \leq z \) and \(y \leq z \), then \(z \leq x \sqcap y \)
 - \(\sqcup \) is the join or least upper bound operation:
 - \(x \leq x \sqcup y \) and \(y \leq x \sqcup y \)
 - if \(x \leq z \) and \(y \leq z \), then \(x \sqcup y \leq z \)

Lattices (cont’d)

- A finite partial order is a lattice if meet and join exist for every pair of elements
- A lattice has unique elements \(\bot \) and \(\top \) such that
 - \(x \sqcap \top = x \)
 - \(x \sqcup \bot = x \)

In a lattice,
- \(x \leq y \) iff \(x \sqcap y = x \)
- \(x \leq y \) iff \(x \sqcup y = y \)

Useful Lattices

- \((2^S, \subseteq) \) forms a lattice for any set \(S \)
 - \(2^S \) is the powerset of \(S \) (set of all subsets)

- If \((S, \leq) \) is a lattice, so is \((S, \geq) \)
 - i.e., lattices can be flipped

- The lattice for constant propagation

```
    1
   /\ 2
  /   \ 3
   \   /  ...
    \ / \
     \bot
```
Forward Must Data Flow Algorithm

- $\text{Out}(s) = \text{Gen}(s)$ for all statements s
 - Or, if you want, $\text{Out}(s) = \text{Top}$
- $W := \{ \text{all statements} \}$ (worklist)
- repeat
 - Take s from W
 - $\text{In}(s) := \cap_{s' \in \text{pred}(s)} \text{Out}(s')$
 - $\text{temp} := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))$
 - if ($\text{temp} \neq \text{Out}(s)$) {
 - $\text{Out}(s) := \text{temp}$
 - $W := W \cup \text{succ}(s)$
 }
- until $W = \emptyset$

Monotonicity

- A function f on a partial order is monotonic if
 $$x \leq y \Rightarrow f(x) \leq f(y)$$

- Easy to check that operations to compute In and Out are monotonic
 - $\text{In}(s) := \cap_{s' \in \text{pred}(s)} \text{Out}(s')$
 - $\text{temp} := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))$
 - Putting these two together,
 - $\text{temp} := f_s(\cap_{s' \in \text{pred}(s')} \text{Out}(s'))$

Termination

- We know the algorithm terminates because
 - The lattice has finite height
 - The operations to compute In and Out are monotonic
 - On every iteration, we remove a statement from the worklist and/or move down the lattice