Proof Must Have

• Statement of what is to be proven.
• "Proof:" to indicate where the proof starts
• Clear indication of flow
• Clear indication of reason for each step
• Careful notation, completeness and order
• Clear indication of the conclusion

Number Theory - Ch 3 Definitions

• \(\mathbb{Z} \) --- integers
• \(\mathbb{Q} \) - rational numbers (quotients of integers)
 – \(r \in \mathbb{Q} \leftrightarrow \exists a, b \in \mathbb{Z}, \ (r = a/b) \land (b \neq 0) \)
• Irrational = not rational
• \(\mathbb{R} \) --- real numbers
• superscript of + --- positive portion only
• superscript of * --- negative portion only
• other superscripts: \(\mathbb{Z}^{\text{even}}, \mathbb{Z}^{\text{odd}}, \mathbb{Q}^{>5} \)

• "closure" of these sets for an operation
 – \(\mathbb{Z} \) closed under what operations?
Integer Definitions

- even integer
 - \(n \in \mathbb{Z}_{\text{even}} \leftrightarrow \exists k \in \mathbb{Z}, n = 2k \)

- odd integer
 - \(n \in \mathbb{Z}_{\text{odd}} \leftrightarrow \exists k \in \mathbb{Z}, n = 2k+1 \)

- prime integer \((\mathbb{Z}^>)\)
 - \(n \in \mathbb{Z}_{\text{prime}} \leftrightarrow \forall r,s \in \mathbb{Z}^+, (n=r \cdot s) \rightarrow (r=1) \lor (s=1) \)

- composite integer \((\mathbb{Z}^>)\)
 - \(n \in \mathbb{Z}_{\text{composite}} \leftrightarrow \exists r,s \in \mathbb{Z}^+, n=r \cdot s \land (r \neq 1) \land (s \neq 1) \)

Constructive Proof of Existence

If we want to prove:

\(\exists n \in \mathbb{Z}_{\text{even}}, \exists p,q,r,s \in \mathbb{Z}_{\text{prime}} \) \(n = p+q \land \ n = r+s \land p \neq r \land p \neq s \land q \neq r \land q \neq s \)

- let \(n=10 \)
 - \(n \in \mathbb{Z}_{\text{even}} \) by definition of even
- Let \(p = 5 \) and the \(q = 5 \)
 - \(p,q \in \mathbb{Z}_{\text{prime}} \) by definition of prime
 - \(10 = 5+5 \)
- Let \(r = 3 \) and \(s = 7 \)
 - \(r,s \in \mathbb{Z}_{\text{prime}} \) by definition of prime
 - \(10 = 3+7 \)
- and all of the inequalities hold
Methods of Proving
Universally Quantified Statements

• Method of Exhaustion
 – prove for each and every member of the domain
 – \(\forall r \in \mathbb{Z}^+ \text{ where } 23 < r < 29 \rightarrow \exists p,q \in \mathbb{Z}^+ (r = p\cdot q) \land (p \leq q) \)

• Generalizing from the "generic particular"
 – suppose \(x \) is a particular but arbitrarily chosen element of the domain
 – show that \(x \) satisfies the property
 – i.e. \(\forall r \in \mathbb{Z}, r \in \mathbb{Z}\text{even} \rightarrow r^2 \in \mathbb{Z}\text{even} \)

Examples of Generalizing from the "Generic Particular"

• The product of any two odd integers is also odd.
 – \(\forall m,n \in \mathbb{Z}, [(m \in \mathbb{Z}\text{odd} \land n \in \mathbb{Z}\text{odd}) \rightarrow m\cdot n \in \mathbb{Z}\text{odd}] \)

• The product of any two rationals is also rational.
 – \(\forall m,n \in \mathbb{Q}, m\cdot n \in \mathbb{Q} \)
Disproof by Counter Example

- \(\forall r \in \mathbb{Z}, r^2 \in \mathbb{Z}^+ \rightarrow r \in \mathbb{Z}^+ \)
- Counter Example: \(r^2 = 9 \land r = -3 \)
 - \(r^2 \in \mathbb{Z}^+ \) since \(9 \in \mathbb{Z}^+ \) so the antecedent is true
 - but \(r \notin \mathbb{Z}^+ \) since \(-3 \notin \mathbb{Z}^+ \) so the consequent is false
 - this means the implication is false for \(r = -3 \) so this is a valid counter example
- When a counter example is given you must always justify that it is a valid counter example by showing the algebra (or other interpretation needed) to support your claim

Division definitions

- \(d \mid n \leftrightarrow \exists k \in \mathbb{Z}, n = d \cdot k \)
- \(n \) is divisible by \(d \)
- \(n \) is a multiple of \(d \)
- \(d \) is a divisor of \(n \)
- \(d \) divides \(n \)
- standard factored form
 - \(n = p_1^{e_1} \cdot p_2^{e_2} \cdot p_3^{e_3} \cdot \ldots \cdot p_k^{e_k} \)
Proof using the Contrapositive

For all positive integers, if n does not divide a number to which d is a factor, then n can not divide d.

\[
\forall n,d,c \in \mathbb{Z}^+, \ n \nmid dc \rightarrow n \nmid d
\]
Proof using the Contrapositive

For all positive integers, if \(n \) does not divide a number to which \(d \) is a factor, then \(n \) can not divide \(d \).

\[\forall n,d,c \in \mathbb{Z}^+, n \nmid dc \rightarrow n \nmid d \]
\[\forall n,d,c \in \mathbb{Z}^+, n \mid d \rightarrow n \mid dc \]

proof:

more integer definitions

- div and mod operators
 - \(n \div d \) --- integer quotient for \(\frac{n}{d} \)
 - \(n \mod d \) --- integer remainder for \(\frac{n}{d} \)
 - \((n \div d = q) \land (n \mod d = r) \iff n = d \ast q + r\)
 where \(n \in \mathbb{Z} \), \(d \in \mathbb{Z}^+ \), \(r \in \mathbb{Z} \), \(q \in \mathbb{Z} \), \(0 \leq r < d \)

- relating “mod” to “divides”
 - \(d \mid n \iff 0 = n \mod d \)
 - \(0 \equiv_d n \)

- definition of equivalence in a mod
 - \(x \equiv_d y \iff d|(x-y) \) [note: their remainders are equal]
 - sometimes written as \(x \equiv y \mod d \) meaning \((x \equiv y) \mod d\)
Quotient Remainder Theorem

\[\forall n \in \mathbb{Z} \ \forall d \in \mathbb{Z}^+ \ \exists q, r \in \mathbb{Z} \\
(n = dq + r) \land (0 \leq r < d) \]

Proving definition of equiv in a mod by using the quotient remainder theorem

This means

prove that if \([m \equiv_d n]\), then \([dl(n-m)]\)

where \(m, n \in \mathbb{Z}\) and \(d \in \mathbb{Z}^+\)

Proofs using this definition

• \(\forall m \in \mathbb{Z}^+ \ \forall a, b \in \mathbb{Z}\)
 \[a \equiv_m b \iff \exists k \in \mathbb{Z} \ a = b + km \]

• \(\forall m \in \mathbb{Z}^+ \ \forall a, b, c, d \in \mathbb{Z}\)
 \[a \equiv_m b \land c \equiv_m d \rightarrow a + c \equiv_m b + d \]
Proof by Division into Cases

∀n ∈ Z 3∤n → n^2 ≡_3 1

Floor and Ceiling Definitions

- n is the floor of x where x ∈ R ^ n ∈ Z
 \[\lfloor x \rfloor = n \iff n ≤ x < n+1 \]
- n is the ceiling of x where x ∈ R ^ n ∈ Z
 \[\lceil x \rceil = n \iff n-1 < x ≤ n \]
Floor/Ceiling Proofs

- \(\forall x,y \in \mathbb{R} \) \(\lfloor x+y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor \)

- \(\forall x \in \mathbb{R} \forall y \in \mathbb{Z} \) \(\lfloor x+y \rfloor = \lfloor x \rfloor + y \)

Proof by Division into Cases (again)

- The floor of \(\frac{n}{2} \) is either
 - a) \(\frac{n}{2} \) when \(n \) is even
 - or b) \(\frac{n-1}{2} \) when \(n \) is odd
Prime Factored Form

\[n = p_1^{e_1} \times p_2^{e_2} \times p_3^{e_3} \times \cdots \times p_k^{e_k} \]

- **Unique Factorization Theorem** (Theorem 3.3.3)
 - given any integer \(n > 1 \)
 - \(\exists k \in \mathbb{Z}, \exists p_1, p_2, \ldots, p_k \in \mathbb{Z}_{\text{prime}}, \exists e_1, e_2, \ldots, e_k \in \mathbb{Z}^+ \),

 where the \(p \)'s are distinct and any other expression of \(n \) is identical to this except maybe in the order of the factors

- **Standard Factored Form**
 - \(p_i < p_{i+1} \)
 - \(\exists m \in \mathbb{Z}, 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times m = 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 11 \times 10 \)
 - Does \(17 \) divide \(m \)?

Steps Toward Proving the Unique Factorization Theorem

- Every integer greater than or equal to 2 has at least one prime that divides it

- For all integers greater than 1, if \(a | b \), then \(a \nmid (b+1) \)

- There are an infinite number of primes
Using the Unique Factorization Theorem

- Prove that the
 \[\sqrt{3} \notin \mathbb{Q} \]

- Prove:
 \[\forall a \in \mathbb{Z}^+ \forall q \in \mathbb{Z}_{\text{prime}} \quad q | a^2 \rightarrow q | a \]

Summary of Proof Methods

- Constructive Proof of Existence
- Proof by Exhaustion
- Proof by Generalizing from the Generic Particular
- Proof by Contraposition
- Proof by Contradiction
- Proof by Division into Cases
Errors in Proofs

- Arguing from example for universal proof.
- Misuse of Variables
- Jumping to the Conclusion (missing steps)
- Begging the Question
- Using "if" about something that is known