What is an Abstraction?

- A property from some domain

Example Abstraction

Concretes values: sets of integers

Abstract values

Concrete values: sets of integers

Abstract values

Composing α and γ

Concrete values: sets of integers

Abstract values

Abstraction followed by concretization is sound but imprecise

α and γ Form a Galois Insertion

- α and γ are monotonic
 - Recall: f is monotonic if $x \leq y \Rightarrow f(x) \leq f(y)$
 - Also called "order preserving"
- $S \subseteq \gamma(\alpha(S))$ for any concrete set S
- $\alpha(\gamma(A)) = A$ for any abstract element A

Next up: Abstract interpretation in action
- We'll develop an abstract interpretation of a simple language and prove it correct using these ideas
Source Language

- Integers and multiplication
 - $e ::= i \mid e \ast e$

- Standard semantics of the program
 - $\text{Eval} : e \rightarrow \text{Int}$
 - $\text{Eval}(i) = i$
 - $\text{Eval}(e_1 \ast e_2) = \text{Eval}(e_1) \times \text{Eval}(e_2)$

Abstraction

- Define an abstract semantics that computes only the sign of the result

$$\begin{array}{c|ccc}
\times & + & 0 & - \\
+ & + & 0 & - \\
0 & 0 & 0 & 0 \\
\end{array}$$

- $\text{AEval} : e \rightarrow \{-, 0, +\}$
 - $\text{AEval}(i) = +$ if $i > 0$
 - $\text{AEval}(i) = 0$ if $i = 0$
 - $\text{AEval}(i) = -$ if $i < 0$
 - $\text{AEval}(e_1 \ast e_2) = \text{AEval}(e_1) \times \text{AEval}(e_2)$

Soundness

- We can show our abstraction correctly predicts the sign of an expression
- Proof: by structural induction on e
 - $\text{Eval}(e) > 0$ if $\text{AEval}(e) = +$
 - $\text{Eval}(e) = 0$ if $\text{AEval}(e) = 0$
 - $\text{Eval}(e) < 0$ if $\text{AEval}(e) = -$

Soundness (cont’d)

- Natural concretization function
 - $\gamma(+) = \{i \mid i > 0\}$
 - $\gamma(0) = \{0\}$
 - $\gamma(-) = \{i \mid i < 0\}$

- Note: This presentation is slightly non-standard
 - Usually defined in terms of execution traces

Another Approach to Soundness

- Natural concretization function
 - $\gamma(+) = \{i \mid i > 0\}$
 - $\gamma(0) = \{0\}$
 - $\gamma(-) = \{i \mid i < 0\}$

- No problems

Adding Unary Negation

- $e ::= i \mid e \ast e \mid -e$
 - $\text{Eval}(-e) = -\text{Eval}(e)$
 - $\text{AEval}(e) = -\text{AEval}(e)$

- $\gamma(+) = \{i \mid i > 0\}$
 - $\gamma(0) = \{0\}$
 - $\gamma(-) = \{i \mid i < 0\}$

- No problems
Adding Addition

- $e ::= i | e * e | -e | e + e$

- $\text{Eval}(e1 + e2) = \text{Eval}(e1) + \text{Eval}(e2)$

- $\text{AEval}(e1 + e2) = \text{AEval}(e1) + \text{AEval}(e2)$

Our abstract domain is not closed under addition.

Adding Integer Division

- $\text{div} + 0 - \text{div}$

<table>
<thead>
<tr>
<th>\div</th>
<th>$+$</th>
<th>0</th>
<th>$-$</th>
<th>div</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+$</td>
<td>$+$</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>$-$</td>
<td>$-$</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>div</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Our abstract domain is also not closed under division.

Our abstract domain is not closed under addition.

Solution

- Add an abstract value to represent any integer

- Finding closed domain often key design problem

<table>
<thead>
<tr>
<th>\div</th>
<th>$+$</th>
<th>0</th>
<th>$-$</th>
<th>div</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+$</td>
<td>$+$</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>$-$</td>
<td>$-$</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>div</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- Other operations also need to handle div

The Abstract Domain

- Look, ma, a lattice!

- We've got:
 - A set of elements $\{\bot, +, 0, -, T\}$
 - A relation \leq that is
 - Reflexive
 - Anti-symmetric
 - Transitive
 - And
 - The least upper bound ($\text{lub} \bot$) and greatest lower bound ($\text{glb} \bot$) exists for any pair of elements
 - So it's a lattice
Abstraction and Concretization

- Concretization function \(\gamma \)
 \[
 \begin{align*}
 \gamma(\top) &= \text{all integers} \\
 \gamma(+) &= \{ i | i \geq 0 \} \\
 \gamma(0) &= \{ 0 \} \\
 \gamma(-) &= \{ i | i < 0 \} \\
 \gamma(\bot) &= \emptyset
 \end{align*}
 \]
- Abstraction function maps concrete values (sets of integers) to smallest valid abstract elements
 \[
 \alpha(S) = \left\{ \begin{array}{ll}
 \bot & \text{if } S = \emptyset \\
 \{ 0 \} & \text{if } S = \{ 0 \} \\
 \{ i \} & \text{if } S = \{ i \} \\
 \{ 0, i \} & \text{if } S = \{ 0, i \} \\
 \{ i, j \} & \text{if } S = \{ i, j \} \\
 \{ i, j, k \} & \text{if } S = \{ i, j, k \} \\
 \{ i, j, k, l \} & \text{if } S = \{ i, j, k, l \} \\
 \{ i, j, k, l, m \} & \text{if } S = \{ i, j, k, l, m \} \\
 \{ i, j, k, l, m, n \} & \text{if } S = \{ i, j, k, l, m, n \} \\
 \end{array} \right.
 \]

Definition

- An abstract interpretation consists of
 - A concrete domain \(S \) and an abstract domain \(A \)
 - Concretization and abstraction functions that form a Galois insertion [of \(A \) into \(S \)]
 - \(A \) (sound) abstract semantic function
- Recall: \(\alpha \) and \(\gamma \) form a Galois insertion if
 - \(\alpha \) and \(\gamma \) are monotone
 - \(S \subseteq \gamma(\alpha(S)) \) or \(\alpha \leq \gamma \) for any concrete set \(S \)
 - \(A = \alpha(\gamma(A)) \) or \(\alpha = \gamma \alpha \) for any abstract element \(A \)

Soundness, Again

- Our abstraction is sound if
 - \(\text{Eval}(e) \in \gamma(\text{AEval}(e)) \)
- Soundness proof: next

Proof: Show \(\text{Eval}(e) \in \gamma(\text{AEval}(e)) \)

- By structural induction on expressions
 - Base cases: an integer \(i \), so \(\text{Eval}(i) = i \)
 - if \(i < 0 \) then \(\gamma(\text{AEval}(i)) = \gamma(-) = \{ j | j < 0 \} \)
 - Other cases similar
 - Induction: for any operation
 \[
 \begin{align*}
 \text{Eval}(e1 \ op \ e2) &= \text{Eval}(e1) \ op \ \text{Eval}(e2) & \text{by definition of Eval} \\
 &\in \gamma(\text{AEval}(e1)) \ op \ \gamma(\text{AEval}(e2)) & \text{by induction} \\
 &\subseteq \gamma(\text{AEval}(e1)) \ op \ \text{AEval}(e2)) & \text{by local correctness of \(op \)} \\
 &= \gamma(\text{AEval}(e1 \ op \ e2)) & \text{by definition of \(\text{AEval} \)}
 \end{align*}
 \]

Conditions for Correctness

- We can show that if
 - \(\alpha \) and \(\gamma \) form a Galois insertion
 - Abstract operations \(op \) are locally correct
 - \(\gamma(op(a1, ..., an)) \supseteq op(\gamma(a1), ..., \gamma(\gamma(an))) \)
 - Note: We’ve extended \(op \) pointwise to sets
 - I.e., if \(S \) and \(T \) are sets, \(S+T = \{ s+t | s \in S, t \in T \} \)
 - Then the abstract interpretation is sound

Another Proof of Correctness

- We can define correctness in terms of abstraction rather than concretization
 - \(\text{Eval}(e) \in \gamma(\text{AEval}(e)) \) if \(\alpha(\text{Eval}(e)) \subseteq \text{AEval}(e) \)
- Equivalence proof:
 - \((\Rightarrow)\) Assume \(\text{Eval}(e) \in \gamma(\text{AEval}(e)) \)
 - I.e., \(\{\text{Eval}(e)\} \subseteq \gamma(\text{AEval}(e)) \)
 - Then \(\alpha(\text{Eval}(e)) \subseteq \gamma(\text{AEval}(e)) \) by monotonicity
 - And \(\alpha(\text{Eval}(e)) \subseteq \text{AEval}(e) \) since \(\text{id} = \alpha \gamma \)
Correctness Proof (cont’d)

• Showing
 - $\text{Eval}(e) \in \gamma(\text{AEval}(e))$ iff $\alpha([\text{Eval}(e)]) \leq \text{AEval}(e)$
 - (\Rightarrow) Assume $\alpha([\text{Eval}(e)]) \leq \text{AEval}(e)$
 Then $\gamma(\alpha([\text{Eval}(e)])) \subseteq \gamma(\text{AEval}(e))$ by monotonicity
 Then $[\text{Eval}(e)] \subseteq \gamma(\text{AEval}(e))$ since $\text{id} \leq \gamma \circ \alpha$
 - I.e., $\text{Eval}(e) \in \gamma(\text{AEval}(e))$

Relationship to Data Flow Analysis

• Abstract interpretation was invented partially to find a firm semantic foundation for data flow analysis
 - Precise relationship between concrete domain (program executions) and abstract domain (data flow facts)
 - Generic correctness proof

• Caveat: Data flow typically uses meet, abstract interpretation typically uses join

Acceleration: Widening

• Given monotone transfer functions
 - Finite height lattice \Rightarrow termination

• What if
 - Height is finite but large?
 - Height is infinite

• “Solution”: Widening
 - Every so often, replace A by $A' > A$
 - This is safe (conservative, sound)
 - But apply when? where?

Limitations

• Focus is on correctness
 - Not much insight into efficient algorithms

• Theory is completely general
 - What are good choices for modeling data structures and the heap? Higher-order functions? Objects?

• Forwards vs. backwards distinction
 - Permeates literature on abstract interpretation
 - But theory doesn’t require it

Conclusions

• Cousot and Cousot paper(s) seminal work(s)

• The theory of abstract interpretation is often confused with using it to construct tool (e.g., data flow analysis)

• Slogan:
 - Finite lattices + monotonic functions $=$ program analysis