Motivation

- Data flow analysis needs to represent facts at every program point.

- What if
 - There are a lot of facts and
 - There are a lot of program points?
 - \(\Rightarrow \) potentially takes a lot of space/time

- Most likely, we're keeping track of irrelevant facts

Sparse Representation

- Instead, we'd like to use a sparse representation
 - Only propagate facts about \(x \) where they're needed
 - Enter *static single assignment* form
 - Each variable is defined (assigned to) exactly once
 - But may be used multiple times

What About Joins?

- Add \(\Phi \) functions/nodes to model joins
 - Intuitively, takes meet of arguments
 - At code generation time, need to eliminate \(\Phi \) nodes
 - Add SSA edges from definitions to uses
 - No intervening statements use/define variable
 - Safe to propagate only along SSA edges

Example

- \(x = 3 \)
 - \(x = 3 \)
 - \(y = a + b \)
 - \(z = 2 \times y \)
 - \(w = y + z \)

- \(a > b \)
 - \(y = a - b \)
 - \(y = y \times 10 \)
 - \(w = w + y \)
 - \(z = w + x \)
Constant Propagation Revisited

- Initialize facts at each program point
 - $C(n) := \text{top}$
- Add all SSA edges to the worklist
- While the worklist isn’t empty,
 - Remove an edge (x, y) from the worklist
 - $C(y) := C(y) \cap C(x)$
 - Add SSA edges from y if $C(y)$ changed

Def-Use Chains vs. SSA

- Alternative: Don’t do renaming; instead, compute simple def-use chains (reaching definitions)
 - Propagate facts along def-use chains
- Drawback: Potentially quadratic size

Def-Use Chains vs. SSA (cont’d)

```plaintext
case (...) of  
  0: a := 1;  
  1: a := 2;  
  2: a := 3;  
end  
case (...) of  
  0: b := a;  
  1: c := a;  
  2: d := a;  
end
```

Conditional Constant Propagation

- So far, we assume that all branches can be taken
 - But what if some branches are never taken in practice?
 - Debugging code that can be enabled/disabled at run time
 - Macro expanded code with constants
 - Optimizations
 - Idea: use constant propagation to decide which branches might be taken
 - Fits in neatly with SSA form

Nodes versus Edges

- So far, we’ve been hazy about whether data flow facts are associated with nodes or edges
 - Advantage of nodes: may be fewer of them
 - Advantage of edges: can trace differences on multiple paths to same node
- For this problem, we’ll associate facts with edges

Conditional Execution

- Keep track of whether edges may be executed
 - Some may not be because they’re on not-taken branch
 - Initially, assume no edges taken
 - At joins, don’t propagate information from not-taken in-edges
 - Side comment: Notice that we always, always start with the optimistic assumption
 - We need proof that a pessimistic fact holds
 - We’re computing a greatest fixpoint
Example

```
x1 := 3
x1 > 2
j1 := 1
j2 := 4
j3 := !(j1, j2)
z
```

Computing SSA Form

- Step 1: Compute the dominance frontier
- Step 2: Use dominance frontier to place Φ nodes
 - Naive, impractical step 2: put a Φ function for every variable at the beginning of every block
 - Better: If node X contains assignment to a, put Φ function for a in dominance frontier of X
 - Adding Φ fn may require introducing additional Φ fn
- Step 3: Rename variables so only one definition per name

Dominator Tree

- The dominator relationship forms a tree
 - Edge from parent to child = parent dominates child
 - Note: edges are not same as CFG edges!

Why Are Dominators Useful?

- Computing static single assignment form
- Computing control dependencies
- Identify loops in CFG
 - All nodes X dominated by entry node H, where X can reach H, and there is exactly one back edge (head dominates tail) in loop

Dominator Tree

• Let X and Y be nodes in the CFG
 • Assume single entry point Entry
 • X dominates Y (written X≥Y) if
 - X appears on every path from Entry to Y
 • Write X>Y when X dominates Y but X≠Y
 • Note ≥ is reflexive

Computing Dominator Tree

• Standard algorithm due to Lengauer and Tarjan
 • Runs in time \(O(E \alpha(E, N)) \)
 - \(E \) = # of edges, \(N \) = # of nodes
 - where \(\alpha(\cdot) \) is the inverse Ackerman's function
 - Very slow growing; effectively constant in practice
 • Algorithm quite difficult to understand
 - But lots of pseudo-code available

Why Are Dominators Useful?

• Computing static single assignment form
• Computing control dependencies
• Identify loops in CFG
 • All nodes X dominated by entry node H, where X can reach H, and there is exactly one back edge (head dominates tail) in loop
Where do \(\Phi \) Functions Go?

- We need a \(\Phi \) function at node \(Z \) if
 - Two non-null CFG paths that both define \(v \)
 - Such that both paths start at two distinct nodes and end at \(Z \)

\[
\begin{align*}
v &> 3 \\
v &> 4 \\
Z
\end{align*}
\]

Dominance Frontiers

- \(Y \) is in the dominance frontier of \(X \) iff
 - There exists a path from \(X \) to Exit through \(Y \) such that \(Y \) is the first node not strictly dominated by \(X \)
 - Equivalently:
 - \(Y \) is the first node where a path from \(X \) to Exit and a path from Entry to Exit (not going through \(X \)) meet
 - Equivalently:
 - \(X \) dominates a predecessor of \(Y \)
 - \(X \) does not strictly dominate \(Y \)

Example

![Diagram](attachment:example.png)

Computing Dominance Frontiers

- Two components to \(DF(X) \):
 - \(DF_{local}(X) = \{ Y \in succ(X) \mid X \not\geq Y \} \)
 - Any child of \(X \) not (strictly) dominated by \(X \) is in \(DF(X) \)
 - Let \(Z \) be such that \(idom(Z) = X \)
 - \(idom(Z) \) is the parent of \(Z \) in the dominator tree
 - \(DF_{up}(Z) = \{ Y \in DF(Z) \mid X \not\geq Y \} \)
 - Nodes from \(DF(Z) \) that are not strictly dominated by \(X \) are also in \(DF(X) \)

Why Is This Sufficient?

- Suppose \(Y \in DF(X) \)
 - Then there is a \(U \in \text{pred}(Y) \) such that \(X \geq U, X \not\geq Y \)
 - If \(U=X \), then \(U \in DF_{local}(X) = \{ Y \in succ(X) \mid X \not\geq Y \} \)
 - Otherwise \(U \neq X \)
 - Then there is a node \(Z \) such that \(idom(Z)=X \) and \(Z \geq U \)
 - Possibly \(Z=U \)
 - Since \(X \not\geq Y \), \(Z \not\geq Y \), hence \(Y \in DF(Z) \)
 - Therefore \(Y \in DF_{up}(Z) = \{ Y \in DF(Z) \mid X \not\geq Y \} \)
Algorithm

- Let $sdom(X) = \{Y \mid X > Y\}$
- In a postorder traversal on dominator tree
 - $DF(X) = succ(X) - sdom(X)$
 - i.e., $DF(X) = DF_{local}(X)$
 - For each Z such that $idom(Z) = X$ do
 - $DF(X) = DF(X) - (DF(Z) - sdom(X))$
 - i.e., $DF(X) = DF(X) - DF_{up}(Z)$

Equivalent Algorithm

- In a postorder traversal on dominator tree
 - $DF(X) = succ(X)$
 - For each Z such that $idom(Z) = X$ do
 - $DF(X) = DF(X) - sdom(X)$
 - See paper for another equivalent algorithm that runs in $O(E + |DF|)$

Computing SSA Form

- Step 1: Compute the dominance frontier
- Step 2: Use dominance frontier to place Φ nodes
- Step 3: Rename variables so only one definition per name

Step 2: Placing Φ Functions for v

- Let S be the set of nodes that define v
- Need to place Φ function in every node in $DF(S)$
 - Recall, those are all the places where the definition of v in S and some other definition of v may meet
 - But a Φ function adds another definition of v!
 - $v := \Phi(v, ... , v)$
 - So, iterate
 - $DF_1 = DF(S)$
 - $DF_{i+1} = DF(S \cup DF_i)$

Step 3: Renaming Variables

- Top-down (DFS) traversal of dominator tree
 - At definition of v, push new # for v onto the stack
 - When leaving node with definition of v, pop stack
 - Intuitively: Works because there's a Φ function, hence a new definition of v, just beyond region dominated by definition
 - Can be done in $O(E + |DF|)$ time
 - Linear in size of CFG with Φ functions

Example

```
Entry
1: x := 3
3
5: x := 4
8
11
4
7
10
Exit
```

```
= need $\Phi$ function
```

```
Top-down (DFS) traversal of dominator tree
- At definition of $v$, push new # for $v$ onto the stack
- When leaving node with definition of $v$, pop stack
  - Intuitively: Works because there's a $\Phi$ function, hence a new definition of $v$, just beyond region dominated by definition
  - Can be done in $O(E + |DF|)$ time
    - Linear in size of CFG with $\Phi$ functions
```
Eliminating Φ Functions

- Basic idea: Φ represents facts that value of join may come from different paths
 - So just set along each possible path

\[W_2 := y_1 + z_1 \quad W_3 := W_2 + y_3 \quad W_4 := W_3 + y_3 \]

Eliminating Φ Functions in Practice

- Copies performed at Φ fns may not be useful
 - Joined value may not be used later in the program
 - (So why leave it in?)
 - Use dead code elimination to kill useless Φs
 - Subsequent register allocation will map the (now very large) number of variables onto the actual set of machine register

Efficiency in Practice

- Claimed:
 - SSA grows linearly with size of program
 - No correlation between ratio and program size

 Convincing?

Arrays

- Need to handle array accesses

 Problem: How do we know whether $A[i], A[j], \text{ and } B[k]$ are all distinct?
 - Could have $A=B$, e.g., `foo(int A[], int B[]){ ... foo(a,a)`
 - Could have $i=j$

 History: significant research on determining array dependencies, for parallelizing compilers

Arrays (cont’d)

- This paper’s suggestion: make arrays immutable
 - Then don’t need to worry about updates to them

* := A.f;
A.g := V;
* := A.f + A.g

- Update(A, j, V) makes a copy of A
 - Then try to collapse unnecessary copies

Convincing?

Structures

- Can treat structures as sets of variables

* := X;
Y := V;
* := X + Y

Problems!
Pointers

- For each statement S, let
 - $\text{MustMod}(S)$ = variables always modified by S
 - $\text{MayMod}(S)$ = variables sometimes modified by S
 - So if $v \notin \text{MayMod}(S)$, then S must not modify v
 - $\text{MayUse}(S)$ = variables sometimes used by S

- Then assume that statement S
 - writes to $\text{MayMod}(S)$
 - reads $\text{MayUse}(S) \cup (\text{MayMod}(S) \setminus \text{MustMod}(S))$

- Convincing? We'll talk more about pointers later in the course

Control Dependence

- Y is control dependent on X if whether Y is executed depends on a test at X

```
X
  \(\rightarrow\)
A
  \(\rightarrow\)
B
  \(\rightarrow\)
C
```

- A, B, and C are control dependent on X

Postdominators and Control Dependence

- Y postdominates X if every path from X to Exit contains Y
 - i.e., if X is executed, then Y is always executed

- Then, Y is control dependent on X if
 - There is a path $X \rightarrow Z_1 \rightarrow \cdots \rightarrow Z_n \rightarrow Y$ such that Y postdominates all Z_i and
 - Y does not postdominate X
 - i.e., there is some path from X on which Y is always executed, and there is some path on which Y is not executed

Dominance Frontiers, Take 2

- Postdominators are just dominators on the CFG with the edges reversed

- To see what Y is control dependent on, we want to find the Xs such that in the reverse CFG
 - There is a path $X \leftarrow Z_1 \leftarrow \cdots \leftarrow Z_n \leftarrow Y$ where
 - for all $i, Y \geq Z_i$ and
 - $Y \neq X$
 - i.e., we want to find $DF(Y)$ in the reverse CFG!