Questions?

- Projects
- Homework
Two-way ANOVA

• Setting
 – Full factorial design: \(k \) columns, \(l \) rows
 – For each cell (treatment) you gathered from a random samples
 • Mean
 • Standard deviation

• Null hypothesis
 – \(F \) ratios (row column and interaction) follow a \(F \) distribution
 • Main effect: \(F_{\text{col}} \) and \(F_{\text{row}} \)
 • Interaction: \(F_{\text{int}} \)
F ratios

\[F_{\text{col}} = \frac{MS_{\text{col}}}{MS_{\text{cell}}} \]
with
\[
MS_{\text{col}} = \frac{SS_{\text{col}}}{df_{\text{col}}}, \quad SS_{\text{col}} = n_{\text{col}} \sum_{j=1}^{k} (\bar{X}_j - \bar{X}_{\text{col}})^2
\]
\[df_{\text{col}} = \text{col_count} - 1 \]

\[F_{\text{row}} = \frac{MS_{\text{row}}}{MS_{\text{cell}}} \]
with
\[
MS_{\text{row}} = \frac{SS_{\text{row}}}{df_{\text{row}}}, \quad SS_{\text{row}} = n_{\text{row}} \sum_{j=1}^{l} (\bar{X}_j - \bar{X}_{\text{row}})^2
\]
\[df_{\text{col}} = \text{row_count} - 1 \]

\[F_{\text{int}} = \frac{MS_{\text{int}}}{MS_{\text{cell}}} \]
with
\[
MS_{\text{int}} = \frac{SS_{\text{int}}}{df_{\text{int}}}, \quad SS_{\text{int}} = \left(\sum_{j=1}^{k-l} \frac{T_j^2}{n_j} - \frac{T^2}{N} \right) - SS_{\text{row}} - SS_{\text{col}} - SS_{\text{bet}}
\]
\[df_{\text{int}} = df_{\text{row}} \times df_{\text{col}} \]

and
\[
MS_{\text{cell}} = \frac{SS_{\text{cell}}}{\text{cell_count}}, \quad SS_{\text{cell}} = \sum \sigma_j^2, \quad \text{assuming equal size cells}
\]
\[df_{\text{cell}} = N_T - \text{cell_count} \]
Interpretation (General Linear Model)

Score = Grand mean
+ Row effect
+ Column effect
+ Interaction effect
+ Error
Interactions

From Explaining Psychological Statistic (Cohen)
Interactions (Results)

C = Column means
R = Row means

Interaction is not significant

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R2</td>
</tr>
</tbody>
</table>

C = not significant
R = not significant

Interaction is significant

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R2</td>
</tr>
</tbody>
</table>

C = not significant
R = not significant

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R2</td>
</tr>
</tbody>
</table>

C = not significant
R = significant

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R2</td>
</tr>
</tbody>
</table>

C = significant
R = not significant

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R2</td>
</tr>
</tbody>
</table>

C = not significant
R = not significant

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R2</td>
</tr>
</tbody>
</table>

C = significant
R = significant

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R2</td>
</tr>
</tbody>
</table>

C = significant
R = not significant

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R2</td>
</tr>
</tbody>
</table>

C = significant
R = significant
Interactions (Caveats)

• If the interaction is significant
 – Main effect must be interpreted with care

• If the interaction is not significant
 – Main effect can be interpreted with 2 separate ANOVAs
Two-way ANOVA example
Other tests

• Repeated measure ANOVA
 – For within subject design

• Mixed Design ANOVA
 – For design which are both between and within subjects

• Nonparametric Statistics
 – Distribution-free tests
 • non-ordinal scale
 • nominal scale
 • non-normal distribution