Constraint-Based Analysis

(Lecture slides from Alex Aiken, CS 294 lecture 4)

Type Inference Problems

- Type inference problems are described as:
 \[\cap_i t_{i1} = t_{i2} \]
 \[t = c(t_1, \ldots, t_n) \mid a \]

- \(c \) is a constructor (may be 0-ary)
 - Like function arrow, product, or ref
- System of equations
- Arbitrary expressions on lhs and rhs
- Domain is terms

Dataflow Problems

- Recall Gen/Kill data flow problems look like
 - \(In(S) = \bigcup_{s \in \text{pred}(S)} Out(s) \)
 - \(Out(S) = \text{Gen}(S) \cup (In(S) - \text{Kill}(S)) \)

- These can be thought of as constraints
 - \(In(S) \) and \(Out(S) \) are variables
 - We don’t need \(\subseteq \), since we’re really computing least solutions

Dataflow Problems as Constraints

- So we can rewrite those equations as
 - \(\forall_{In(S)} \supseteq \bigcup_{s \in \text{pred}(S)} \forall_{Out(s)} \)
 - \(\forall_{Out(S)} \supseteq E1 \cup (\forall_{In(S)} \cap E2) \)

Dataflow Problems

- Classical dataflow equations are described as:
 \[\cap_i \forall_1 \supseteq E_i \]
 \[E = EU \mid En \mid v \mid a \]

- \(v \) is a variable, \(a \) is an atom
- System of inclusion constraints
- Only variables on lhs
- Domain is atoms

Summary

- Dataflow analysis
 - Inclusion constraints over atoms
- Type inference
 - Equations over terms
- Two very different theories
 - With different applications
 - Developed over decades
- But are they really independent?
Set Constraints

- The set expressions are:
 \[E ::= 0 \mid a \mid E \cup E \mid E \cap E \mid \neg E \mid c(E, E) \mid c^{-i}(E) \]

- A system of set constraints is
 \[\bigcap_i E_i \subseteq E_j \]

- Constructors \(c \)

- Set variables \(a \)

Semantics of Set Expressions

- One interpretation: Set expressions denote subsets of the Herbrand Universe \(H \)
 \[H ::= c(H, \ldots, H) \]

- i.e., terms built from constructors

- An assignment maps variables to sets of terms:
 \[s : \text{Vars} \to 2^H \]

Solutions

- An assignment \(s \) is a solution of the constraints if
 \[\text{for all } i, \quad s(E_i) \subseteq s(E_j) \]

Notes on Projection

- Projection can model data selectors
 \[\text{Car, cdr, hd, tl, etc.} \]

- But projections have another interesting property:
 \[c^{-1}(c(A, B)) = \begin{cases} A & \text{if } B \neq 0 \\ \emptyset & \text{otherwise} \end{cases} \]
Conditional

- Projections can be used to encode conditional constraints:

\[B \neq 0 \Rightarrow A \subseteq C \]

is equivalent to

\[c^{-1}(c(A, B)) \subseteq C \]

Complexity

- Thm: Deciding whether a system of set constraints has any solutions is NEXPTIME-complete

- Remains NEXPTIME-complete even if we drop projections

- So, focus on tractable sub-theories

Sources of Complexity

- For equality constraints with no \(\cup, \cap, \neg \)
 - Use union-find; near-linear time

- For (restricted) inclusion constraints
 - Use transitive closure; PTIME
 \[A \subseteq B \subseteq C \Rightarrow A \subseteq C \]

Sources of Complexity (Cont.)

- For EXPTIME algorithms, general \(\cup, \cap, \neg \)

- For NEXPTIME algorithms, the choice

\[c(A, B) = 0 \Leftrightarrow A = 0 \lor B = 0 \]

Connections

- Set constraints are related to
 - Tree automata
 - Logic (the monadic class)

- Also, implementation techniques are based on graphs and graph algorithms

A Tractable Fragment

\[
\begin{align*}
L &::= L \cup L | c(L, \ldots, L) | a | 0 \\
R &::= R \cap R | c(R, \ldots, R) | a | 1
\end{align*}
\]

Let \(C \) be constraints of the form:

\[L \subseteq R \\
a \neq 0 \Rightarrow L \subseteq R \]
Solving Set Constraints

- The usual strategy:
 - Rewrite constraints, preserving solutions
 - When all possible rewrites have been done, the system is in "solved form"
 - Solutions are manifest

- Note: there are different notions of "solve"
 - Has at least one solution (yes/no)
 - Describe one solution (e.g., the least)
 - Describe all solutions

Resolution Rules 1

- Trivial constraints:
 \[
 S \wedge L \subseteq 1 \Rightarrow S \\
 S \wedge 0 \subseteq R \Rightarrow S \\
 S \wedge x \subseteq x \Rightarrow S
 \]

Resolution Rules 2

- More interesting constraints:
 \[
 L \subseteq R_1 \cap R_2 \Rightarrow L \subseteq R_1 \wedge L \subseteq R_2 \\
 L_1 \cup L_2 \subseteq R \Rightarrow L_1 \subseteq R \wedge L_2 \subseteq R \\
 c(\ldots) \subseteq \alpha \wedge \alpha \subseteq R \Rightarrow \\
 c(\ldots) \subseteq \alpha \wedge \alpha \subseteq R \wedge c(\ldots) \subseteq R
 \]

Resolution Rules 3

- And more interesting constraints:
 \[
 c(L_1, L_2) \subseteq c(R_1, R_2) \Rightarrow L_1 \subseteq R_1 \wedge L_2 \subseteq R_2 \\
 c(\ldots) \subseteq \alpha \wedge (\alpha \neq 0 \rightarrow L \subseteq R) \Rightarrow c(\ldots) \subseteq \alpha \wedge L \subseteq R
 \]

- These rules preserve all solutions for non-strict constructors
 - \(c(x,0) \neq 0 \)

- Warning: \(c \) can’t be the function constructor

Resolution Rules 4

- Note how the rules preserve \(R \) and \(L \):
 \[
 c(L_1, L_2) \subseteq c(R_1, R_2) \Rightarrow L_1 \subseteq R_1 \wedge L_2 \subseteq R_2
 \]

- We can also have constructors with contravariant arguments; e.g.,
 \[
 L ::= \ldots \mid R \rightarrow L \\
 R ::= \ldots \mid L \rightarrow R \\
 R_1 \rightarrow L_1 \subseteq L_2 \rightarrow R_2 \Rightarrow L_2 \subseteq R_1 \wedge L_1 \subseteq R_2
 \]

An Observation

- Note the resolution rules do not create new expressions
 - Only subexpressions are used, e.g.,
 \[
 L \subseteq R_1 \cap R_2 \Rightarrow L \subseteq R_1 \wedge L \subseteq R_2 \\
 L_1 \cup L_2 \subseteq R \Rightarrow L_1 \subseteq R \wedge L_2 \subseteq R \\
 c(\ldots) \subseteq \alpha \wedge \alpha \subseteq R \Rightarrow \\
 c(\ldots) \subseteq \alpha \wedge \alpha \subseteq R \wedge c(\ldots) \subseteq R
 \]
A Graph Interpretation

- Treat each subexpression as a node in a graph.
- Constraints \(L \subseteq R \) are directed edges from \(L \) to \(R \).
- Recast resolution rules as graph transformations.

Resolution on Graphs 1
\[
c(...) \subseteq \alpha \land \alpha \subseteq R \Rightarrow
\]
\[
c(...) \subseteq \alpha \land \alpha \subseteq R \land c(...) \subseteq R
\]

Resolution on Graphs 2
\[
c(...) \subseteq \alpha \land (\alpha \neq 0 \rightarrow L \subseteq R) \Rightarrow
\]
\[
c(...) \subseteq \alpha \land L \subseteq R
\]

Resolution on Graphs 3
\[
c(L_1, L_2) \subseteq c(R_1, R_2) \Rightarrow L_1 \subseteq R_1 \land L_2 \subseteq R_2
\]

The Other Constraints

- Skip presentation of rules for other constraints:
 - Trivial constraints
 - Intersection/union constraints
- Easily handled:
 - In practice, edges from these constraints are not explicitly represented anyway
 - Tend to keep only constraints on variables

Notes

- The process of adding edges according to a set of rules is called closing the graph.
- The closed graph gives the solution of the constraints.
Algorithmics

- This algorithm is a dynamic transitive closure
- New edges other than transitive edges are added during the closure procedure
- Can’t use standard transitive closure tricks
 - E.g., Boolean matrix multiplication

Dynamic Transitive Closure

- The best known algorithms for dynamic transitive closure are $O(n^3)$
 - Has not been improved in 30 years
- Sketch: In the worst case, a graph of n nodes
 - May have n^2 edges
 - Each edge may be added $O(n)$ times

Applications

- Closure analysis for lambda calculus
- Receiver class analysis for OO languages
- Alias analysis for C

Closure Analysis: The Problem

- A call graph is a graph where
 - The nodes are function (method) names
 - There is a directed edge (f,g) if f may call g
- Call graphs can be overestimates
 - If f may call g at run time, there must be an edge (f,g) in the call graph
 - If f cannot call g at run time, there is no requirement on the graph

Call Graphs in Functional Languages

- Recall the untyped lambda calculus:
 $$e = x | \lambda x.e | e e$$
- Examples:
 - $((\lambda x.x)(\lambda y.y))(\lambda z.z)$
 - $((\lambda x.x)(\lambda y.y))(\lambda w.w)$
 - $((\lambda x.x)(\lambda y.y))$
A Definition

- Assume all bound variables are unique
 - So a bound variable uniquely identifies a function
 - Can be done by renaming variables
- For each application $e_1 \ e_2$, what is the set of lambda terms $L(e_1)$ to which e_1 may evaluate?
 - $L(\cdot)$ is a set of static, or syntactic, lambdas
 - $L(\cdot)$ defines a call graph
 - The set of functions that may be called by an application

A More General Definition

- To compute $L(\cdot)$ for applications, we will need to compute it for every expression
- Define:

 $L(e)$ is the set of syntactic lambda abstractions to which e may evaluate

Defining $L(\cdot)$

\[
\lambda x.e \\
L(\lambda x.e) = \lambda x.e
\]

For each $\lambda x.e \in L(e)$,

- $L(e_2) \subseteq L(x)$
- $L(e) \subseteq L(e_1 \ e_2)$

Rephrasing the Constraints with \subseteq

The following constraints have the same least solution as the original constraints:

\[
\lambda x.e \subseteq L(\lambda x.e) \\
e_1 \ e_2 \subseteq L(e_1) \Rightarrow (L(e_2) \subseteq L(x) \cap L(e_0) \subseteq L(e_1 \ e_2))
\]

Example \((\lambda x. x) \ (\lambda y. y)) \ (\lambda z. z)\)

Least solution:

\[
\lambda x.x \subseteq L(\lambda(x.x)) \\
\lambda y.y \subseteq L(\lambda(y.y)) \\
\lambda z.z \subseteq L(\lambda(z.z)) \\
L(\lambda(x.x)) = \lambda x.x \\
L(\lambda(y.y)) = \lambda y.y \\
L(\lambda(z.z)) = \lambda z.z \\
L(\lambda(x.x)) \subseteq L(x) \subseteq L(\lambda(x.x) \ (\lambda y.y)) \\
L(\lambda(y.y)) \subseteq L(y) \subseteq L(\lambda((\lambda(x.x) \ (\lambda y.y)) \ (\lambda z.z)))
\]

Example \((\lambda x. x) \ (\lambda y. y)) \ (\lambda z. z)\) with Graphs

The value of the application includes the value of the function body.

The actual argument of the call flows to the formal argument.

Note: Each $L(e)$ is a constraint variable

Each $\lambda x.e$ is a constant
The Solution for \(((\lambda x.x) (\lambda y.y)) (\lambda z.z)\)

The solution is given by edges \((\lambda x.e,\star)\)

Control Flow Graphs in OO Languages

- Consider a method call \(e_0.f(e_1,\ldots,e_n)\)
- To build a control-flow graph, we need to know which \(f\) methods may be called
 - Depends on the class of \(e_0\) at runtime
- The problem:
 - For each expression, estimate the set of classes it could evaluate to at runtime

An OO Language

\[
P ::= C_1 \ldots C_n \ E
\]
\[
C ::= \text{class ClassId [inherits ClassId]} \ E
\]
\[
M ::= \text{method MId(Id)} \ E
\]
\[
E ::= \text{Id := E} | \text{E.MId(E,...,E)} | \text{E:E | new ClassId | if E E E}
\]

Constraints

- \(\text{id := e}\)
- \(\text{e_0.f(e_i)}\)
- \(\text{C(e)} \subseteq \text{C(id)}\)
- \(\text{for each class A with a method f(x) e}\)
- \(\text{C(e)} \subseteq \text{C(id := e)}\)
- \(\text{A in C(e_0)} \Rightarrow\)
- \(\text{e_0; e_2 \subseteq C(x)}\)
- \(\text{C(e_1) \subseteq C(e_0; e_2)}\)
- \(\text{new A}\)
- \(\text{(A) \subseteq C(new A)}\)
- \(\text{if e_1, e_2, e_3}\)
- \(\text{C(e_2) \subseteq C(if e_1, e_2, e_3)}\)
- \(\text{C(e_3) \subseteq C(if e_1, e_2, e_3)}\)

Notes

- Receiver class analysis of OO languages and control flow analysis of functional languages are the same problem
- Receiver class analysis is important in practice
 - Heavily object-oriented code pays a high price for the indirection in method calls
 - If we can show that only one method can be called, the function can be statically bound
 - Or even inlined and optimized

Type Safety

- Notice that our OO language is untyped
 - We can run \((\text{new A}).f(0)\) even if \(A\) has no \(f\) method
 - Gives a runtime error
- By adding upper bounds to the constraints, we can make receiver class analysis into a type inference procedure for our language
Type Inference

id := e

\[C(e) \subseteq C(id) \]

for each class A with a method \(f(x) \)

\[e \in f(e) \]

\[C(e) \subseteq C(id := e) \]

\(e_1; e_2 \]

\[C(e_2) \subseteq C(e_1; e_2) \]

new A

\[(A) \subseteq C(new A) \]

if \(e_1, e_2, e_3 \)

\[C(e_3) \subseteq C(if \ e_1 \ e_2 \ e_3) \]

\[C(e_3) \subseteq (\{A \mid A \text{ has an } f \text{ method}\}) \]

\[C(e_1) \subseteq \{\text{Bool}\} \]

Type Inference (Cont.)

- These constraints may not have a solution
 - May discover that the constraints require \(\{B\} \subseteq \emptyset \)

- If there is a solution, every dispatch will succeed at runtime

- Note: Requires a whole-program analysis

Alias Analysis

- In languages with side effects, want to know which locations may have aliases
 - More than one "name"
 - More than one pointer to them

- This is the same problem as before
 - At \(^*x\), what locations may \(x \) point to?
 - Solve with similar techniques

In Practice

- Many natural inclusion-based analysis problems are equivalent to dynamic transitive closure

- Widely believed to be impractical
 - \(O(n^3) \) suggests it may be slow
 - And in fact it is
 - Many implementations have tried

Summary of Constraint-Based Analysis

- Constraints separate
 - Specification (system of constraints)
 - Implementation (constraint resolution)
 - Clear place to apply algorithmic knowledge

- No forwards-backwards distinction
 - Can solve for any unknown

- Infinite domains
 - Separate analysis is easy
 - Can always solve constraints

Where is Constraint-Based Analysis Weak?

- Only fairly simple constraints are practical
 - This situation is improving

- Doesn't capture all of abstract interpretation
 - In particular, situations where there is a favored direction (forwards, backwards) for efficiency reasons
Things We Didn’t Talk About

- Polymorphism
 - Context-free reachability & polymorphic recursion

- Effect Systems
 - A computation has a type & an effect
 - E.g., the set of memory locations written
 - Mixed constraint systems

- Other constraint languages
 - There are some besides $=$ and \subseteq