This semester, we’ve covered a lot of material about programs and programming languages.

Main areas of static program analysis:
- Data flow analysis
- Abstract interpretation
- Type systems
- Theorem Proving
- Model checking

Today: An assortment of things we didn’t cover.
Data Flow and Model Checking

- Schmidt, “Data Flow Analysis is Model Checking of Abstract Interpretations.” POPL98.
 - State space: Program execution tree
 - Each conditional branch is a fork in the tree
- Consider very-busy expressions:
 \[VBE(p) = \text{Used}(p) \cup \text{notMod}(p) \cup (\bigcap_{p \in \text{succ}} VBE(p')) \]
- Reformatted as model checking the exec. space:
 \[\text{isVBE}(e) = \nu Z.\text{isUsed}(e) \lor (\text{notMod}(e) \land \Box Z) \]
 (here \(\nu \) is the greatest fixpoint operator)

Model Checking and Theorem Proving

- Model checkers are fully automated theorem provers
 - Again, they prove “dumb” theorems
 - But somewhat smarter than type systems
 - E.g., they handle concurrency, complicated properties
 - But don’t do a good job with complex structures
 - E.g., functions, data structures

Loops in Denotational Semantics

- Loops are tricky:
 - Want \(\langle \text{while} B \text{ do } C \rangle \) to be defined in terms of \(B \) and \(C \)
 - \(\langle \text{while} B \text{ do } C \rangle = \lambda s.s \) if \(\langle B \rangle s = \text{false} \)
 - \(\langle \text{while} B \text{ do } C \rangle = \langle C; \text{while } B \text{ do } C \rangle \) if \(\langle B \rangle s = \text{true} \)
 - But that’s not compositional reasoning!
 - \(\text{while} \) is defined in terms of itself
 - Solution: Need to compute a fixpoint
 - Define domains on which minimal fixpoints exist

Model Checking and Type Systems

- Naik and Palsberg, “A type system equivalent to a model checker”
 - (not yet published; see Palsberg’s web page)
 - Shows how to construct a type system that accepts exactly the set of programs that a model checker passes

Complete Partial Orders

- A partial order \((P, \preceq)\) is a set \(P \) and a reflexive, transitive, antisymmetric binary relation \(\preceq \)
- A partial order has a bottom if it has a least element \(\bot \)
- An \(\omega \)-chain is infinite increasing sequence
 - \(x_0 \preceq x_1 \preceq x_2 \preceq \ldots \)
- A partial order is complete (a “cpo”) if every \(\omega \)-chain has a least upper bound
 - Written \(\bigcup \{x_i | i \in w\} \) (Following Abadi, CS263)
Continuous Functions

- Let P_1 and P_2 be two complete partial orders
- A function $f : P_1 \to P_2$ is continuous if
 - It is monotonic
 - $x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$
 - For all ω-chains
 - $\bigcup_{i \in \omega} f(x_i) = f\left(\bigcup_{i \in \omega} x_i\right)$

Fixed-Point Theorem

- Let P be a cpo with bottom
- Let $f : P \to P$ be a continuous function
- Let $f^i(x) = f(f(...f(x))$ (i times)

Proof: First step

- Claim: $\bot \in f(\bot) \subseteq f(f(\bot)) \subseteq ...
 - i.e., $f(\bot)$ forms an ω-chain
- Proof:
 - $\bot \in f(\bot)$ definition of \bot
 - $f(\bot) \subseteq f(f(\bot))$ monotonicity
 - $f(f(\bot)) \subseteq f(f(f(\bot)))$ monotonicity
 - $...$

Proof: f is a Fixpoint

- $f(fix(f)) = f\left(\bigcup_{i \in \omega} f^i(\bot)\right)$ by definition
- $= \bigcup_{i \in \omega} f(f^i(\bot))$ by continuity
- $= \bigcup_{i \in \omega} f^{i+1}(\bot)$
- $= (\bigcup_{i \in \omega} f^{i+1}(\bot)) \cup \bot$
- $= \bigcup_{i \in \omega} f^i(\bot)$
- $= fix(f)$ by definition

A Useful CPO

- Let F be the set of functions $\text{State} \to (\text{State} \cup \bot)$
- Define $f \sqsubseteq g$ if $f(x) = g(x)$ or $f(x) = \bot$

- Then F is a cpo with bottom
Denotational Semantics of While

- Goal: \(\{ \text{while } B \text{ do } C \} \) defined in terms of \(B \) and \(C \)
- Let \(G = \lambda z \lambda s. \text{if } (B)(s) \text{ then } f((C)(s)) \text{ else } s \)
- \(G \) "unrolls" one iteration of the loop, using \(f \) for the recursive call
- Notice \(G : F \rightarrow F \) and \(G \) continuous
- Define \(\{ \text{while } B \text{ do } C \} = \text{fix}(G) \)
- Then \(\text{fix}(G) = G(\text{fix}(G)) = \lambda s. \text{if } (B)(s) \text{ then } \text{fix}(G)((C)(s)) \text{ else } s \)
- \(\text{fix}(G) \) is the least function with this property

Denotational Semantics

- A very compelling theory
 - Composition reasoning very powerful
 - Requires a lot of math
 - Makes some proofs easier
- Today, operational semantics mostly used
 - A lot simpler to understand
 - Reduces to a lot of symbol pushing
 - But hard to reuse results

Language-Based Security

- Writing secure software is hard
 - Adversary is malicious: looking for bugs
 - Hard to test for security flaws
 - Often errors on non-covered paths
- Not many mechanisms in languages for security
 - Type and memory safety help (e.g., don’t use \(C \))
 - One exception: Stack inspection in Java
 - But what does it mean? What security can it achieve?

Secure Information Flow

- A popular notion of security: non-interference
 - Idea: Program is a function \(H \times L \rightarrow H' \times L' \)
 - \(H \) = high security, \(L \) = low security
 - High-security inputs should not leak to low-security outputs
 - Leaving \(L \) fixed and changing only \(H \) should not change \(L' \)
 - Is this a safety property? A liveness property?
 - What evidence shows this property is violated?

Enforcing Non-Interference

- Types distinguish high- and low-security data
 - Guarantee \(H \) never flows to \(L \)
 - Dual of \(\text{tainted/untainted} \) type qualifiers
- But wait! What about the following:
 - \(\text{if } (H) \text{ then } L := 1 \text{ else } L := 0 \)
 - No direct flow from \(H \) to \(L \)
 - This is a covert channel
 - Need to make PC high-security in this case
- But wait! What if we’re supposed to leak info?
 - \(\text{if } (\text{passwd matches}) \text{ then } \text{log-in else fail} \)
 - Need some way to \text{classify} information
 - In fact, this is the key to making this all work
 - The jury is still out on whether any of this is practical
Object-Oriented Languages

• We’ve mostly talked about imperative programming
 ▪ With higher-order functions, a la ML
 ▪ But OOP is very popular these days
 ▪ How do we analyze object-oriented programs?
 ▪ First step: basic theory
 ▪ Object calculi
 ▪ (In practice, people tend to use versions of Java)

An Object Calculus

• Terms (Abadi and Cardelli)
 \[e ::= x \quad \text{variable} \]
 \[| \begin{array}{l} \llbracket \ell_1 = s(x_1)e_1, \ldots, \ell_n = s(x_n)e_n \rrbracket \quad \text{object} \\ \ell.e \quad \text{method app} \\ \ell.e := s(x)e \quad \text{method update} \end{array} \]

• Methods take self (this) parameter
 ▪ \(s(x)e \) is a method whose self parameter is named \(x \) and whose body is \(e \)
 ▪ No fields, only methods
 ▪ Just like in pure lambda calculus, nothing but functions

Reduction Rules

• Let \(o = \llbracket \ell_1 = s(x_1)e_1, \ldots, \ell_n = s(x_n)e_n \rrbracket \)

 Two possible reductions:
 ▪ Invocation:
 \[\ell.e \rightarrow e[o \xi] \]
 ▪ Update:
 \[\ell.e := s(x)e \rightarrow \llbracket \ell_1 = s(x_1)e_1, \ldots, \ell = s(x)e, \ldots, \ell_n = s(x_n)e_n \rrbracket \]

Power of the Calculus?

• Can encode arithmetic, functions, recursion etc.

 • Notice: No classes, only objects
 ▪ Can model classes in the calculus
 ▪ As well as inheritance, etc

 • Can extend to typed object calculi
 ▪ Subtyping, polymorphism, etc.

Other Programming Paradigms

• We didn’t talk much about OOP
 ▪ But I assume you’ve seen plenty of that

 • We covered functional programming, a little
 ▪ We focused on ML, which is call by value
 ▪ Mostly functional language, but includes imperative constructs
 ▪ The other camp: purely functional programming
 ▪ No assignment statements!
 ▪ (Not even one’s you’re not “supposed” to use much)

Purely Functional Programming

• Main exemplar: Haskell

 • Why is not having updatable refs good?
 ▪ Gives you mathematical-style reasoning
 ▪ Example: What does \((f x == f x)\) evaluate to?
 ▪ ML/C/Java/etc.: can’t tell
 ▪ Haskell: always will return \text{true}
Lazy Evaluation

• No side effects, so...
 • Can evaluate arguments to functions whenever we like

• Example:
 • integers n = n:(integers (n+1))
 - An infinite loop in a call by value language
 • take 5 (integers 0)
 - [0,1,2,3,4]
 - Works perfectly in Haskell; integers 5 not computed because take does not require it

Monads

• But real systems need to do I/O
 • Which is definitely a side effect
• How to incorporate into a “pure” language?
 • Thread the state through the computation
 type IO a = World → (a, World)
 - A value of type IO a is a function that takes the world as input and produces a new world as output, along with an a

 • Examples:
 - getChar : IO char
 - putChar : char → IO ()
 • (For more info, see Peyton Jones’s “Tackling the Awkward Squad,” where these examples are from)

Sequencing and More

• A monad has two operations:
 • (>>=) : IO a → (a → IO b) → IO b
 - “Bind”: perform the first action, then the second
 - echo = getChar >>= putChar
 • return : a → IO a
 - Perform a non-side effecting computation
 - getChar >>= (c1 → getChar >>= (c2 → return (c1, c2)))

• Notice that the world is never duplicated (!)
• Notice that the IO monad is “sticky”