Forward Data Flow, Again

- Out(s) = Top for all statements s
- W := { all statements } (worklist)
- repeat
 - Take s from W
 - temp := f_s (\forall s' \in \text{pred(s)} Out(s')) \text{ (} f_s \text{ monotonic transfer fn)}
 - if (temp \neq \text{Out(s)}) {
 - Out(s) := temp
 - W := W \cup \text{succ(s)}
 }
- until W = \emptyset

Fixpoints

- We always start with Top
 - Every expression is available, no defns reach this point
 - Most optimistic assumption
 - Strongest possible hypothesis
 - = true of fewest number of states
- Revise as we encounter contradictions
 - Always move down in the lattice (with meet)
- Result: A greatest fixpoint

Lattices (P, \leq)

- Available expressions
 - P = sets of expressions
 - S_1 \cap S_2 = S_1 \cap S_2
 - Top = set of all expressions
- Reaching Definitions
 - P = set of definitions (assignment statements)
 - S_1 \cap S_2 = S_1 \cup S_2
 - Top = empty set

Forward vs. Backward

\text{Out(s) = Top for all } s
\text{W := \{ all statements \}} \text{ (worklist)}
\text{repeat}
\text{Take s from W}
\text{temp := } f_s (\forall s' \in \text{pred(s)} \text{Out(s')) \text{ (} f_s \text{ monotonic transfer fn)}
\text{if (temp \neq \text{Out(s)}) {
 - Out(s) := temp
 - W := W \cup \text{succ(s)}
}}
\text{until W = \emptyset}

Lattices (P, \leq), cont’d

- Live variables
 - P = sets of variables
 - S_1 \cap S_2 = S_1 \cup S_2
 - Top = empty set
- Very busy expressions
 - P = set of expressions
 - S_1 \cap S_2 = S_1 \cap S_2
 - Top = set of all expressions

Termination Revisited

- How many times can we apply this step:
 - \text{temp := } f_s (\forall s' \in \text{pred(s)} \text{Out(s'))
 - if (temp \neq \text{Out(s)}) {...
- Claim: \text{Out(s)} only shrinks
 - Proof: \text{Out(s)} starts out as top
 - So \text{temp} must be \leq than \text{Top} after first step
 - Assume \text{Out(s') shrinks for all predecessors } s' \text{ of } s
 - Then \forall s' \in \text{pred(s)} \text{Out(s')} shrinks
 - Since \text{f_s monotonic, } f_s (\forall s' \in \text{pred(s)} \text{Out(s')) shrinks}
Termination Revisited (cont’d)

• A descending chain in a lattice is a sequence
 - x0 ⊑ x1 ⊑ x2 ⊑ ...
 - The height of a lattice is the length of the longest descending chain in the lattice

• Then, dataflow must terminate in O(nk) time
 - n = # of statements in program
 - k = height of lattice
 - Assumes meet operation takes O(1) time

Distributive Data Flow Problems

• By monotonicity, we also have
 \[f(x \sqcap y) \leq f(x) \sqcap f(y) \]

• A function \(f \) is distributive if
 \[f(x \sqcap y) = f(x) \sqcap f(y) \]

Least vs. Greatest Fixpoints

• Dataflow tradition: Start with Top, use meet
 - To do this, we need a meet semilattice with top
 - Meet semilattice = meets defined for any set
 - Computes greatest fixpoint

• Denotational semantics tradition: Start with Bottom, use join
 - Computes least fixpoint

Accuracy of Data Flow Analysis

• Ideally, we would like to compute the meet over all paths (MOP) solution:
 - Let \(f_i \) be the transfer function for statement \(s \)
 - If \(p \) is a path \(\{s_1, ... , s_n\} \), let \(f_p = f_{s_1} \odot ... \odot f_{s_n} \)
 - Let \(\text{path}(s) \) be the set of paths from the entry to \(s \)
 \[\text{MOP}(s) = \sqcap_{p \in \text{path}(s)} f_p(\top) \]

• If a dataflow problem is distributive, then solving the dataflow equations in the standard way yields the MOP solution

Benefit of Distributivity

• Joins lose no information

\[
k(h(f(\top) \sqcap g(\top))) =
k(h(f(\top)) \sqcap h(g(\top))) =
k(h(f(\top))) \sqcap h(g(\top))
\]

What Problems are Distributive?

• Analyses of how the program computes
 - Live variables
 - Available expressions
 - Reaching definitions
 - Very busy expressions

• All Gen/Kill problems are distributive
A Non-Distributive Example

- Constant propagation

- In general, analysis of what the program computes is not distributive

A Non-Distributive Example

Practical Implementation

- Data flow facts = assertions that are true or false at a program point

- Represent set of facts as bit vector
 - Fact, represented by bit i
 - Intersection = bitwise and, union = bitwise or, etc

- “Only” a constant factor speedup
 - But very useful in practice

Practical Implementation

Basic Blocks

- A basic block is a sequence of statements s.t.
 - No statement except the last in a branch
 - There are no branches to any statement in the block except the first

- In practical data flow implementations,
 - Compute Gen/Kill for each basic block
 - Compose transfer functions
 - Store only In/Out for each basic block
 - Typical basic block ~5 statements

Basic Blocks

Order Matters

- Assume forward data flow problem
 - Let $G = (V,E)$ be the CFG
 - Let k be the height of the CFG

- If G acyclic, visit in topological order
 - Visit head before tail of edge
 - Running time $O(|E|)$
 - No matter what size the lattice

Order Matters

Order Matters — Cycles

- If G has cycles, visit in reverse postorder
 - Order from depth-first search

- Let $Q = \text{max} \# \text{back edges on cycle-free path}$
 - Nesting depth
 - Back edge is from node to ancestor on DFS tree

- Then if $\forall x.f(x) \leq x$ (sufficient, but not necessary)
 - Running time is $O((Q + 1)|E|)$
 - Note direction of req’t depends on top vs. bottom

Order Matters — Cycles

Flow-Sensitivity

- Data flow analysis is flow-sensitive
 - The order of statements is taken into account
 - I.e., we keep track of facts per program point

- Alternative: Flow-insensitive analysis
 - Analysis the same regardless of statement order
 - Standard example: types
 - `/ x : int /* x := ... */ x : int /*`
Terminology Review

- Must vs. May
 - (Not always followed in literature)
- Forwards vs. Backwards
- Flow-sensitive vs. Flow-insensitive
- Distributive vs. Non-distributive

Another Approach: Elimination

- Recall in practice, one transfer function per basic block
- Why not generalize this idea beyond a basic block?
 - “Collapse” larger constructs into smaller ones, combining data flow equations
 - Eventually program collapsed into a single node!
 - “Expand out” back to original constructs, rebuilding information

Lattices of Functions

- Let (P, \leq) be a lattice
- Let M be the set of monotonic functions on P
- Define $f \leq g$ if for all $x, f(x) \leq g(x)$
- Define the function $f \land g$ as
 - $(f \land g)(x) = f(x) \land g(x)$
- Claim: (M, \leq) forms a lattice

Elimination Methods: Conditionals

- $f_{ite} = (f_{then} \circ f_{if}) \cap (f_{else} \circ f_{if})$
- $Out(if) = f_{if}(In(ite)))$
- $Out(then) = (f_{then} \circ f_{if})(In(ite)))$
- $Out(else) = (f_{else} \circ f_{if})(In(ite)))$

Elimination Methods: Loops

\[
\begin{align*}
\text{While} & \quad \Rightarrow \\
\text{Head} & \quad \Rightarrow \quad \text{Body} \quad \Rightarrow
\end{align*}
\]

\[
\begin{align*}
\ell_{\text{while}} & = \ell_{\text{head}} \cap \\
& \quad \ell_{\text{head}} \circ \ell_{\text{body}} \circ \ell_{\text{head}} \cap \\
& \quad \ell_{\text{head}} \circ \ell_{\text{body}} \circ \ell_{\text{head}} \circ \ell_{\text{body}} \circ \ell_{\text{head}} \cap \cdots
\end{align*}
\]

Elimination Methods: Loops (cont’d)

- Let $f^i = f \circ f \circ \ldots \circ f$ (i times)
 - $f^0 = \text{id}$
- Let
 - $g(j) = \bigcap_{i}[0, j](\ell_{\text{head}} \circ \ell_{\text{body}})^i \circ \ell_{\text{head}}$
- Need to compute limit as j goes to infinity
 - Does such a thing exist?
- Observe: $g(j+1) \leq g(j)$
Height of Function Lattice

- Assume underlying lattice \((P, \leq)\) has finite height
 - What is height of lattice of monotonic functions?
 - Claim: At most |\(P|\times\text{Height}(P)\)

- Therefore, \(g(j)\) converges

Non-Reducible Flow Graphs

- Elimination methods usually only applied to reducible flow graphs
 - Ones that can be collapsed
 - Standard constructs yield only reducible flow graphs
 - Unrestricted goto can yield non-reducible graphs

Comments

- Can also do backwards elimination
 - Not quite as nice (regions are usually single entry but often not single exit)
 - For bit-vector problems, elimination efficient
 - Easy to compose functions, compute meet, etc.
 - Elimination originally seemed like it might be faster than iteration
 - Not really the case

Data Flow Analysis and Functions

- What happens at a function call?
 - Lots of proposed solutions in data flow analysis literature
 - In practice, only analyze one procedure at a time
 - Consequences
 - Call to function kills all data flow facts
 - May be able to improve depending on language, e.g., function call may not affect locals

More Terminology

- An analysis that models only a single function at a time is intraprocedural
- An analysis that takes multiple functions into account is interprocedural
- An analysis that takes the whole program into account is...guess?

- Note: global analysis means “more than one basic block,” but still within a function

Data Flow Analysis and The Heap

- Data Flow is good at analyzing local variables
 - But what about values stored in the heap?
 - Not modeled in traditional data flow

- In practice: \(\%x := e\)
 - Assume all data flow facts killed (!)
 - Or, assume write through \(x\) may affect any variable whose address has been taken

- In general, hard to analyze pointers
Data Flow Analysis and Optimization

- **Moore’s Law**: Hardware advances double computing power every 18 months.

- **Proebsting’s Law**: Compiler advances double computing power every 18 years.

- We’ll focus on other uses of data flow analysis in this class (later in the semester)