Why Do We Want Qualifier Inference?

- Because our programs weren’t written with qualifiers in mind
 - They don’t have qualifiers in their type annotations
 - In particular, functions don’t list qualifiers for their arguments
- Because it’s less work for the programmer
 - …but it’s harder to understand when a program doesn’t type check

First Problem: Subsumption Rule

- We’re allowed to apply this rule at any time
 - Makes it hard to develop a deterministic algorithm
 - Type checking is not syntax driven
- Fortunately, we don’t have that many choices
 - For each expression e, we need to decide
 - Do we apply the “regular” rule for e?
 - Or do we apply subsumption (how many times)?

Getting Rid of Subsumption

- Lemma: Multiple sequential uses of subsumption can be collapsed into a single use
 - Proof: Transitivity of \(\leq \)
- So now we need only apply subsumption once after each expression

Getting Rid of Subsumption (cont’d)

1. Fold \(e_2 \) subsumption into rule

\[
\begin{align*}
G |-- e_1 : q_1 \rightarrow Q' & \\
& q_1 \leq q_1' \quad Q' \leq Q' \quad q_1' \leq q_2 & \rightarrow \\
& G |-- e_1 : q_1 \rightarrow Q_2 & \rightarrow \\
& G |-- e_2 : q_1 \quad q \leq q_1 & \\
& G |-- e_1 e_2 : q_2
\end{align*}
\]

2. Fold \(e_1 \) subsumption into rule

\[
\begin{align*}
q_1 \leq q_1' \quad Q' \leq Q' \quad q_1' \leq q_2 & \\
& q \leq q_1 & \\
& G |-- e_1 : q_1 \rightarrow Q' & \rightarrow \\
& G |-- e_2 : q_1 \quad q \leq q_1 & \\
& G |-- e_1 e_2 : q_2
\end{align*}
\]
Getting Rid of Subsumption (cont'd)

3. We don’t use Q, so remove that constraint

\[q_1 \leq q \quad q \leq q_2 \]

\[G |-- e_1 : q' \rightarrow Q' \quad G |-- e_2 : q \leq q_1 \]

\[G |-- e_1 e_2 : q_2 \]

Getting Rid of Subsumption (cont'd)

4. Apply transitivity of \(\leq \)

- Remove intermediate \(q_1 \)

\[q' = q_2 \]

\[G |-- e_1 : q' \rightarrow Q' \quad G |-- e_2 : q \leq q' \]

\[G |-- e_1 e_2 : q_2 \]

Getting Rid of Subsumption (cont'd)

5. We’re going to apply subsumption afterward, so no need to weaken \(q'' \)

\[G |-- e_1 : q' \rightarrow Q' \quad G |-- e_2 : q \leq q' \]

\[G |-- e_1 e_2 : q'' \]

Second Problem: Assumptions

- Let’s take a look at the rule for functions:

\[G, f : q_1 \rightarrow^2 q_2, x : q_1 |-- e : q_2 \quad q_2' \leq q_2 \]

\[G |-- \text{fun f}^Q (x : q_1) : q_2 = e : q_1 \rightarrow^2 q_2 \]

- There’s a problem with applying this rule
 - We’re assuming that we’re given the argument type \(q_1 \) and the result type \(q_2 \)
 - But in the problem statement, we said we only have annotations and checks

Unknowns in Qualifier Inference

- We’ve got regular type annotations for functions
 - (We could even get away without these…)

\[G, f : ? \rightarrow^2 ?, x : ? |-- e : q_2 \quad q_2' \leq q_2 \]

\[G |-- \text{fun f}^Q (x : q_1) : q_2 = e : q_1 \rightarrow^2 q_2 \]

- How do we pick the qualifiers for \(f \)
 - We generate fresh, unknown qualifier variables and then solve for them
Adding Fresh Qualifiers

- We'll add qualifier variables a, b, c, \ldots to our set of qualifiers
 - (Letters closer to p, q, r will stand for constants)
- Define $\text{fresh} : t \rightarrow qt$ as

 - $\text{fresh}(\text{int}) = \text{int}$
 - $\text{fresh}($bool$) = \text{bool}$
 - $\text{fresh}($ref$Q) = \text{ref}$
 - $\text{fresh}(t_1 \rightarrow t_2) = \text{fresh}(t_1) \rightarrow \text{fresh}(t_2)$
 - Where a is fresh

Rule for Functions

$$qt_1 = \text{fresh}(t_1) \quad qt_2 = \text{fresh}(t_2)$$

$$G : qt_1 \rightarrow \text{Q} \quad G' : qt_2 \rightarrow \text{Q}'$$

$$e \quad : \quad e' \quad : \quad qt_2 \leq qt_2'$$

$$G \vdash \text{fun} f (x : t_1) : t_2 = e : qt_1 \rightarrow Qqt_2$$

A Picture of Fresh Qualifiers

Where Are We?

- A syntax-directed system
 - For each expression, clear which rule to apply
- Constant qualifiers
- Variable qualifiers
 - Want to find a valid assignment to constant qualifiers
- Constraints $qt \leq qt'$ and $Q \leq Q'$
 - These restrict our use of qualifiers
 - These will limit solutions for qualifier variables

Qualifier Inference Algorithm

1. Apply syntax-directed type inference rules
 - This generates fresh unknowns and constraints among the unknowns
2. Solve the constraints
 - Either compute a solution
 - Or fail, if there is no solution
 - Implies the program has a type error
 - Implies the program may have a security vulnerability

Solving Constraints: Step 1

- Constraints of the form $qt \leq qt'$ and $Q \leq Q'$
 - $qt ::= \text{int} | \text{bool} | qt \rightarrow qt | \text{ref} qt$
- Solve by simplifying
 - Can read solution off of simplified constraints
- We'll present algorithm as a rewrite system
 - $S \Rightarrow S'$ means constraints S rewrite to (simpler) constraints S'
Solving Constraints: Step 1

- $S + \{ \text{int} \leq \text{int}' \} \Rightarrow S + \{ Q \leq Q' \}$
- $S + \{ \text{bool} \leq \text{bool}' \} \Rightarrow S + \{ Q \leq Q' \}$
- $S + \{ q_1 \rightarrow q_2 \leq q_1' \rightarrow q_2' \} \Rightarrow$
 - $S + \{ q_1' \leq q_1 \} + \{ q_2 \leq q_2' \} + \{ Q \leq Q' \}$
- $S + \{ \text{ref} q_1 \leq \text{ref} q_2 \} \Rightarrow$
 - $S + \{ q_1 \leq q_2 \} + \{ q_2 \leq q_1 \} + \{ Q \leq Q' \}$
- $S + \{ \text{mismatched constructors} \} \Rightarrow \text{error}$
 - Can't happen if program correct w.r.t. std types

Solving Constraints: Step 2

- Our type system is called a structural subtyping system
 - If $q_1 = q_1'$, then q_1 and q_1' have the same shape
- When we're done with step 1, we're left with constraints of the form $Q \leq Q'$
 - Where either of Q, Q' may be an unknown
 - This is called an atomic subtyping system
 - That's because qualifiers don't have any "structure"

Constraint Generation

```plaintext
ptr(int) f(x : int) = { ... }
y := f(z)
```

Constraints as Graphs

- $a_0 \leq a_1$
- $a_2 \leq a_3$
- $a_4 \leq a_5$
- $a_6 \leq a_7$
- $a_8 \leq a_9$

Some Bad News

- Solving atomic subtyping constraints is NP-hard in the general case
- The problem comes up with some really weird partial orders

But That's OK

- These partial orders don't seem to come up in practice
 - Not very natural
- Most qualifier partial orders have one of two desirable properties:
 - They either always have least upper bounds or greatest lower bounds for any pair of qualifiers
Lubs and Glbs

- lub = Least upper bound
 - \(p \cup q \leq r \) such that
 - \(p \leq r \) and \(q \leq r \)
 - If \(p \leq s \) and \(q \leq s \), then \(r \leq s \)
- glb = Greatest lower bound, defined dually
- lub and glb may not exist

Lattices

- A lattice is a partial order such that lubs and glbs always exist
- If \(Q \) is a lattice, it turns out we can use a really simple algorithm to check satisfiability of constraints over \(Q \)

Satisfiability via Graph Reachability

Is there an inconsistent path through the graph?

Satisfiability in Linear Time

- Initial program of size \(n \)
 - Fixed set of qualifiers tainted, untainted, ...
- Constraint generation yields \(O(n) \) constraints
 - Recursive abstract syntax tree walk
- Graph reachability takes \(O(n) \) time
 - Works for semi-lattices, discrete p.o., products
Limitations of Subtyping

- Subtyping gives us a kind of polymorphism
 - A polymorphic type represents multiple types
 - In a subtyping system, \(q_t \) represents \(q_t \) and all of \(q_t \)'s subtypes
- As we saw, this flexibility helps make the analysis more precise
 - But it isn’t always enough…

Limitations of Subtype Polymorphism

- Consider tainted and untainted again
 - untainted \(\leq \) tainted
- Let’s look at the identity function
 - fun id (x:int):int = x
- What qualified types can we infer for id?

Types for id

- fun id (x:int):int = x (ignoring int, qual on id)
 - tainted \(\rightarrow \) tainted
 - Fine but untainted data passed in becomes tainted
 - untainted \(\rightarrow \) untainted
 - Fine but can’t pass in tainted data
 - untainted \(\rightarrow \) tainted
 - Not too useful
 - tainted \(\rightarrow \) untainted
 - Impossible

Function Calls and Context-Sensitivity

- All calls to strdup conflated
 - Monomorphic or context-insensitive

What’s Happening Here?

- The qualifier on \(x \) appears both covariantly and contravariantly in the type
 - We’re stuck
- We need parametric polymorphism
 - We want to give fun id (x:int):int = x the type \(\forall a. a \rightarrow a \)

The Observation of Parametric Polymorphism

- Type inference on id yields a proof like this:

\[
\begin{equation}
\text{id : } a \rightarrow a
\end{equation}
\]

- If we just infer a type for id, no constraints will be placed on a
The Observation of Parametric Polymorphism

- We can duplicate this proof for any a, in any type environment

![Diagram]

- The constraints on a only come from "outside"

![Diagram]

Implementing Polymorphism Efficiently

- ML-style polymorphic type inference is EXPTIME-hard
 - In practice, it’s fine
 - Bad case can’t happen here, because we’re polymorphic only in the qualifiers
 - That’s because we’ll apply this to C
- We need polymorphically constrained types
 - $x : \forall a. qt$ where C
 - For any qualifiers a where constraints C hold, x has type qt

Polymorphically Constrained Types

- Must copy constraints at each instantiation
 - Inefficient
 - (And hard to implement)

A Better Solution: CFL Reachability

- Can reduce this to another problem
 - Equivalent to the constraint-copying formulation
 - Supports polymorphic recursion in qualifiers
 - It’s easy to implement
 - It’s efficient ($O(n^3)$)
 - Previous best algorithm $O(n^8)$
- Idea due to Horwitz, Reps, and Sagiv, and Rehof, Fahndrich, and Das
The Problem Restated: Unrealizable Paths

• No execution can exhibit that particular call/return sequence

Only Propagate Along Realizable Paths

• Add edge labels for calls and returns
 - Only propagate along valid paths whose returns balance calls

Instantiation Constraints

• These edges represent a new kind of constraint
 - \(a \leq^+ b \)
 - At use \(i \) of a polymorphic type
 - Qualifier variable \(a \)
 - Is instantiated to qualifier \(b \)
 - Either positively or negatively (or both)

• Formally, these are semiunification constraints
 - But we won’t discuss that

Type Rules

• We’ll use Hindley-Milner style polymorphism
 - Quantifiers only appear at the outmost level
 - Quantified types only appear in the environment

\[
\begin{align*}
qt1 & = \text{fresh}(t1) & qt2 & = \text{fresh}(t2) \\
G, f : qt1 \rightarrow^{Q} qt2, x : qt1 \rightarrow^{e} qt2' & \quad qt2' : qt2 \\
G \vdash f : qt1 \rightarrow^{Q} qt2
\end{align*}
\]

• This is not quite the right rule, yet...

Resolving Instantiation Constraints

• Just like subtyping, reduce to only qualifiers
 - \(S \times \{ \text{int}^{Q} \rightarrow \text{int}^{Q'} \} \Rightarrow S \times \{ Q \rightarrow Q' \} \)
 - \(p \) stands for either + or -

\[
\begin{align*}
S \times \{ qt1 \rightarrow^{Q} qt2 \rightarrow^{Q'} qt2' \} & \Rightarrow \\
S \times \{ qt1 \rightarrow^{(-p)} qt1 \} \times (qt2 \rightarrow qt2') & \Rightarrow \\
S & \times \{ Q \rightarrow Q' \} \\
\text{Here } (-) \text{ is } - & \text{ and } (.) \text{ is } +
\end{align*}
\]
Instantiation Constraints as Graphs

- Three kinds of edges
 - $Q \leq Q'$ becomes $Q \rightarrow Q'$
 - $Q \leq +i Q'$ becomes $Q \rightarrow (i \rightarrow Q'$
 - $Q \leq -i Q'$ becomes $Q \rightarrow (i \leftarrow Q'$

An Example (Stolen from RF01)

```haskell
fun idpair (x:int*:int*:int*) = x in
fun f y = idpair (31, 4p) in
let z = snd (f3, O)
```

Two Observations

- We are doing constraint copying
 - Notice the edge from b to d got "copied" to p to f
 - We didn't draw the transitive edge, but we could have

- This algorithm can be made demand-driven
 - We only need to worry about paths from constant qualifiers
 - Good implications for scalability in practice

CFL Reachability

- We're trying to find paths through the graph whose edges are a language in some grammar
 - Called the CFL Reachability problem
 - Computable in cubic time

CFL Reachability Grammar

```
S ::= P N
P ::= M P
|   | P
|   | empty
N ::= M N
|   | N
|   | empty
M ::= (i M) i
|   | for any i
|   | empty
|   | d
|   | regular subtyping edge
|   | empty
```

Global Variables

- Consider the following identity function
 - `fun id(x:int):int = z := x; !z`
 - Here z is a global variable

- Typing of `id`, roughly speaking:

```
  id : a \rightarrow b
```
Global Variables

- Suppose we instantiate and apply \textit{id} to \textit{q} inside of a function

\[
\begin{array}{c}
d \rightarrow \overset{2}{z} \rightarrow \overset{1}{b} \\
\overset{1}{a} \rightarrow \overset{1}{q}
\end{array}
\]

- And then another function returns \textit{z}
- Uh oh! (1)\textit{2} is not a valid flow path
- But \textit{q} may certainly pop out at \textit{d}

Thou Shalt Not Quantify a Global Type (Qualifier) Variable

- We violated a basic rule of polymorphism
 - We generalized a variable free in the environment
 - In effect, we duplicated \textit{z} at each instantiation

- Solution: Don’t do that!

Our Example Again

\[
\begin{array}{c}
d \rightarrow \overset{2}{z} \rightarrow \overset{1}{b} \\
\overset{1}{a} \rightarrow \overset{1}{q}
\end{array}
\]

- We want anything flowing into \textit{z}, on any path, to flow out in any way
- Add a self-loop to \textit{z} that consumes any mismatched parens

Typing Rules, Fixed

- Track unquantifiable vars at generalization

\[
\begin{array}{l}
\text{qt}_1 = \text{fresh}(t_1) \\
\text{qt}_2 = \text{fresh}(t_2)
\end{array}
\]

\[
G, f : (\text{qt}_1 \rightarrow \text{qt}_2, v), x : \text{qt}_1 \vdash e : \text{qt}_2 \\
\quad v = \text{free vars of } G
\]

\[
G \vdash f : \text{qt}_1
\]

\[
G \vdash e : (\text{qt}_1 \rightarrow \text{qt}_2, v)
\]

Efficiency

- Constraint generation yields \(O(n)\) constraints
 - Same as before
 - Important for scalability
- Context-free language reachability is \(O(n^3)\)
 - But a few tricks make it practical (not much slowdown in analysis times)

- For more details, see
 - Rehof + Fahndrich, POPL’01